Structure and function of a virally encoded fungal toxin
from Ustilago maydis: a fungal and mammalian Ca%*
channel inhibitor

Fei Gu', Anis Khimani?, Stanley G Rane', William H Flurkey3,
Robert F Bozarth? and Thomas } Smith'*

"Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA, 2Department of Life Sciences, Indiana State
University, Terre Haute, IN 47809, USA and 3Department of Chemistry, Indiana State University, Terre Haute, IN 47809, USA

Background: The P4 strain of the corn smut fungus,
Ustilago maydis, secretes a fungal toxin, KP4, encoded by a
fungal virus (UMV4) that persistently infects its cells.
UMV4, unlike most other (non-fungal) viruses, does not
spread to uninfected cells by release into the extracellular
milieu during its normal life cycle and is thus dependent
upon host survival for replication. In symbiosis with the
host fungus, UMV4 encodes KP4 to kill other competitive
strains of U. maydis, thereby promoting both host and virus
survival. KP4 belongs to a family of fungal toxins and
determining its structure should lead to a better under-
standing of the function and evolutionary origins of these
toxins. Elucidation of the mechanism of toxin action could
lead to new anti-fungal agents against human pathogens.

Results: We have determined the atomic structure of
KP4 to 1.9 A resolution. KP4 belongs to the a/B-sand-
wich family, and has a unique topology comprising a

five-stranded antiparallel B-sheet with two antiparallel
a-helices lying at ~45° to these strands. The structure has
two left-handed Baf cross-overs and a basic protuber-
ance extending from the B-sheet. In vivo experiments
demonstrated abrogation of toxin killing by Ca?* and, to
a lesser extent, Mg?*. These results led to experiments
demonstrating that the toxin specifically inhibits voltage-
gated Ca%* channels in mammalian cells.

Conclusions: Similarities, although somewhat limited,
between KP4 and scorpion toxins led us to investigate the
possibility that the toxic effects of KP4 may be mediated
by inhibition of cation channels. Our results suggest that
certain properties of fungal Ca?* channels are homolo-
gous to those in mammalian cells. KP4 may, therefore, be
a new tool for studying mammalian Ca®?* channels and
current mammalian Ca?* channel inhibitors may be use-
ful lead compounds for new anti-fungal agents.
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Introduction

Several strains of Ustilago maydis (corn smut fungus) and
Saccharomyces cerevisiae (yeast) have been classified as
‘killer’ strains by their ability to kill similar strains of
fungi in culture. This killer phenotype is caused by per-
sistent infections of the host cells by double-stranded (ds)
RNA virions. These virions are unusual in that they are
not expressed externally but instead are transmitted ver-
tically through basidiospores or horizontally through
anastomosis [1,2]. The multisegmented viral genome is
encased by an unusual type of capsid composed of 120
copies of the envelope protein gag [3—6]. The structures
of two of these viruses have been determined using
cryo-electron microscopy and image reconstruction
techniques [6]. With two identical copies of gag in each
icosahedral asymmetric unit, these capsids were found to
contradict Caspar and Klug’s rules [7] for icosahedral
equivalency without any topological evidence of accept-
able pseudo-symmetry such as P=4. It was speculated
that these viral capsids do not act as protective carapaces
but rather as cytoplasmic compartments for viral
genome replication [6].

Unlike most non-fungal viruses, some of these dsRINA
fungal viruses have a symbiotic relationship with their
host. These viruses are solely dependent upon host sur-
vival for replication, and therefore lend the host a selec-
tive advantage by encoding small toxins that are secreted
by the host cell. The fungal toxins do not affect the host
cell strain but do kill similar strains of fungi in that locale.

In S. cerevisiae, the two best-studied classes of toxins are
K, and K,,. The members of one class are immune to the
toxins of other members of the same class but sensitive to
the killing action of the other class [8]. K, is composed of
two subunits linked together via a disulfide bond [9-12].
One subunit is predicted to have a hydrophobic, a-heli-
cal secondary structure typical of membrane-spanning
proteins. The other domain is hydrophilic and thought to
be involved in protecting the host from toxic effects [13].
It has been proposed that the K, toxin first binds to the
cell wall, targets secondary receptors at the cell mem-
brane, and then either acts as a protonophore or alters
existing ionophores [14-16]. Subsequent experiments
demonstrated that the K, toxin forms ion channels in
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sensitive yeast spheroplasts and in artificial membranes
[17]). In addition, a toxin from the yeast Pichia kluyveri,
with physiological properties similar to those of S. cere-
visiae K, has also been shown to have channel-forming
activity in synthetic membranes [18].

In U. maydis, three killer toxins have been described to
date — KP1, KP4 and KP6 [19-21]. KP1 and KP6 are
both composed of two non-covalently linked polypep-
tides, each comprising ~80 amino acids. As for the yeast
toxins, KP6 receptors are thought to reside in the cell
wall. However, unlike the yeast toxins, both subunits of
KP6 are thought to be involved in killing [22-24]. The
lack of spheroplast sensitivity to KP6 suggests that no sec-
ondary receptor exists on the cell membrane [23]. Pre-
liminary evidence suggests that KP6, using both subunits,
may also form channels in planar phospholipid mem-
branes [25], and that these subunits form mostly B-sheets
in the presence of phospholipids [26].

KP4 is unlike other previously described toxins from
killer strains of S. cerevisiae (K1, K2 and KT28 [8]) and U.
maydis (KP1 and KP6 [19-21]). Whereas these other tox-
ins are composed of two polypeptides and are believed to
form ion channels in the cell membrane [14-16], KP4 is
a single polypeptide for which the mechanism of action
is undefined [21]. Another difference is that the yeast
toxins are acidic proteins [27], the other U. maydis toxins
are neutral [28], but KP4 is very basic with an isoelectric
point (pI) greater than 9 [29]. No atomic structure is
available for any of these toxins.

Here we report the atomic structure of KP4 at 1.9 A res-
olution. The structure was determined by the isomor-
phous replacement method and phase improvement
using anomalous dispersion, solvent flattening and real-
space averaging techniques. KP4 belongs to the
o/B-sandwich family of proteins and contains an approx-
imate internal dyad axis. Similarities between KP4 and
scorpion toxins led to experiments demonstrating the
abrogation of toxin effects by Ca?" and Mg?* but not by
Na*t or K*. These results suggest that KP4 acts at the cell
membrane by closing channels for divalent cations. This
was further substantiated by the surprising result that KP4
blocks voltage-gated Ca?* channels in mammalian cells.

Results and discussion

Structure determination

The previously reported crystal form of KP4 was
P6, 22 contained two copies of KP4 per asymmetric
umt and diffracted X-rays to ~2.8 A resolution [30].
Under very different conditions (see the Materials and
methods section for details), KP4 was crystallized in
another crystal form. This new crystal form belongs to
the P2, space group, diffracts X-rays to >1.7 A resolution
(Table 1) and contains two copies of toxin per asymmet-
ric unit. The phases were determined from a single
dertvative and were improved using solvent flattening,
twofold real-space averaging, and anomalous dispersion

Table 1. Crystallographic data statistics.
Parameters Native KAU(CN),
Structure determination

Heavy-atom soaking time (days) - 9

Data collection device R-axis R-axis

Temperature (°C) 4 4

Resolution (A) 1.7 2.5

Data completeness (%) 81.9 90.1

Unique reflections 15905 5571

Redundancy 3.42 4.04

R mt (%) 5.2 8.5

Molecules/asym unit 2

Riso! (%) 13.4

No. of heavy atom sites 4

Reanis® (centric) 0.61

Reunis (acentric) 0.75

Rcunis anomalous 0.91 (0.96)

Phasing power 1.36 (0.72)
Structure refinement

Resolution (A) 6.0-1.9

Reryst® (%) 18.6

Rpee” (%) 23.7

No. of non-hydrogen atoms 1530

No. of water molecules . 109

Rms bond length (A) 0.0189

Rms bond angle (°) 1.95

G factor [54] 0.3

Ramachandran plot outliers 0
*Ryym i the unweighted R-value on I between symmetry-
related observations. 'R, =3( (IF oh |- Fy lys | Fo | RCL,“IS
s(|F, |- |F |- Fo hyz|F,| for centric and acentric
reflectlons RCU| is anomalous is calculated using anomalous
data. SR_ =% |F—F |75 Fobs |- *Rpe. was calculated
using 10% of the data separated from the rest of the reflections
before a full cycie of simulated annealing in X-PLOR [54].

from the heavy atom. All 105 residues in each copy of
KP4 were unambiguously assigned. The two copies of
KP4 have been refined independently and include a total
of 109 water molecules in the asymmetric unit. The cur-
rent model has been refined to an R-factor of 18.6%
(Rg..=23.7%) using all data between 6.0 Aand 19 A
resolution. A typical example of the electron density is
shown in Figure 1. The root mean square (rms) deviation
in Ca positions between the two copies of KP4 in the
asymmetric unit is 0.249 A

Details of the KP4 structure

Interactions between the two copies of KP4 in the asym-
metric unit are mediated by polar and charged residues.
A number of these are indirect, involving hydrogen
bonds via water molecules in the intermolecular inter-
face. This dimer structure is unlikely to have biological
significance as cross-linking, size-exclusion chromatogra-
phy and NMR spectroscopy studies (data not shown) all
suggest that the toxin is monomeric in solution,

KP4 belongs to the a/B-sandwich family of proteins and
has a single split Baf motif (for a review, see [31]). The
toxin has a total of seven B-strands (81-B7) and three
o-helices (a1—a3; Fig. 2). This contradicts previous circu-
lar dichroism spectroscopy results and secondary-structure
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Fig. 1. Typical example of the 2F -F
electron density calculated to 1.9

resolution using model phases. The
electron density, shown in gray, is con-
toured at lo. The atomic model
(residues 26-39) is represented by a
ball-and-stick image where the oxygens
are red, carbons yellow, sulfurs green,
and nitrogens blue. For clarity, the pro-
gram MolView [55] was used to trim
away electron density >2.0 A away
from any atom within this loop. It
should be noted, however, that no unas-
signed density was removed during this

S
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process.

predictions which suggested that KP4 had very little heli-
cal character [30]. The major secondary-structure ele-
ments are a five-stranded antiparalle]l B-sheet (B1, B3,
B4, B6 and B7) and a pair of antiparallel a-helices (a2
and a3) lying at an angle of approximately 45° to the
strands in the B-sheet.

The first B-strand, B1, is only two residues long and is
terminated by the disulfide bond between residues 5 and
78. A short, four-residue helix (a1) lies between B1 and
the first main helix, 2. This helix contains a disulfide
bond connecting it to strand 6 (residues 11 and 81,
respectively), Helix a2 is 10 residues long and transverses
the B-sheet via a left-handed Baf connection and is
joined by a disulfide bond to the last a-helix, o3
(residues 27 and 67, respectively). The C terminus of a2
is stabilized by the short strand, $2, and then by a disul-
fide bond between residues 35 and 60. The B3—34 turn
forms a very large protuberance at the edge of the sheet
that is stabilized by the C terminus via B-sheet hydrogen
bonds and a disulfide bond (residues 44 and 105). Helix
a3 transverses back across the B-sheet towards the N ter-
minus and lies antiparallel to «2. As with the a2 helix,
a3 is part of a lefi-handed Baf cross-over. In a similar
way to the B3—f4 turn, the B6—B7 turn forms a large
extension from the B-sheet, but it is not as extended as
the B3—B4 turn, nor is it stabilized by a disulfide bond.
Whereas the two left-handed Baf cross-overs are
unusual, it is not clear whether they have a particular
functional role in KP4.

The KP4 motif is very similar to many of the other a/B
proteins, but with some important differences. Domain 2
of the biotin holoenzyme synthetase is classified as having
a similar topology [31]. One of the major differences
between this domain and KP4 is that the biotin holo-
enzyme domain is significantly larger, having two addi-
tional B-strands in the B-sheet. If the connectivity is
ignored and only some of the secondary elements of KP4
are used for comparison, similarities can easily be observed

with many of the o/ proteins, such as scorpion toxin
[32,33], protein G [34,35] and the ribonucleases [36—40].
However, as the members of the o/B-sandwich family
are known for having very similar structures but very dif-
ferent functions, the toxin mechanism cannot be
deduced from an analysis of the protein topology alone.

KP4 is very stable, resisting the effects of organic sol-
vents, elevated temperatures and proteolytic enzymes
(data not shown). The reasons for this stability are clear
from the structure. Almost all of the hydrophobic
residues are buried between the amphipathic helices and
a hydrophobic patch on the B-sheet. Both the C and N
termini are affixed to the B-sheet via disulfide bonds.
Disulfide bonds also connect the ends of the helices to
the 3-sheet and to each other. Finally, the protein is sta-
bilized by having almost all of its residues involved in the
various secondary structural elements. Because of these
stabilizing interactions, it seems unlikely that the toxin is
capable of undergoing the kinds of conformational
changes required to expose the amphipathic helices and
form ion channels.

A pseudo-dyad axis lies between the two main a-helices
and perpendicular to the B-sheet. Rotation about this
axis yields good agreement between the N-terminal and
C-terminal halves of the protein (an rms difference of
2.2 A between Ca positions when 59 of the 105 corre-
sponding Cas are compared using ‘O’ [41]; Fig. 3). This
symmetrical relationship suggests that the toxin may have
arisen by gene duplication. However, because of the lack
of sequence conservation between the two halves of the
protein, any such gene duplication is probably not a
recent evolutionary event. It is tempting to speculate that
this internal symmetry may somehow be related to toxin
recognition and attack of target cells. When the two
halves of the toxin are superimposed, one of the largest
differences is found between the B3—f4 turn and the
rotated B6—PB7 turn. These differences may be due to the
fact that the C terminus interacts extensively with the
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Fig. 2. Topology and structure of KP4.
(a) Stereo, depth-cued, Ca backbone of
KP4 with every tenth residue labeled.
Disulfide connections are represented
by dashed lines. (b) Ribbon drawing of
KP4 where the polypeptide chain fol-

B3 p4 p7 pé

lows the color spectrum from red to
purple as it proceeds from the N to the
C terminus. Secondary-structure ele-
ments are as follows: B1, residues 3—4;
al, 8-13; a2, 17-29; B2, 32-34; B3,
41-45; B4, 48-56; B5, 60-63; a3,
63-76; B6, 81-84 and B7, 96-101. The
orientation of KP4 is identical in (a) and
(b). (¢) Topology diagram of KP4 drawn
in a style used in a recent review of o/
folds [31]. The triangles represent
B-strands and the circles, a-helices. The
smaller elements (i.e. comprising only a
few residues) are represented by smaller
symbols. Note that the main secondary
elements form a topology represented
in Figure 9j of [31]. (Parts (a) and (b)

B3—B4 turn without analogous interactions at the $6—37
turn. It is interesting to note that interleukin-8 (IL-8), a
protein with a wide range of immunological effects
mediated by interactions at the cell membrane, is a true
dimer [42] that looks similar to this toxin. The major
differences between IL-8 and KP4 are the connectivity
and orientation of the two antiparallel helices with
respect to the (3-sheet.

Mechanism of KP4 action .

As ~80% of the proteins in the a/B-sandwich family
function by binding to other proteins (e.g. protein G
[34,35], ubiquitin [43] and scorpion toxin [32,33]), it
seems likely that KP4 acts by binding to cellular proteins.

created using MolView [55].)

Regions of the toxin-that might be involved in such
interactions are suggested by the extremely asymmetric
distribution of charge across ‘the toxin surface. When
viewed from above the two antiparallel helices (Fig. 4a),
the toxin has large patch of positive charge, covering
approximately two-thirds of the surface, which surrounds
the large protrusion formed by the a3—34 loop. In con-
trast, the opposite side of the protein, (the exposed face
of the PB-sheet) is ‘cup’-shaped and covered by
hydrophilic residues (Fig. 4b). One possibility is that the
B3—B4 loop may be part of the ‘active’ site of the toxin
and that the positive charge in its vicinity allows it to
interact with either the phospholipid surface or the puta-
tive target membrane protein. The cup itself is covered
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Fig. 3. Stereo diagram demonstrating the
internal  pseudo-twofold relationship
found in KP4. The black lines represent
the Ca backbone of KP4 and the gray
lines represent the model after rotation
about the pseudo-dyad axis. The N and
C termini are labeled. For a point of ref-
erence, the B3—B4 loop is also labeled.
(Figure created using MolView [55].)

Fig. 4. Stereo diagrams of the KP4
charge potential mapped onto the mol-
ecular surface. The positive potential is
shown in purple, and the negative
potential in red. The B3-B4 protrusion
is at the top of the molecule. In (a), the
orientation is from above the two
a-helices, looking down the pseudo-
dyad axis. In (b), KP4 is viewed from the
opposite direction to that shown in (a),
looking into the exposed B-sheet sur-
face. Note that the large uncharged sur-
face in (b) is composed almost entirely
of polar residues. (Figure created using
GRASP [56].)

by polar residues and rimmed by several acidic and basic
groups. The entire protein is covered by hydrophilic
residues, with the exception of a small hydrophobic

patch near the N terminus (Fig. 5).

In vivo mechanistic studies

The scorpion toxins:are a family of neurotoxins with
some interesting, albeit tenuous, similarities to KP4.
There are two classes of these single polypeptide chain
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o-Helices
o-Helices

B-Sheet
B-Sheet

mino
Terminus

36-B7 Loop

B6-B7 Loop

Fig. 5. Stereo space-filling model of KP4
showing the position of the main patch
of hydrophobic residues on-the surface.
In this figure the atoms are represented
by solid spheres where charged, polar,
glycine, and hydrophobic residues are
colored red, blue, yellow, and green,
respectively. The view here is approxi-
mately parallel to the B-sheet with the
a-helices on the top. In this view, the
B6-B7 protrusion extends out of the
page and the B3-B4 protrusion is
occluded from view at the back of the
molecule, pointing into the page. (Fig-
ure created using MolView [55].)

Terminus

Control

Fig. 6. The effects of cations on KP4
killing. P2 cells were grown in agar con-
taining complete medium [29] with the
addition of 0.1 M of one of KCI, NaCl,
MgCl, or CaCl, and without any addi-
tional salts. For each growth condition,
two filter blots were placed on top of
the agar. The left filter blot contained a
~0.8 puM solution of KP4 and the right
filter blot contained a ~8.0 uM solution
of KP4. Cell death caused by KP4 is
manifest as a clearing about the filter
blot after incubation overnight at room
temperature.

Mg 2*

neurotoxins: short toxins with ~37 amino acids (e.g.
charybdotoxin), and long toxins containing ~60-70
amino acids (e.g. Androctonus australis Hector 11, AaHII).
The long neurotoxins, which are of the a/f-sandwich
family, can be further subdivided on the basis of their
binding characteristics to rat brain synaptosomes and on
their electrophysiological effects: the a-toxins (e.g. AaHII)
and the B-toxins (e.g. Centruroides suffusus suffusus 1I,
CsslI). The long toxins exert their neurological effects by
acting on Na® channels in excitable membranes.
Although only about half the size of KP4, the long toxins
are similar to KP4 because they are all highly basic pro-
teins stabilized by an extensive network of disulfide bonds.
In AaHII, Lys58 is a highly reactive moiety near the
C terminus that, upon chemical modification, renders the
toxin inactive [44]. The C terminus of AaHII is covalently
linked via a disulfide bond to a protrusion formed by the
turn between the first a-helix and the first B-strand [33].
An analogous structure is found in KP4. The 334 loop
in KP4 has several basic groups along the sides and base of
the protrusion (Fig. 4) and is stabilized by a disulfide bond
between it and the C-terminal cysteine (Fig. 2). One sig-
nificant difference between KP4 and AaHII, other than

size and topology, is that AaHII has an unusual cluster of
four tyrosines on the exposed B-sheet face, whereas KP4
is much more polar at the corresponding face with only a
single tyrosine protruding into solvent. It has been sug-
gested that this hydrophobic patch, conserved amongst
the long toxins, may play a role in channel binding [32].

In light of this tenuous similarity to the scorpion toxins,
KP4 killing efficacy was tested on cells of the P2 strain
of U. maydis (which are KP4-sensitive) in the presence of
additional KCI, NaCl, MgCl, or CaCl, (Fig. 6). The
addition of up to 0.2 M K* and 0.2 M Na™* did not have
a significant effect on KP4 killing, whereas as little as
40 mM Ca?* or 80 mM Mg?* completely rescued P2
cells. It should be noted that growth of P2 cells away
from the.test area appeared to be equivalent under all
test conditions. These results suggest that KP4 inhibits
Ca?* channels and that high external Ca®* concentra-
tions rescue the P2 cells by forcing Ca®* through the
remaining active channels. The rescue by Mg?* may be
due either to competition between KP4 and divalent
cation binding or to incomplete Ca?* specificity of the
targeted cationic channels.
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(a)

u Pre KP4

Fig. 7. Modulation of neuronal Ca%
channels by KP4. (a) Current—voltage
plots (left) and raw current traces (right)
show inhibition of voltage-activated
Ca?* channel currents in a GH, cell
after application of ~8 uM KP4. Cur-
rents were evoked by 50 ms command
steps given from —90 mV, and KP4 was
focally applied from a micropipette at a b)
distance of <2 cell diameters. (b) In
bovine adrenal chromaffin cells, appli-
cation of a depolarizing prepulse causes
Ca2* current facilitation. Pre KP4, a
large outward current (filled arrow) is
observed during the prepulse (125 mV,
100 ms), and is followed by facilitation
(open arrow) of the inward current acti-
vated by a step to O mV. The starting 4
amplitude of the current evoked at
0 mV in absence of a prepulse is indi-
cated by the dashed line. Scale bars
pertain to (b) only.

"""" 2 H%‘[

® Post KP4

-——8

0.5 min KP4

1.5 min KP4

"

1.5 min post KP4

—

The results of these rescue experiments strongly suggest
that KP4 affects Ca?" channels. Therefore, the effect of
KP4 was tested on mammalian neuronal cells for which
more is known about the types and kinetics of cationic
channels. Standard whole-cell patch clamp techniques
were used to examine the effects of KP4 on voltage-acti-
vated Na*, K* and Ca?' currents in PC12 (rat pheo-
chromocytoma), GH, (rat pituitary tumor) and adrenal
chromafhin cells. Focal application of 8.0 uM KP4 for up
to 2 min had no effect on activation or inactivation time-
courses of Na* or K* currents, and caused amplitude
variations of less than 5% (Na* currents, 9 chromaffin
cells and 3 PC12 cells; K* currents, 5 chrom;lﬁin cells
and 4 PC12 cells). KP4 did, however, modulate Ca®*
currents. In GH, cells, KP4 at 0.8 uM and 8.0 uM
inhibited high-threshold voltage-activated Ca?* current
[45] by an average of 3015% (n=3) and 4812% (n=7),
respectively (Fig. 7a).

In chromaffin cells, KP4 application caused an initial
enhancement of current similar to that observed in
response to a depolarizing prepulse [46] (Fig. 7b).
Indeed, in the presence of KP4 (0.5 min KP4, approxi-
mate concentration 0.8 M) this current appears identi-
cal to the facilitated current, that is KP4 mimics prepulse
facilitation. This effect persists with continued applica-
tion of KP4 (1.5 min KP4), but is overlaid on a more
slowly developing inhibition of steady-state current. The
facilitatory effect of KP4 reverses with removal of the
peptide, but the steady-state inhibition persists (1.5 min
post KP4). Similar results were observed in PC12 cells.

With continued application of KP4 (8 wM), steady-state
current amplitude was decreased by an average of 28+3%
in chromaffin cells (n=5), and 2535% in PC12 cells
(n=7). In these mammalian neuronal cells, therefore, the
prevalent action of KP4 is inhibition of voltage-activated

Ca®" channel currents. As mammalian cells do not con-
tain Mg?" channels, the Mg?*-dependent rescue of P2
fungal cells cannot be analyzed.

Biological implications

A number of strains of fungi, termed ‘killer’
strains, have an unusual symbiotic relationship
with the double-stranded (ds) RNA viruses that
persistently infect them. Unlike the non-fungal
viruses, these dsRNA viruses are not released by
the host fungus during the normal viral life cycle
and are therefore dependent upon host survival for
viral replication. To lend the host strain a selective
advantage over the other strains of fungi, the
viruses encode small toxins that kill the competi-
tive fungal strains but not the host strain. Most of
the toxins from Ustilago maydis (corn smut) and
Saccharomyces cerevisiae (yeast) appear to act by rec-
ognizing the target cells and then disrupting the
membrane integrity.

The structure of the fungal toxin expressed by the
P4 strain of U. maydis (KP4) was determined to try
to ascertain its mechanism of action, its evolution-
ary origins, and as a source of potential new leads
for anti-fungal agents. KP4, a 105-residue polypep-
tide, was found to be a tightly packed, stable pro-
tein with a novel topology. Its stability and the
extremely hydrophilic nature of its surface make it
very unlikely that KP4 kills cells by forming ion
channels in their membranes, a mechanism that
has been proposed for other killer toxins. Similari-
ties between a highly basic protrusion from the
main B-sheet of KP4 and the active site of scor-
pion toxins, which bind to (and alter) cation chan-
nels on excitable membranes, led to experiments
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demonstrating that KP4-sensitive cells can be res-
cued by the addition of Ca?>* or Mg?* but not Na*
or K*. This suggested that KP4 kills target fungal
cells by blocking divalent cation channels. This
hypothesis was substantiated by experiments on
several types of mammalian neuronal cells, in
which marked inhibition of voltage-gated Ca®*
channels was detected.

The effects of KP4 on mammalian Ca2* channels,
in conjunction with the fungal rescue experi-
ments, strongly support the hypothesis that KP4
affects target fungal cells via Ca?* (and/or possible
Mg?*) channels. As Ca?* plays such a major role
in cell growth and regulation, it is conceivable
that KP4 was originally expressed by the virus to
amplify virus production by controlling host repli-
cation. Perhaps the most surprising result is that
fungal and mammalian Ca?* channels are con-
served to such a degree that both appear to be
affected by the same protein inhibitor. In addi-
tion, these findings suggest that Ca?* channel
blockers might serve as lead compounds for new
anti-fungal agents against human pathogens (e.g.
Pneumocystis carinii and Chlymydia). Studies are
underway to define the recognition sites on the
toxin using site-directed mutagenesis, and to
examine the physiological effects of the toxin on
mammals, the effects of KP4 on the ultrastructure
of target cells, and the pharmacological details of
the toxin action on the Ca?* channels.

Materials and methods

KP4 purification and crystallization

KP4 was purified from U. maydis P4 cell culture as previously
described [30]. In brief, the toxin was isolated from the super-
natant of the P4 strain of U. maydis grown in complete
medium (1% dextrose, 2.5% bactocasitone, 0.1% yeast extract,
and 0.15% ammonium nitrate) for 3—7 days at 25°C under
extensive aeration. The supernatant was stirred overnight with
CM Sephadex C-25 beads (Pharmacia, Piscataway, NJ) in
25 mM sodium acetate, pH 5.5 at 4°C. The toxin was then
eluted using the same buffer with the addition of 1 M NaClL
The eluent was then dialyzed against water and purified using
the high-resolution cation-exchange chromatography matrix,
Mono-S™ (Pharmacia), attached to an FPLC™ (Pharmacia)
system using 50 mM 2-[N-morpholino]ethanesulfonic acid at
pH 6.0 and eluted with ~0.1 M NaCl in the same buffer. The
toxin was then finally purified using the size-exclusion chro-
matography matrix, Superdex 75™ (Pharmacia).

The previously described hexagonal crystal form [30] did not
diffract X-rays beyond 2.8 A resolution and was found to be
difficult to derivatize. A new crystal form was found using the
hanging drop method at room temperature where the reservoir
contained 0.2 M sodium citrate, 20% isopropanol in 0.1 M
HEPES buffer pH 7.5. The drop contained 5pl of
~10 mg ml~! KP4 toxin in water, and 5l of the reservoir
solution. These crystals yielded higher resolution data (to 1.7 A
resolution using conventional X-ray sources and beyond 1.4 A
at the Cornell High Energy Synchrotron Source) and were
used in heavy-atom derivative searches.

Data collection, processing and reduction

All data were collected at 4°C using an R -axis imaging detector
and a Rigaku X-ray generator. The diffraction images were
indexed and integrated using the program DENZO [47]. Entire
data sets were collected from single crystals and scaled using
SCALEPACK [47]. The final native data set was >90% com-
plete to 1.9 A resolution, with an R . of 12.3% in the highest
resolution bin, and a redundancy of observations of ~3.4.

The new crystal form belongs to the P2, space group. From
V,, calculations, it was apparent that there were probably two
toxin molecules in the asymmetric unit. This was confirmed by
a large peak in the k=180° self-rotation function. This peak
had a height of 60 which was 0.35 the height of the origin
peak and three times the value of the next highest peak. The
position of this dyad axis was determined from the heavy-atom
derivative positions.

Phase determination

Of the 19 different heavy-atom compounds tested, the only
usable derivative was gold potassium cyanide [KAu(CN),]. A
stock solution of the gold derivative was prepared by dissolving
it to saturation in the reservoir solution. This solution was then
added directly to the hanging drop (final dilution of ~1:5) and
allowed to react for 7-9 days. Two derivative crystal data sets
were collected, combined, and scaled to native data using
SCALEIT in the CCP4 program suite [48]. Two gold-binding
sites were identified on a difference Patterson map and the posi-
tions refined by MLPHARE [49]. Using phases calculated from
these two sites, two additional sites were found in a difference
Fourier (Fp—Fp) clectron-density map. These four heavy-atom
sites were then refined including anomalous dispersion signals.
The final figure of merit was 0.45 and the phasing power was
1.46 to 2.5 A resolution. The twofold axis, determined by the
self-rotation function, accurately related one pair of heavy-
atom sites to the other pair. This positioned the non-crystallo-
graphic dyad axis relative to the heavy-atom positions.

An electron-density map was calculated to 2.8 A using the
single isomorphous replacement (SIR) phases. To generate a
molecular mask, this map was solvent-flattened by density mod-
ification (DM) in the CCP4 program package [48]. The map
exhibited clear protein—solvent boundaries and maintained the
non-crystallographic twofold symmetry. MAPMAN (part of
the ‘O’ graphics package [41]) was then applied to the SIR map
to create a crude protein skeleton that was then edited using ‘O’
[41]. A mask for twofold averaging was calculated from this
skeleton using the programs ATOMASK and MASK [50].

MAPMODIFY (J Tesmer, personal communication) was then
used to improve the phases by solvent flattening and real-space
averaging. The protein electron-density map was first calculated
to 5 A, the density outside the mask flattened as solvent, and the
density inside the mask averaged according to the non-crystal-
lographic twofold axis. The phases were then slowly extended
from 5 A to 2.8 A in step sizes equal to half of the smallest reci-
procal unit cell dimension. For each step, eight cycles of solvent
flattening, molecular twofold averaging, and phase combination
or weighting were performed. Phase combination was used in
the first two cycles, whereas the remaining six cycles used the
calculated phases after weighting using SIGMAA [51].

At this stage, the major secondary structural elements were
clearly visible in the 2.8 A electron-density map. A partial
polyalanine model was built using ‘O’ [41] on an ESV graphics
workstation. While almost all of the connections between the
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secondary structural elements were ambiguous, the quality of
the map was sufficient to easily determine the polarity of the
two a-helices and the positions (but not identity) of 88 out of
the total 105 residues. This partial polyalanine model was then
energy-minimized against the data using the Powell conjugate-
gradient minimization in X-PLOR [52]. At this time, because
the center of mass of two models were refined independently, it
became clear that the position of the non-crystallographic
twofold axis was displaced by 0.45 A in the X-Z plane. Subse-
quent averaging used this new dyad position. Calculated phases
from this partial model were then combined with the SIR
phases and a new, twofold averaged, map was calculated to 2.8
A. As it became apparent that some loops were not included in
the initial mask, the mask was updated and the map recalcu-
lated. At this point, the electron density and connectivity was of
sufficient quality to unambiguously assign all of the 105 residues
in both copies of KP4 in the asymmetric unit. The resolution
was extended from 2.8 A to 1.9 A as the model was refined
using several cycles of the simulated annealing protocol in
X-PLOR followed by manual rebuilding using ‘O’ {41]. Dur-
ing refinement, unaveraged 2F ~F_ electron-density maps were
calculated using model phases. The overall geometry was exam-
ined and problematic areas were identified using the program
PROCHECK (version 3.0) [53]. The non-crystallographic
twofold axis was not enforced during refinement, yet the two
molecules are almost identical with an rms deviation of 0.249 A
between corresponding Ca positions. The current model con-
tains all 105 residues for each molecule with an additional 109
water molecules in the asymmetric unit. The only outliers in
the Ramachandran plots are glycine residues and all geometrical
parameters examined by PROCHECK [53] are either well
within or better than the range of values expected for a protein
structure determined to this resolution.

Effects of KP4 on mammalian Ca®* channels

Ca®?* channel current records were obtained by standard
whole-cell patch clamp methods. Current signals from an
Axopatch 200A amplifier were filtered at 5 kHz, digitized at
10 kHz, and subjected to P/4 leak subtraction, acquired and
analyzed with Pulse (Instrutech Corp., Great Neck, NY) soft-
ware. Cells were held at —90 mV and command steps were
applied every 5 s. Ca?* current amplitudes typically increased
within the first few minutes of achieving whole-cell access, and
then remained stable for tens of minutes. The bath solution
contained (in mM) 135 tetraethylammonium (TEA)-CI,
'4 KCl, 10 BaCl,, 1 MgCl,, 10 HEPES and 1 M tetrodotoxin
(TTX). The patch pipette solution contained (in mM)
150 CsCl, 2 Mg-ATP, 0.5 GTP, 2 5-bis-[p-amino-
phenoxylethane-N,N,N’N'-tetraacetic acid (BAPTA) and
10 HEPES (pH 7.3). As noted in the text, KP4 was also tested
against voltage-activated Na* and K* currents. For sodium
currents the same patch pipette solution was used but the bath
solution contained (in mM) 138 NaCl, 9KCl, 1 CaCl,
1 MgCl,, 10 TEA-CI], 10 HEPES and 0.25 CdCl,. For K*
current recordings the bath solution contained (in mM)
143 NaCl, 4 KCl, 1 CaCl,, 1 MgCl,, 10 HEPES, 0.25 CdCl,
and 1 uM TTX and the patch pipette solution contained (in
mM) 150 KCl, 1 MgCl,, 5 BAPTA and 10 HEPES. GH, cells
were a generous gift from Dr L Yu (Indiana University Med-
ical School), adrenal chromaffin cells were obtained by stan-
dard dissection and collagenase procedures, and PC12 cells
were from the American Type Culture Collection.

The coordinates and structure factors have been deposited in
the Brookhaven Protein Data Bank with entry codes 1KPT
and R1KPTSF, respectively.

Acknowledgements: We would like to thank Ms Tiffany Sullivan for
producing some of the KP4 used in this study. This work was sup-

ported by grants from the National Institutes of Health (GM10704

to TJS, RO1GM43462 to SR, and GM422182 to WFF), from the
Lucille P Markey Charitable Trust (Purdue Structural Biology
Center), the American Heart Association to SR, the Indiana Affili-
ate Grant to SR, the Indiana State Faculty Research Grant to RJB,
the 2Xi Research Society to AK, and the Indiana Academy of
Science to AK.

References

1. Bevan, E.A. & Mankower, M. (1963). The physiological basis of the
killer character in yeast. Proc. Int. Congr. Genet. X1, 1202-1203.

2. Wood, H.A. & Bozarth., R.F. (1973). Heterokaryon transfer of virus-
like particles and a cytoplasmically inherited determinant in Usti-
lago maydis. Phytopathology 63, 1019-1021.

3. Bozarth, R.F., et al, & Steinlauf, R. (1981). The molecular weight
and packaging of dsRNAs in the mycovirus from Ustilago maydis
killer strains. Virology 113, 492-502.

4. Esteban, R. & Wickner, R.B. (1986). Three different M1 RNA-con-
taining virus-like particle types in Saccharomyces cerevisiae: in vitro
M1 double stranded RNA synthesis. Mol. Cell. Biol. 6, 1552-1561.

5. Fujimura, T., Ribas, ).C., Makhov, A.M. & Wickner, R.B. {(1992). Pol
of gag-pol fusion protein required for encapsidation of viral RNA of
yeast L-A virus. Nature 359, 746-749,

6. Cheng, R.H., et al, & Steven, A.C. (1994). Fungal virus capsids:
cytoplasmic compartments for the replication of double-stranded
RNA formed as icosahedral shells of asymmetric gag dimers. J. Mol.
Biol. 244, 255-258.

7. Caspar, D.L.D. & Klug, A. (1962). Physical principles in the con-
struction of regular viruses. Cold Spring Harb. Symp. Quant. Biol.
27, 1-24.

8. Young, T.W. & Yagiu, M. (1978). A comparison of the killer charac-
ter in different yeasts and its classification. Antonie van Leeuwen-
hoek 44, 59-77.

9. Bussey, H., Saville, D., Greene, D.}. & Bostian, K.A. (1983). Secre-
tion of Saccharomyces cerevisiae killer toxin: processing of the gly-
cosylated precursor. Mol. Cell Biol. 3, 1362-1370.

10. Bostian, K.A,, et al., & Tipper, D.J. (1984). Sequence of the prepro-
toxin dsRNA gene of type 1 killer yeast: multiple processing pro-
duces a two component toxin. Cell 36, 741-751.

11. Dimochowska, A., Dignard, D., Henning, D., Thomas, D.Y. &
Bussey, H. (1987). Yeast KEX1 gene encodes a putative protease
with a carboxypeptidase B-like function involved in the killer toxin
and a-factor precursor processing. Cell 50, 573-584.

12. Bussey, H., et al., & Thomas, D.Y. (1990). Genetic and molecular
approaches to synthesis and action of the yeast killer toxin. Experi-
entia 46, 193-200.

13. Tipper, D.J. & Bostian, K.A. (1984). Double-stranded ribonucleic
acid killer systems in yeast. Microbiol. Rev. 48, 125-156.

14. Middelbeek, E.)., et al., & Vogels, G.D. (1980). Physiological condi-
tions affecting the stability of Saccharomyces cerevisiae killer toxin
and energy requirement for toxin action. Antonie van Leeuwenhoek
46, 483-497.

15. Bussey, H. (1981). Physiology of killer factor in yeast. Adv. Microb.
Physiol. 22, 93-122.

16. De La Pena, P., Barros, F., Gascon, S., Lazo, P.S. & Ramos, S.
(1981). Effect of yeast killer toxin on sensitive cells of Saccha-
romyces cerevisiae. J. Biol. Chem. 256, 10420-10425.

17. Martinac, B., et al., & Kung, C. (1990). Yeast K1 killer toxin forms
ion channels in sensitive yeast spheroplasts and in artificial lipo-
somes. Proc. Natl. Acad. Sci. USA 87, 6228-6232.

18. Kagan, B. (1983). Mode of action of yeast killer toxins: channel for-
mation in lipid bilayer membranes. Nature 302, 709-711.

19. Puhalla, ).E. (1968). Compatibility reactions on solid medium and
interstrain inhibition in Ustilago maydis. Genetics 60, 461-474.

20. Koltin, Y. & Day, P.R. (1975). Specificity of Ustilago maydis killer
proteins. Appl. Microbiol. 30, 694-696.

21. Koltin, Y. (1988). The killer system of Ustilago maydis: secreted
polypeptides encoded by viruses. In Viruses of Fungi and Simple
Eukaryotes. (Koltin, Y. & Leibowitz, M., eds), pp. 209-242, Marcel
Dekker, New York.

22. Peery, T., Shabat-Brand, T., Steinlauf, R., Koltin, Y. & Bruenn, }.
(1987). The virus encoded toxin of Ustilago maydis — two polypep-
tides are essential for activity. Mol. Cell. Biol. 7, 470-477.

23. Steinlauf, R., Peery, T., Koltin, Y. & Bruenn, . (1988). The Ustilago
maydis virus encoded toxin — effect of KP6 on cells and sphero-
plasts. Exp. Mycol. 12, 264-274.

813



814

Structure 1995, Vol 3 No 8

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Tao, )., et al., & Bruenn, J.A. (1990). Ustilago maydis KP6 toxin:
structure, expression in Saccharomyces cerevisiae, and relationship
to other cellular toxins. Mol. Cell. Biol. 10, 1373-1381.

Zizi, M., Finkler, A. & Koltin, Y. (1995). Association of both subunits
of Ustilago maydis toxin, KP6, forms large voltage-independent
channels. Biophys. . 68, A203.

Duax, W.L., et al., & Straubinger, R. (1995). Crystallization of the a
polypeptide of the KP6 killer toxin. Biophys. J. 68, A203.

Bussey, H. (1972). Effects of yeast killer factor on sensitive cells. Nat.
New Biology 235, 73-75.

Levine, R., Koltin, Y. & Kandel, J. (1979). Nuclease activity associ-
ated with the Ustilago maydis virus induced killer proteins. Nuc/elc
Acids Res. 6, 3717-3732.

Ganesa, C., Chang, Y.-H., Flurkey, W.H. & Bozarth, R.F. (1989).
Purification and molecular properties of the toxin coded by Ustilago
maydis virus P4. Biochem. Biophys. Res. Commun. 162, 651-657.
Gu, F., et al., & Smith, T.J. (1994). The characterization and crystal-
lization of a virally encoded Ustilago maydis KP4 toxin. J. Mol. Biol.
243, 792-795.

Orengo, C.A. & Thornton, J.M. (1993). Alpha plus beta folds revis-
ited: some favoured motifs. Structure 1, 105-120.

Fontecilla-Camps, J.C., et al., & Bugg, C.E. (1981). Architecture of
scorpion neurotoxins: a class of membrane-binding proteins. Trends
Biochem. 5ci. 6, 291-296.

Housset, D., Habersetzer-Rochat, C., Astier, J.-P. & Fontecilla-Camps,
).C. (1994). Crystal structure of toxin Il from scorpion Androctonus
australis Hector refined at 1.3 A resolution. J. Mol. Biol. 238, 88-104.
Derrick, J.P. & Wigley, D.B. (1992). Crystal structure of a streptococ-
cal protein G domain bound to an Fab fragment. Nature 359,
752-754. )

Achari, A., et al., & Whitlow, M. (1992), 1.67 A X-ray structure of
the B2 immunoglobulin domain of streptococcal protein G and
comparison to the NMR structure of the B1 domain. Biochemistry
31, 10449-10457.

Nonaka, T., Mitsui, Y., Irie, M., & Nakamura, K.T. (1991). Three-
dlmensmnal structure of nbonuclease Ms *3’-guanylic acid complex
at 2.5 A resolution. FEBS Lett. 283, 207-209.

Sevcik, J., Dodson, E.J. & Dodson, G.G. (1991). Determination and
restrained least-squares refinement of the structures of ribonuclease
Sa and its complex with 3’-guanylic acid at 1.8 A resolution. Acta
Crystallogr. B 47, 240-253.

Lenz, A., Heinemann, U., Maslowska, M. & Saenger, W. (1991).
X-ray analysis of cubic crystals of the complex formed between
ribonuclease T1 and guanosine-3’,5"-bisphosphate. Acta Crystallogr.
B47,521-527.

Nakai, T., Yoshikawa, W., Nakamura, H. & Yoshida, H. (1992). The
three-dimensional structure of guanine-specific ribonuclease F1 in
solution determined by NMR spectroscopy and distance geometry.
Eur. J. Biochem. 208, 41-51.

Rico, M., et al., & Nieto, ).L. (1991). 3D structure of bovine pancre-
atic ribonuclease A in aqueous solution: an approach to tertiary
structure determination from a small basis of "H NMR NOE correla-
tions. J. Biomol. NMR 1, 283-298.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

52.

53.

54,

55.

56.

Jones, T.A., Zou, }.-Y., Cowan, S.W. & Kjeldgaard, M. (1991).
Improved methods for building protein models in electron density
maps and the location of errors in these models. Acta Crystallogr. A
47, 110-119.

Baldwin, E.T., et al, & Wlodawer, A. (1991). Crystal structure of
interleukin 8: symbiosis of NMR and crystallography. Proc. Natl.
Acad. 5ci. USA 88, 502-506.

Vijay-Kumar, S., et al., & Cook, W.J. (1987). Comparison of the
three-dimensional structures of human, yeast, and oat ubiquitin.
J. Biol. Chem. 262, 6396-6399.

Sampieri, F. & Habersetzer-Rochat, C. (1978). Structure—function
relationships in scorpion neurotoxins: identification of the super-
reactive lysine in toxin | of Androctonus australis Hector. Biochim.
Biophys. Acta 535, 100-109.

Matteson, D.R. & Armstrong, C.M. (1986). Properties of two types of
calcium channels in clonal pituitary cells. J. Gen. Physiol. 87,
161-182. )

Artalejo, C.R., Mogul, D.J., Perlman, R.L. & Fox, A.P. (1991). Three
types of bovine chromaffin cell Ca?* channels: facilitation increases
the opening probability of a 27 pS channel. J. Physiol. 444,
213-240. .
Otwinoski, Z. (1993). DENZO. In Data Collection and Processing.
{Sawyer, L. Isaacs, N. and Bailey, S., eds), pp. 56-62, SERC Dares-
bury Laboratory, Warrington, UK.

Beiley, S. (1994). The CCP4 suite: programs for protein crystallogra-
phy. Acta Crystallogr. D 50, 760-763.

Otwinowski, Z. (1991). Maximum likelihood refinement of heavy
atom parameters. In Isomorphous Replacement and Anomalous
Scattering: Proceedings of the CCP4 study weekend 25-26 January
1991. (Wolf, W., Evans, P.R. & Leslie, A.G.W., eds), pp. 80-86,
SERC Daresbury Laboratory, Warrington, UK.

Bolin, J.T., Smith, J.L. & Muchmore, S.W. (1993). Considerations in
phase refinement and extension: experiments with a rapid and auto-
matic procedure. In Proceedings of the American Crystallographic
Association Meeting, Albuguerque, NM. Vol. 21, p. 51.

Read, R.J. (1986). Improved Fourier coefficients for maps using
phases from partial structures with errors. Acta Crystallogr. A 42,
140-149.

Briinger, A.T. (1992). X-PLOR (Version 3.1), User’s Guide. Yale Uni-
versity, New Haven, CT.

Laskowski, R.A., MacArthur, M\W., Moss, D.S. & Thornton, J.M.
(1993). PROCHECK: a program to check the stereochemical quality
of protein structures. J. Appl. Crystallogr. 26, 283-291.

Briinger, A.T. (1991). Simulated annealing in crystallography. Annu.
Rev. Phys. Chem. 42, 197-233.

Smith, T.J. (1995). MolView: a program to analyze and display
atomic structures on the Macintosh personal computer. J. Mol.
Graphics 13, 122-125.

Nicholls, A. (1993). GRASP: Graphical Representation and Analysis
of Surface Properties. Columbia University, New York.

Received: 26 May 1995; revisions requested: 22 Jun 1995;
revisions received: 29 Jun 1995. Accepted: 7 Jul 1995.



