Environmental Risk Assessment of Transgenic Plants

Potential Secondary and Nontarget Effects

Contents

- → Non-target organisms
- Methods for testing impacts
- Indicator species
- *Summary

Impact on non-target organisms

- Evaluate the toxicity of gene products, breakdown products, and by-products in the environment:
 - May include indirect effects on predators, grazers, parasites, pathogens, competitors and symbionts
 - Potential adverse effects on human health
- ◆ If the gene product is a toxin, evaluate the level of exposure and effect on soil micro flora and fauna (degradation

 Any plant, animal or microorganism that is unintentionally affected by cultivation of the novel plant

Assessing impact on non-target organisms

- The potential hazard to terrestrial wildlife, aquatic animals, plants and beneficial insects are evaluated using
 - Exisiting knowledge of the toxin
 - Laboratory-based, toxicology studies
 E.g. US EPA Model
 - Only if detrimental effects are observed in lab assays, are field studies undertaken to evaluate population levels of the non-target

Methodology

- It is imperative that the appropriate indicator organisms be selected for non-target testing
- *The potential field exposure to the transgenic plant and the toxin should be determined to enable correct levels to be used in assays
 - Tissue specificity of expression should be considered in this determination

Methodology, cont.

- *The US EPA requires data on the toxicity of insecticidal proteins (i.e. Bt delta-endotoxins) to:
 - Birds
 - Fish
 - Honeybees and certain other beneficial insects
 - Soil invertebrates

- Test species should be representative of the geographic region where the transgenic plant will be cultivated
- Avian test species
 - e.g. Bobwhite quail, mallard ducks
- Aquatic animals relevant to
 - (1) transgenic plants that will be grown in proximity to water sources
 - e.g. irrigation ditches, rivers
 - (2) aquatic crop species
 - e.g. rice, cranberries
 - Freshwater fish species for which considerable background data exist
 - ♠ e.g. catfish, trout, salmon
- Insectivorous or scavenging fish species may be considered where intoxicated insects or transgenic plant tissue may be consumed

- Aquatic animals (cont'd):
 - Aquatic invertebrate species
 - Daphnia is commonly used
 - Considerable background data
 - Bio-concentrator
 - Short lifecycle
 - Useful for assessing reproductive effects

- Insect testing
 - Selection of predator and parasite insect species should take into account likelihood of exposure to plant tissue, phylogenetic relationship of target and non-target species
 - If novel toxin is highly specific, then insect species closely related to the target(s) are most likely to be affected

- → Insect testing (cont'd)
 - Extrapolation of test data across species lines is problematic so tests should be conducted with representatives from a number of beneficial insect taxa
 - ◆E.g., the US EPA recommends a pollinator and at least two of the following parasitic dipterans, predaceous hemipterans, predaceous coleopterans, predaceous mites, predaceous neuropterans, parasitic hymenopterans

Impact on Soil Organisms 1. Is the novel protein toxic to soil

- microflora and microfauna?
- 2. How much novel protein is present in senescing plant tissue?
- 3. How long does the novel protein remain biologically active in the soil?
 - Both 2 and 3 addressed through laboratory bioassays and/or field studies
 - Representative species for

Choice of indicator species

- All sentinel species used to measure potential non-target adverse effects were proposed by US-EPA for measuring impacts of microbial pesticides
- Consider whether there are other, better species that would be more relevant to the release environment
 - Background knowledge and data available
 - Stable laboratory cultures available

Summary

- ★ Impacts on non-target organisms are considered using existing knowledge of the toxicity of any new proteins
- Laboratory testing is performed on a range of indicator species, chose to represent likely non-target organisms
- Adverse impacts in laboratory tests are followed up in field tests
- Appropriate indicator species which can be handles in the laboratory are needed