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AbstrACt
Light signals perceived by the phytochrome family of red (R) and far-red (FR) 

light-absorbing photoreceptors direct plant growth and development throughout their  
lifecycle. In contrast to other family members, phyA displays rapid light-induced proteo-
lytic degradation upon conversion to the biologically active Pfr form and mediates high 
irradiance responses to continuous FR. These unique properties together with limited 
examples of phyA function in R have resulted in an over-simplified portrayal of phyA as 
a FR sensor which acts predominantly in seed germination and early stages of seedling 
de-etiolation. In a recent work, published in The Plant Journal, we report significant phyA 
activity in Arabidopsis thaliana at high (>100 mmolm-2s-1) photon irradiances of R. Under 
these conditions, we observed retarded degradation of a pool of nuclear-localised phyA, 
consistent with the phenomenon of photoprotection, and showed phyBphyCphyDphyE 
quadruple null mutants, containing only functional phyA, to de-etiolate and survive to 
flowering. The photon irradiances used in this study were greater than those routinely 
used for photomorphogenic analysis in the laboratory but considerably lower than those 
commonly observed in daylight. In this addendum we present additional analyses of the 
phyBphyCphyDphyE mutant and discuss the possibility that phyA may perform a signifi-
cant role in the growth and development of daylight-grown plants.

IntroduCtIon
Analyses of mutants, deficient in individual and multiple combinations of phytochromes, 

have been paramount in elucidating the functions of family members throughout plant 
development.1 Phytochrome A is the most abundant phytochrome in etiolated seedlings 
and performs a fundamental role in seedling de‑etiolation.2 The rapid decrease in phyA 
levels upon transfer to light results from both light‑mediated turnover of the protein and 
down‑regulation of PHYA transcription.3,4 A variety of phyA‑mediated very low fluence 
responses (VLFRs) and high irradiances responses (HIRs) to continuous far‑red light (FRc) 
have been characterised but limited examples of phyA functions in R exist in the litera‑
ture. Modestly increased hypocotyl length, reduced hook opening and reduced cotyledon 
expansion have all been reported in Rc‑grown phyAphyB mutants when compared with 
monogenic phyB mutants, suggesting a role for phyA in Rc‑mediated de‑etiolation.5‑7 In 
addition, phyA has been reported to mediate the R‑enhancement of phototropic curvature 
in blue light8 and R‑induced positive phototropism in roots.9 Recent microarray studies 
have also shown phyA to be the principle phytochrome regulating rapidly responding 
genes during early stages of R‑mediated de‑etiolation.10 The photon irradiance used in 
all these studies was, however <50 mmolm‑2s‑1. We observed considerable phyA activity 
at high (>100 mmolm‑2s‑1) photon irradiances of R. At these photon irradiances we also 
observed retarded degradation of the protein in wild‑type (WT) plants and prolonged 
epifluorescence of nuclear‑localised phyA::YFP in transgenic lines.

MutAnts ContAInInG only FunCtIonAl phyA dIsplAy ConsIderAble 
de‑etIolAtIon At HIGH pHoton IrrAdIAnCes oF r

Creation of a phyBphyCphyDphyE quadruple null mutant enabled the role of phyA in 
R signalling to be examined in the absence of other phytochromes. The de‑etiolation 
of these plants at a range of different photon irradiances is shown in Figure 1A. At photon 
irradiances >100 mmolm‑2s‑1 phyBphyCphyDphyE mutants displayed significant inhibition 
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of hypocotyl elongation (Fig. 1B) and promotion of cotledon 
expansion (Fig. 1C). Such observations unequivocally demostrate 
the capacity of phyA to promote substantial de‑etiolation in Rc in 
an irradiance‑dependent manner.

A sIGnIFICAnt role For phyA In dAylIGHt‑GroWn 
plAnts?

Phytochrome A activity has been reported throughout the  
lifecycle of plants. Despite resembling WT plants in continuous white 
light, phyA mutants displayed elongated hypocotyls when grown  
in light/dark cycles and continuous low R:FR ratio.11,12 The phyA‑ 
mediated inhibition of hypocotyl growth in low R:FR ratio occurs 

at dawn,13 when phyA levels are highest, and is thought to ‘antago‑
nise’ shade avoidance by preventing excessive elongation growth. 
This response has been shown to be of fundamental importance to 
seedlings developing under dense, natural vegetational shade. When 
grown in the field under these conditions, phyA mutants displayed 
extreme hypocotyl elongation, with many failing to establish and 
dying prematurely.14 Phytochrome A has also been shown to perform 
a role in the perception of daylength,2 suppression of internode 
elongation15 and leaf elongation16 in mature plants. This study not 
only demonstrates photoprotection of phyA at high photon irradi‑
ances of R (a waveband that maximises Pfr concentration and hence 
degradation rate) but also provides evidence of significant functional 
activity for photoprotected phyA. In natural daylight, photoprotec‑
tion ensures maintenance of a phyA pool, despite the establishment 
of a relatively high Pfr concentration, conditions which maximise 
phyA degradation at more modest photon irradiances.17,18 Given 
that photoprotected phyA displays significant biological activity, 
it is likely that this phytochrome performs a more significant role 
in development of daylight‑grown plants than has previously been 
considered.

Phytochrome‑deficient mutants have proved invaluable in 
elucidating the functional capacity and redundant interactions of 
individual family members throughout development. Our under‑
standing of how individual phytochromes functionally interact 
in WT plants does, however, appear partly dependent on the 
experimental growth conditions used for analyses. Recently, a small 
decrease in ambient growth temperature was shown to significantly 
alter the functional relationships between phytochromes for multiple 
physiological responses.19,20 We have now demonstrated consid‑
erable phyA activity in R, using photon irradiances higher than 
those commonly used for laboratory studies. Given the diverse and  
fluctuating environmental conditions experienced by plants growing 
in natural communities, it is likely that further broadening of 
experimental regimes may reveal additional functional activities for 
individual phytochromes, thus providing additional insight in to the 
regulatory roles of this important group of plant photoreceptors.
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Figure 1. (A)  Phenotypes of WT and phyBphyCphyDphyE seedlings grown 
for five days at different photon irradiances of R. (B) Hypocotyl lengths and 
(C) Cotyledon areas of WT and phyBphyCphyDphyE mutants grown for 
5 days at different photon irradiances of R. Experimental procedures are 
described in Franklin et al. 2007.
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