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There is current debate whether genetically modified (GM) plants
might contain unexpected, potentially undesirable changes in
overall metabolite composition. However, appropriate analytical
technology and acceptable metrics of compositional similarity
require development. We describe a comprehensive comparison of
total metabolites in field-grown GM and conventional potato
tubers using a hierarchical approach initiating with rapid metabo-
lome ‘‘fingerprinting’’ to guide more detailed profiling of metab-
olites where significant differences are suspected. Central to this
strategy are data analysis procedures able to generate validated,
reproducible metrics of comparison from complex metabolome
data. We show that, apart from targeted changes, these GM
potatoes in this study appear substantially equivalent to tradi-
tional cultivars.

genetically modified substantial equivalence � machine learning

There is concern that genetic engineering may allow intro-
duction of unforeseen traits into crops, causing them to

contain undesirable metabolites (1, 2). ‘‘Substantial equiva-
lence’’ is used as the starting point to structure current food
safety assessment and suggests comparison of intended differ-
ences between the genetically modified (GM) plant and progen-
itor cultivar (1, 2). We compared field-grown tubers from
conventional potato cultivars and genotypes bioengineered to
contain high levels of inulin-type fructans (3, 4). Inulins stimu-
late bifidobacteria growth in the intestine and help to boost
digestive tract pathogen resistance (5). The beneficial effects of
inulins as prebiotic food supplements have been well publicized;
thus, this metabolic pathway provides a readily understandable
scientific context. Two classes of experimental transgenic line
developed in the cultivar Désirée were investigated. The first
transgene coded for the enzyme sucrose:sucrose 1-fructosyl-
transferase (SST), which transfers a fructosyl residue from one
sucrose molecule to another, producing the trisaccharide 1-kes-
tose, and oligofructans up to 5 degrees of polymerization (DP)
(3, 4). The second transgene was fructan:fructan 1-fructosyl-
transferase (FFT), the product of which utilizes 1-kestose (and
other oligofructans) to build inulin polymers (3, 4).

In any compositional comparison it is important to develop
robust metabolomics methodology allowing for, as near as
possible, a global analysis of metabolite content (6–8). Estab-
lished methods for metabolite analysis include gas chromatog-
raphy, HPLC, or capillary electrophoresis, usually linked to mass
spectrometers (9–11). Such approaches result in detailed knowl-
edge relating to only a subset of previously characterized me-
tabolites (6–11), and studies thus far have been restricted to
single, relatively small batches of plants produced under con-
trolled growth conditions (9, 12–14). For an initial screen of
overall compositional similarity, we propose more rapid and less
selective fingerprinting techniques that do not incorporate a
chromatographic step (8, 15–18). Fingerprints based on MS, such
as flow injection electrospray ionization (FIE)-MS, can be

regarded as simplified images of total sample composition in that
the measured variables (m�z) are compiled by integrating the
levels of more than one metabolite (e.g., for isomers). Where
compositional differences unrelated to the bioengineered trait
are suggested, substantial equivalence testing can be applied to
more detailed metabolome analysis involving a chromatographic
step guided by the fingerprinting results.

Defining substantial equivalence does not fall neatly into a
standard statistical task. Unsupervised data analysis techniques,
such as principal components analysis (PCA) (19) look for
regularities in unlabeled data. Supervised techniques, such as
linear discriminant analysis (LDA) (19, 20) and decision tree
analysis (21), build models that discriminate between labeled
data (22, 23). However, for substantial equivalence we are
interested in data similarity rather than the ability to discrimi-
nate classes. We reason that if an unsupervised algorithm
clusters metabolome samples close together, then they can be
objectively considered to be similar, and if classes cannot easily
be discriminated by supervised methods then they are objectively
similar.

The overall experimental approach was to initially evaluate
the degree of compositional similarity between tubers of indi-
vidual traditional potato cultivars. This comparison provided a
context for determining whether transgenic potatoes displayed
alterations in metabolite composition outside the range exhib-
ited normally by conventional cultivars. To ensure comprehen-
sive coverage of the metabolome, a hierarchical approach was
adopted that initially involved a nonselective metabolite finger-
printing technique followed by more detailed global profiling of
individual metabolites and finally a targeted analysis of any
metabolites responsible for discriminating GM genotypes. Data-
mining methods were used that were specifically capable of
identifying metabolites responsible for differences between po-
tato genotypes. The use of several different data analysis meth-
ods ensured that any conclusions relating to metrics of similarity
were independent of specific statistical treatments.

Materials and Methods
Plant Material. The experimental transgenic genotypes derived
from the progenitor cultivar Désirée are described in ref. 3. The
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GM plants were grown under field conditions in a block design
for the 2001 and 2003 growing seasons together with the
conventional cultivars Agria, Linda, Granola, Solara, and two
Désirée lines [one line was propagated through tissue culture
(De2), and the other was obtained from tuber propagation].
Approximately 48 tubers were selected at random from each of
four randomly arranged field blocks and stored at 4°C for 4 weeks
before sample preparation. Potato tuber disks (fresh weight, 200
mg each) were excised from 3 mm below the tuber peel,
perpendicular to the main tuber axis. Immediately after cutting,
disks were frozen in liquid nitrogen and kept frozen at �80°C
before extraction.

Sample Preparation and Metabolite Analysis. Tuber slice homoge-
nization and extraction in 1 ml of prechilled water�methanol�
chloroform (2:5:2, vol�vol�vol) and GC TOF-MS analysis were
carried out as described in ref. 24. FIE-MS was performed with
an LCT mass spectrometer (Micromass, Manchester, U.K.) as
described in detail in Supporting Materials and Methods, which is
published as supporting information on the PNAS web site.
Randomized extracts were diluted 1:50 in water�methanol
(60:40, vol�vol), and aliquots of 40 �l were injected into a flow
of 100 �l�min�1 water�methanol (60:40, vol�vol) with a Waters
Alliance 2690 liquid chromatography (LC) system.

LC-MS-targeted analysis for glycoalkaloids and oligofructans
was performed with a LCQ Quantum triple quadrupole mass
spectrometer (ThermoFinnigan, San Jose, CA) running XCALI-
BUR software (version 1.3, ThermoFinnigan) as described in
ref. 25.

Confirmation of 1-kestose presence besides raffinose in the
Solara, Linda, SST, and SST�FFT lines was performed by
hydrophilic-interaction LC (10) and triple-quadrupole MS in
MRM mode on fragmentations of parent ion m�z 522 to m�z 325,

163, 145, 127, and 85. Chromatograms were processed with
LCQUAN (XCALIBUR, version 1.3).

Data Analysis. FIE-MS raw data were first log-transformed and
then normalized to the total ion current before analysis. All
GC-TOF data were normalized to total peak area and then
log-transformed. The latter data matrix contained 15.4% missing
values, being either below detection limit (true low values) or
missed because of failures of the automatic deconvolution and
peak detection software (missing values). The 1-kestose (ex-
pected new metabolite in GM lines) region in all 2,253 chro-
matograms was manually checked and corrected because this
molecule was found to have a retention time very close to that
of raffinose. Undetected peaks were excluded in the univariate
analysis.

Boundaries delimiting the relative concentration range of each
metabolite observed by GC-TOF in the conventional cultivars
were first determined, and the level of each metabolite in GM
lines was then compared to the specific limits set for it. From
frequency distributions of metabolites in cultivars regarded as
‘‘safe,’’ upper and lower limits of commonly detected relative
metabolite levels were calculated. One-sigma deviations from
cultivar mean levels were regarded as a conservative borderline
of typically found food metabolite levels. For each, one standard
deviation from each comparator group mean was calculated, and
the overall maximum and minimum were taken as conservative
estimations of the extents of acceptability. As a further test, it
was determined also whether the mean of an individual GM line
differed significantly from the mean of each of the cultivars.
Nonparametric multiple comparisons corrected for unequal
sample sizes with tied ranks (described in ref. 26) were per-
formed with the R environment (27) and the results presented as
Q values.

Fig. 1. FIE-MS (�) metabolite fingerprints of tuber extracts from five conventional potato cultivars [Ag, Agria; De, Désirée (1 and 2); Gr, Granola; Li, Linda; So,
Solara] and two types of transgenic lines (SST and SST�FFT) analyzed by different multivariate data analysis methods. (A) PCA with Désirée genotypes are colored
black, other cultivars are colored green, SST genotypes are colored red, and SST-FFT genotypes are colored blue. The PCA scores plots for PC1 versus PC2 are
presented. (B and C) LDA with color coding as in A. The LDA scores plots for DF1 versus DF2 (B) and DF2 versus DF3 (C) are presented. (D and E) Confusion matrix
of the LDA class predictions and decision tree class predictions in the test set. The confusion matrices are read in rows, with the numbers indicating the frequency
with which samples are predicted to be either of the true class or an alternative genotype. Correct classifications are highlighted in bold.
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For multivariate analysis, each initial data matrix was split
randomly into a training set and a test set (two-thirds and
one-third, respectively). This method of division allows a direct
comparison of the accuracies of any model using McNemar’s test
(28, 29). Some multivariate methods (e.g., PCA) require com-
plete data matrices (19, 30, 31); therefore, when required, the
overall mean of the peak intensity taken from the training set was
applied to in-fill the missing values in the training and validation
sets. PCA (30) as carried out by using MATLAB (version 6.5,
release 13; Mathworks, Natick, MA) on the mean-centered
covariance matrix of the training set. The training set only was
used to build PCA models. LDA (19) [also referred to in
chemometrics literature (17) as discriminant function analysis]
was implemented in MATLAB according to the procedure de-
scribed in ref. 17. Decision tree analysis was carried out on the
original data matrix (without in-filling) and in the mean in-filled
data matrix using an implementation of the C4.5 algorithm (21)
in the RPART package in R (27). The results of the analysis on the
original data are presented, but broadly similar overall classifi-
cation accuracies were achieved by using both data sets.

Results
Potato Genotypes Have Distinct Metabolomes. FIE-MS fingerprints
were generated for 600 samples representing all genotypes
selected randomly from four field plots. PCA showed that
metabolome variation was dominated by the three major geno-
type metaclasses (cultivars, SST, and SST�FFT) (Fig. 1A). We
further applied two different supervised data analysis ap-
proaches, LDA (8, 19, 20, 23) and a decision tree method (8, 12,
21), both of which produce interpretable results. Visualizing the
data with the first three discriminant functions (DFs) reveals a
more comprehensive separation of the classes (Fig. 1 B and C).
The class membership of unseen samples (test set) can be
visualized in a confusion matrix when evaluating the predictive

power of the LDA model (Fig. 1D). Misclassification was
restricted largely within the three main genotype groupings with
only �4% of SST samples misclassified as Désirée. Within the
group containing conventional cultivars significant confusion
occurred only between the two Désirée genotypes, suggesting
that each cultivar has a distinct metabolome. Although decision
trees rely on a different mechanism to develop a model from the
original FIE-MS fingerprints, a pattern almost identical to that
seen in the LDA was evident (Fig. 1E).

The Most Discriminatory Ions Are Derived from Fructans. The GM
lines had been engineered to synthesize novel metabolites;
therefore, the virtually complete separation of GM and non-GM
lines in PCA space was not unexpected. Investigation of the
relative contribution (loadings) of individual variables in the PC1
dimension highlighted 15 ions with a significant impact on
genotype separation (Fig. 2A). All of these top-ranked variables
were predicted to represent fructan molecules of increasing DP
(Fig. 2B and Table 2, which is published as supporting informa-
tion on the PNAS web site). Reanalysis of representative extracts
by hydrophilic interaction LC-MS confirmed this proposition
(see Fig. 3A for an example chromatogram). When the analysis
was repeated with top-ranking ions (�0.05 in PC1) omitted from
the data, although separation of GM and non-GM genotypes on
the vector of major variance (PC1) was no longer achieved, some
general grouping of samples in the three metaclasses was still
evident in PC2 (Fig. 2C). This observation was corroborated by
decision tree analysis of the reduced data, which showed that
classification of individual cultivars and discrimination between
SST�FFT lines and other genotypes was still excellent; however,
there was a significant increase (McNemar’s test (28, 29) � 7.2;
P � 0.007) in confusion between SST genotypes and Désirée
(Fig. 2D). The lack of total collapse in the classification models
when these ions were removed from the data suggested that

Fig. 2. Identification of top-ranking ions for genotype separation in PCA and effect on multivariate models when omitted from data. From a PCA, it is possible
to investigate the contribution of each variable to each of the principal components, a metric referred to as the loadings score. (A) Loadings plot of PC1 versus
PC2 of FIE-MS fingerprint data representing GM and non-GM potatoes used to derive Fig. 1A. (B) The m�z of 15 ions with high-loading scores (�0.1) in the PC1
dimension are labeled, and all were found to be masses typical of fructans with varying DP (Table 2). (C) PCA using FIE-MS data with top-ranked ions (�0.05 in
PC1) omitted. (D) Decision tree analysis using FIE-MS data with top-ranked ions (�0.05 in PC1) omitted.
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further metabolic differences could exist that might be revealed
only by a more comprehensive profiling method.

Only Anticipated Metabolites Were Found in GM Lines. Analysis was
extended in scope and depth in the next layer of data acquisition and
testing for which 2,182 tubers were analyzed from the 12 genotypes,
again randomized over all field plots. GC-TOF-MS (24) recorded
252 metabolite peaks in an automated manner (90 positively
identified, 89 assigned to a specific metabolite class, and 73 classi-
fied as unknowns). The chromatographic region associated with the
retention time of major disaccharides and trisaccharides of several
chromatograms representative of the major genotype groups is

shown in Fig. 3B. Because each of the conventional cultivars can on
the basis of consumption be regarded as safe, single metabolites
were sought initially that were ‘‘out of range’’ in a GM line (Fig. 4
A and B). Two metabolites present in GM lines were not detected
in cultivars, and a further four metabolites had means above the
upper limit of the range set for cultivars (Table 1 and see Fig. 3B).
By further targeted analysis, these six peaks were characterized
from authentic standards (or isolated fractions from chicory),
corresponding mass spectra and chromatographic retention indices
as fructose-containing trisaccharides (1-kestose and inulotriose) as
predicted by the FIE-MS analysis and in addition the disaccharide
fructans levanbiose and inulobiose (Fig. 5, which is published as
supporting information on the PNAS web site). In a test comparing
metabolite mean concentrations in GM lines to each cultivar mean

Fig. 3. Identification of discriminatory metabolites in GM potato tubers by
LC-MS and GC-MS. (A) Overlaid single-ion chromatograms of top-ranked
variables predicted to represent ions derived from a fructan with 3 DP in an
example SF30 extract analyzed by hydrophilic interaction LC-MS. The major
peak with coincident signals from extracted ion chromatograms of m�z 543,
544, 545, 526, and 527 at the retention time of 3-DP fructans in the total ion
current (TIC) trace is indicated with a red asterisk. The position of peaks
representing fructans of increasing DP are indicated. (B) Exemplary GC-TOF-
extracted ion chromatogram m�z 217 for GM and non-GM potato tubers,
enlarged for discriminatory disaccharide and trisaccharide regions. Separa-
tion of the discriminatory peaks of inulobiose 1, inulobiose 2, and levanbiose
from the major disaccharide sucrose and separation of the discriminatory
trisaccharide peaks of inulotriose 1 and inulotriose 2 from 1-kestose and
raffinose (red asterisk) are indicated. The increase in discriminatory abun-
dances of 2- and 3-DP fructans in GM lines and the presence of 1-kestose in
Linda and Solara cultivars is shown, whereas 1-kestose is absent in the direct
GM comparator Désirée.

Fig. 4. GC-TOF profiling to detect and assess the impact of out-of-range
metabolites in comparison to GM genotypes with conventional potato culti-
vars. (A) Visualization of the concept of metabolite concentration out-of-
range assessment in substantial equivalence analysis. Determination of fre-
quency distributions of metabolites in six cultivars (cv) regarded as a safe result
in an upper limit (UL) and lower limit (LL) of concentration for each commonly
detected metabolite. (B) Illustration of the out-of-range assessment concept
using rhamnose levels (relative ratio of metabolite peak area in data normal-
ized to total peak area in each chromatogram). Frequency distributions of
�150 tubers per potato line have been curve-fitted. 1, Linda; 2, Désirée1; 3,
Désirée2; 4, Solara; 5, Granola; 6, Agria; GM, single transformant of line S22.
Average rhamnose levels in S22 are found significantly different from the
Désirée parental lines in univariate statistics but fall well within the overall
range typical of potato cultivars. (C) LDA scores plot of GC-TOF data. (D) Scores
plot of LDA performed on the same data but with the omission of the six
discriminatory fructan peaks representing levanbiose, 1-kestose, inulobiose,
and inulotriose (see Fig. 3B).

Table 1. Metabolites that are out of range in at least one GM
group compared with non-GM cultivars

Fructans S18 S22 S36 SF19 SF30 SF34 LL UL

Levanbiose 2.29 2.79 2.57 3.60 3.76 3.57 1.54 2.20
Inulobiose 1 2.75 3.7 2.96 3.90 4.02 3.84 1.39 2.49
Inulobiose 2 2.83 3.30 3.10 3.95 4.05 3.87 1.71 2.77
Inulotriose 1 nd 3.05 2.79 2.63 2.84 2.48 nd nd
Inulotriose 2 1.60 2.85 1.60 2.63 2.85 2.49 nd nd
1-Kestose 3.91 3.89 3.68 3.48 3.67 3.72 2.07 3.58

LL, lower limit; UL, upper limit; nd, not detectable.
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(26) only the same six metabolite peaks were identified as signifi-
cantly different (Q � � 3.72; P � �0.001) (Table 3, which is
published as supporting information on the PNAS web site).

Analysis of GC-TOF data by PCA, LDA, and decision trees
revealed a similar pattern of genotype clustering�discrimination
to that observed in the fingerprinting analysis (Fig. 4C and Figs.
6A, 7A, and 8A, which are published as supporting information
on the PNAS web site). The same fructose-derived oligosaccha-
rides highlighted in univariate analyses were important in mul-
tivariate models (Fig. 6B). When these oligosaccharides were
omitted from the data, PCA failed to separate any classes (Fig.
6C). With this reduced data set, LDA resulted in distinct
genotype clustering in which it was difficult to satisfactorily
discriminate the GM lines from the two cultivar Désirée back-
ground groups, whereas the other cultivars remained isolated
(Figs. 4D and 7B). Genotype classification accuracy was similarly
compromised in decision tree analysis (Fig. 8B).

Glycoalkaloid Levels Are Normal in GM Potatoes. We have concluded
from a metabolomics study incorporating a range of different data
analysis techniques that only six important fructosyl peaks resulted
from the genetic modifications in potato. Disregarding this finding
of only minor changes in oligosaccharide metabolism, the possibility
of changes in possibly toxic, low level, secondary metabolites could
not be excluded a priori. Further targeted analysis (Fig. 9, which is
published as supporting information on the PNAS web site) re-
vealed no changes in the levels of glycosidic steroidal alkaloids
(�-chaconine and �-solanine), which usually comprise up to 95% of
the total glycoalkaloid content of tubers from domesticated Sola-
num tuberosum cultivars (32).

Discussion
The nature of food in terms of safety cannot be assessed in an
absolute manner. As a first pass in any compositional compar-
ison, we suggest that a rapid but sensitive comprehensive and
comparably inexpensive first screen can be provided by mass
spectrometric fingerprinting, which may be complemented by
more detailed analyses using GC-TOF or LC-MS, depending on
the level of similarity to other cultivars as determined by
statistical analysis.

A major finding from the present study was the large variation
in metabolite profile between the conventional cultivars. These
significant differences were never sought as desired traits in
traditional breeding programs, and overall composition has not
given cause for public safety concerns in conventionally bred
cultivars. In the context of substantial equivalence, we show that
the metabolite composition of field-grown inulin-producing
potatoes were within the natural metabolite range of classical
cultivars and were, in fact, very similar to the progenitor line
Désirée, with the exception of the introduced genes and, there-
fore, the predictable up-regulation of fructans and their ex-
pected derivatives. In the comparative assessment framework,
such metabolic side products might eventually be subjected to
more detailed investigations if deemed necessary with respect to
toxicity, abundance, and chemical structure.

The cultivar-based compositional heterogeneity we describe
emphasizes the importance of comparison with a range of
equivalent cultivars and not solely the parental line. For exam-
ple, although 1-kestose was not found in the genetic background
line of the GM plants, Désirée, a trisaccharide indistinguishable
from 1-kestose was found in Solara and Linda tubers (see Fig.
3B). According to the GC-TOF data, supervised multivariate
statistics demonstrated continuing cultivar distinction despite
omitting the fructosyl-oligosaccharides found in GM tubers. This
result indicated that metabolic changes caused through conven-
tional breeding techniques were, in these cases, at least of a
comparable magnitude to those resulting as an unintended effect
of genetic engineering techniques.
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