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Zucchini yellow mosaic potyvirus (ZYMV), first isolated in Italy in 1973, described in 1981, and then
identified in all continents within a decade, is one of the most economically important viruses of cucurbit
crops. It is efficiently aphid-transmitted in a nonpersistent manner and it is also seed-borne in zucchini
squash, which could have contributed to its rapid spread worldwide. Biological variability has been observed
among ZYMV isolates, concerning host range, symptomatology and aphid transmissibility. More recent
studies also revealed a serological and molecular variability. The survival of ZYMV in areas where cucurbits
are not grown throughout the year remains to be elucidated, because very few natural over-wintering hosts
have been identified so far. Partial control of ZYMV can be achieved by limiting transmission of the virus to
the crops by aphids, using adapted cultural practices. Cross-protection with a mild strain has been shown to
be effective against most ZYMV isolates. Resistance genes found in cucurbit germplasms are currently being
introduced into cultivars with good agronomical characteristics. Pathogen-derived resistance strategies using
the expression of ZYMV genes in transgenic plants have also been developed and appear promising.
Nevertheless, the high biological variability of ZYMV justifies a careful evaluation of the deployment of
genetic control strategies in order to increase their durability.

INTRODUCTION

More than 20 viruses have been described as
infecting cucurbit crops in the major growing
areas. Among them, cucumber mosaic cucumovirus
(CMV), watermelon mosaic potyvirus 2 (WMV2),
papaya ringspot potyvirus type W (PRSV-W,
formerly WMV1), squash mosaic comovirus
(SqMV) and melon necrotic spot carmovirus
(MNSV) are the most prevalent and have been
identified for decades (Lovisolo, 1980). More
recently, ‘new’ virus diseases were reported to
cause severe epidemics in cucurbit crops in
different parts of the world. Such is the case for
lettuce infectious yellows closterovirus (LIYV) in
California (Duffus & Flock, 1982), cucurbit aphid
borne yellows luteovirus (CABYV) (Lecoqet al.,
1992), zucchini yellow fleck potyvirus (ZYFV)
(Vovlas et al., 1981; Gilbert-Albertini & Lecoq,
1993) and zucchini yellow mosaic potyvirus
(ZYMV).

ZYMV is probably one of the best examples of an
‘emerging’ plant virus in the recent literature. First
described in Europe in 1981, it was associated with
severe symptoms on squash and melon and with
very destructive epidemics in Italy and France.
Within 5 years, the virus was reported worldwide in

the most important cucurbit growing areas, includ-
ing several islands. The way ZYMV was dissemi-
nated within such a short period of time remains a
very intriguing epidemiological question to be
elucidated. This review presents the recent data
acquired on ZYMV and describes the diverse
approaches explored presently to control the virus.

DISCOVERY

In 1973, a severe viral disease was observed in
zucchini plants in Northern Italy (Lisaet al., 1981).
The symptoms were different from those caused by
the known cucurbit-infecting viruses CMV, WMV2
and PRSV-W. Infected plants exhibited severe
stunting and yellowing symptoms, with leaf and
fruit deformations. Lisaet al. (1981) identified the
causal agent as a new potyvirus that they named
zucchini yellow mosaic virus (ZYMV). In 1979,
many muskmelon crops in France were devastated
by an apparently new virus disease. Plants exhibited
yellowing, leaf deformation and stunting, with a
diversity of symptoms on the fruits (mottle and
hardening of the flesh, cracks on the fruits). These
symptoms were shown to be caused by a potyvirus
tentatively named muskmelon yellow stunt virus
(MYSV) (Lecoq et al., 1981). MYSV was soon
shown to be identical to ZYMV, and the name
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ZYMV was retained (Lecoqet al., 1983). Within a
few years (1981–85) ZYMV was identified, using
serological techniques, in many countries in the
world, always associated with severe symptoms and
important yield reduction.

GENERAL CHARACTERISTICS

ZYMV is a member of the potyvirus genus (Hollings
& Brunt, 1981; Murphyet al., 1995). The flexuous

filamentous particles, 750 nm long (Lisaet al.,
1981), consist of a single-stranded RNA about
9600 nucleotides long (Balintet al., 1990) with a
50 viral protein genome linked (VPg) and 30 poly(A)
tail encapsidated in a 36 kDa coat protein. The RNA
is translated as a single polyprotein cleaved by three
viral proteases (for a review on potyvirus molecular
biology see Riechmannet al., 1992; Shuklaet al.,
1994). Cylindrical inclusions (pinwheels) induced
by ZYMV in infected plants are generally of type 1
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Table 1 World distribution of ZYMV, and host and year of first description

Country First description Reference

Europe
Bulgaria 1994 Dikova B (1994)
Czechoslovakia Squash Chodet al. (1991)
England Zucchini 1987 Walkey (1992)
France Muskmelon 1979 Lecoqet al. (1981)
Germany 1983 Lesemannet al. (1983)
Greece Squash 1989 Kyriakopoulou & Varveri (1991)
Italy Zucchini 1973 Lisaet al. (1981)
Jersey Zucchini 1983 Wrightet al. (1984)
Netherlands Cucumber, zucchini 1983 Schrijnwerkerset al. (1991)
Portugal Zucchini de Sequeira O (1997), personal communication
Spain Zucchini 1982 Lecoq & Pitrat (1983)

Africa
Algeria Muskmelon 1989 Belkhala & Lecoq (1990)
Egypt 1983 Provvidentiet al. (1984b)
Madagascar Squash 1990 F. Gilbert-Albertini & H. Lecoq (1990),

unpublished data
Mauritius Bos and Dossain Lisa & Lecoq (1984)
Mayotte Squash 1992 H. Lecoq & B. Reynaud (1992), unpublished data
Morocco Hafidi & Lockart in Lecoq & Lisa (1983)
Nigeria Cucumeropsis edulis1978 Igwegbe (1983)
Reunion Momordica charantia1984 H. Lecoq & M.J. Michel (1984), unpublished data
Sudan Several cucurbits 1992 Lecoqet al. (1994)
Swaziland Scallop squash, zucchini 1994 H. Lecoq & C. Desbiez (1994), unpublished data
Tunisia Cherif & Ezzaier (1987)

Asia and Middle East
China 1986 Zheng & Dong (1989)
Japan Pumpkin Ohtsuet al. (1985)
Malaysia Pumpkin 1984 Fujisawaet al. (1986)
Nepal Dahal (1992)
Pakistan Squash 1991 S. Khalid & H. Lecoq (1992), unpublished data
Singapore Cucumber 1989 Wong & Lee (1992)
Taiwan Cucumber 1982 Hseuet al. (1985)
Turkey Squash 1983 Davis & Yilmaz (1984)
Iran Squash, muskmelon 1988 Ghorbani (1988)
Israel Cucumber 1982 Antignuset al. (1989)
Jordan Melon 1987 Al-Musaet al. (1989b)
Lebanon Cucumber 1979 Lesemannet al. (1983)
Saudi Arabia Abdulsalamet al. (1988)
Syria Katul & Makkouk (1987)
Yemen Vegetable marrow 1986 Alhubaishiet al. (1987)



according to the classification of Edwardson &
Christie (1978) (Lecoqet al., 1981; Lisa & Lecoq,
1984). These cytoplasmic inclusions appear as
fibrillar masses using the orange-green stain for
light microscopic detection of viral inclusions
(Christie & Edwardson, 1986).

PURIFICATION

Most protocols used for ZYMV purification derive
from the one of Lisaet al. (1981). The virus is
extracted from leaves of zucchini squash (Lisaet
al., 1981), muskmelon (Lecoq & Pitrat, 1985) or
pumpkin (Wonget al., 1994) plantlets 2–4 weeks
after inoculation. After homogenization in phos-
phate buffer and low speed centrifugation, the virus
is sedimented by high speed centrifugation, and
further purified by sucrose density gradient (Lisaet
al., 1981), or caesium sulphate gradient (Lecoq &
Pitrat, 1985). Virus concentration is estimated

spectrophotometrically by using an approximate
extinction coefficient E260 nm¼ 2.5. The purifica-
tion yields usually range from 10 to 200 mg of virus
per kilogram of fresh infected leaves, depending on
virus strain and purification method. (Lisaet al.,
1981; Lecoq & Pitrat, 1985; Huanget al., 1989).

A260/280and Amax/Amin were estimated to be 1.13
and 1.07, respectively (Lisaet al., 1981).

GEOGRAPHICAL DISTRIBUTION

ZYMV is present worldwide in almost all countries
where cucurbits are grown, under temperate,
subtropical and tropical conditions. It has been
detected in cucurbit fields or greenhouses in several
countries of Europe and Asia, Africa and the
Middle East, North and South America, and
Oceania (Table 1). The virus is very damaging in
highly mechanized production areas as well as in
more traditional agroecosystems.
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Table 1 continued

Country First description Reference

Oceania
Australia Pumpkin, zucchini 1981 Greberet al. (1987)
Guam Watermelon Yudinet al. (1990)
Hawaii Zucchini 1988 Ullmanet al. (1991)
New Caledonia Zucchini 1994 H. Lecoq & D. Bordat (1994), unpublished data
New Zealand Squash 1996 Fletcher (1996)

America
USA

Florida Squash 1981 Purcifullet al. (1984)
Connecticut Yellow squash 1982 Provvidentiet al. (1984)
New York Cucumber 1983 Provvidentiet al. (1984)
California Squash 1983 Provvidentiet al. (1984)
Oregon Squash 1984 Namethet al. (1985)
South Carolina Yellow squash 1981 Sammonset al. (1989)
New Jersey Squash 1985 Davis & Mizuki (1987)
Washington Squash 1986 Crosslinet al. (1988)
Louisiana Several cucurbits 1988–89 Fernandeset al. (1991)
Arkansas Zucchini 1981 Wickizeret al. (1985)

Canada Cucumber 1989 Stobbs & Van Schagen (1990)
Mexico 1984 Namethet al. (1985)
Martinique Several cucurbits 1992 Lecoqet al. (1994)
Dominican Republic Squash 1989 H. Lecoq & H. Lot (1989), unpublished data
Guadeloupe Several cucurbits 1994 H. Lecoq, C. Wipf-Scheibel and C. Desbiez (1994),

unpublished data
Venezuela Hernandezet al. (1989)
Costa Rica Melon Riveraet al. (1993)
Brazil Watermelon 1991 Vegaet al. (1992)
Honduras Melon 1993 H. Lecoq (1993), unpublished data
Puerto Rico Squash 1996 L. Wessel Beaver & H. Lecoq (1996),

unpublished data



EXPERIMENTAL HOST RANGE

The experimental host range of ZYMV includes
members of 11 families of dicotyledons (Table 2),
although natural infection has been reported mostly
in the Cucurbitaceae. More than 20 members of the
Cucurbitaceae were found to be susceptible to the
virus, including the main cultivated speciesCucu-
mis melo, C. sativus, Cucurbita pepo, C. moschata,
Citrullus lanatus(Lisa et al., 1981; Lecoqet al.,
1981). Experimental hosts outside the Cucurbita-
ceae usually present local lesions or latent
infections. Chenopodium amaranticolourand C.
quinoaare useful local lesion assay hosts.Sesamum
indicum (sesame) presents severe mosaic and
deformation symptoms when mechanically inocu-
lated with ZYMV (Mahgoubet al., 1997).

The infection of some experimental hosts
(Phaseolus vulgaris, Nicotiana benthamiana) is
strain-specific, as detailed in the section ‘Biological
variability’.

FIELD SYMPTOMATOLOGY AND
ECONOMIC INCIDENCE

Symptoms of ZYMV on cultivated crops are often
very severe and induce significant yield reduction.
In addition, fruits produced on infected plants
exhibit severe deformations and colour alterations,
which render them unmarketable. A diversity of
symptoms are observed on susceptible hosts,
according to the species or the cultivar.

In zucchini squash (Cucurbita pepo) (Fig. 1A),
leaves develop a yellow mosaic and become
severely blistered and laciniated. Fruits are dis-
torted with prominent lumps (Lisa & Lecoq, 1984),
and in yellow fruit cultivars, fruits may stay green
with glossy yellow knobs (Provvidentiet al., 1984a).

In other squash types (C. pepo, C. moschata, C.
maxima) symptoms may vary from mottle to severe
mosaic with occasional recovery. Fruits may also be
severely distorted.

In melon (Cucumis melo) early symptoms on
leaves are vein clearing and yellow mosaic. Leaves
are subsequently reduced in size, deformed, often
with serrated edges and dark green blisters or
enations, contrasting with the yellow or light green
colour of the rest of the lamina (Fig. 1B). Branches
develop short internodes and usually exhibit an
erect habit. Discolourations and raised patches are
observed on fruits, occasionally associated with
internal marbling and hardening of the flesh (Fig.
1C) or superficial cracks with corky edges (Fig. 1D)
(Lecoqet al., 1981; Namethet al., 1985). Seeds are
deformed and have low germination rates (Fig. 1E).
Some ZYMV isolates induce in melon cultivars
possessing theFngene a sudden wilting followed by a
general necrosis of the plant (Lecoq & Pitrat, 1984).

In cucumber (Cucumis sativus) severe mosaic and
deformations are observed on leaves and on fruits.

In watermelon (Citrullus lanatus) mottle, mosaic
and leaf filiformism are commonly observed. Fruits
may present irregular colouration and slight to
severe deformations.
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Table 2 Experimental host range of zucchini yellow
mosaic virus outside the Cucurbitaceae

Infection

Family, species Local Systemic

Aizoaceae
Tetragonia expansaa L/lat. –/lat.

Amaranthaceae
Gomphrena globosab L –/þ

Chenopodiaceae
Chenopodium amaranticolourb L –
C. quinoab L –/þ
Spinacia oleraceaa lat. –

Compositae
Senecio vulgarisb L –

Labiatae
Lamium amplexicauleb lat. lat.

Leguminosae
Phaseolus vulgarisb L/– –
Pisum sativumc lat. –
Trigonella foenum–graecuma lat. þ/lat.

Ranunculaceae
Ranunculus sardousb lat. lat.

Scrophulariaceae
Torenia fournierib þ þ

Solanaceae
Nicotiana clevelandiia lat. –
N. benthamianac lat. lat./–

Umbelliferae
Ammi majusa lat. lat.

L, chlorotic or necrotic local lesions;þ, virus multi-
plication with symptoms; lat, latent infection (virus
multiplication without symptoms); –, no symptoms, no
virus detected.
afrom Lisaet al. (1981).
bfrom Lecoqet al. (1981).
cfrom Provvidentiet al. (1984).

Fig. 1 Symptoms induced by ZYMV in cucurbits (A) leaf
and fruit deformation in zucchini squash. (B) to (E)
symptoms in muskmelon: (B) leaf deformation and
discolouration, shortening of the internodes; (C) internal
marbling and hardening of the flesh; (D) external cracking
of the fruit; (E) seed deformation (top: seeds produced by a
healthy plant).
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Cucurbit crops infected at an early stage are
severely affected by ZYMV. Blua & Perring (1989)
showed that early ZYMV infection can cause as
much as 94% reduction of marketable cantaloupe,
but that the effect of ZYMV on melon yield is low if
the epidemics start after production of the first
fruits. A similar effect was observed in zucchini
squash mechanically inoculated with a severe strain
at different times after the seedling stage; the earlier
the inoculation the lower the total number of fruit
per plant (Walkeyet al., 1992). Quantitative losses
ranged from 64 to 85% in greenhouse-grown
cucumbers inoculated with ZYMV, and 95% of
the infected fruits were unmarketable (Al-Shahwan
et al., 1995).

Environmental conditions might also influence
symptom expression. Symptoms produced by 25
ZYMV isolates in zucchini squashes grown in
growth chambers at different temperatures were
compared. At 15–258C plants developed mottle or
mosaic with slight deformations, while at 25–358C
symptoms were very severe, with extreme lacinia-
tion and shoe stringing (H. A. Mahgoub & H.
Lecoq, 1995, unpublished data). The effect of tem-
perature on laciniation symptom intensity might be
responsible for the frequent occurrence, in naturally
infected zucchini squash, of groups of leaves with
very severe symptoms alternating on the same plant
with groups of leaves with milder symptoms.

Symptoms can be more severe when ZYMV is
present in mixed infections with another virus,
particularly CMV (Lecoqet al., 1981). In this case,
more severe symptoms are correlated with
increased CMV concentration, but reduced
ZYMV level in infected plants (Poolpol &
Inouye, 1986). Mixed infections with CMV were
also associated in Japan with a lethal wilt of
cucumber plants grafted onto squash rootstock
(Iwasaki & Inaba, 1988), while such synergism
was not observed in nongrafted cucumbers. Plants
with a mixed infection of ZYMV and CABYV also
developed symptoms more severely than plants
infected by only one of these viruses. CABYV
concentrations were significantly increased (2–20
times) while those of ZYMV were unchanged
(Bourdin & Lecoq, 1994).

TRANSMISSION AND SPREAD

Aphid transmission

Like other potyviruses, ZYMV is efficiently
transmitted by aphids in a nonpersistent manner
(Lisa et al., 1981). Transmission by oneMyzus

persicaewas estimated to 30% (Lisaet al., 1981).
M. persicaeandAphis gossypiitransmit the virus at
a frequency of 70–90% with 3 viruliferous aphids
per plant (Lecoqet al., 1981).Macrosiphum euphor-
biae (Lisa & Lecoq, 1984) andAphis citricola
(Purcifull et al., 1984) are also vectors of ZYMV.

Adlerz (1987) found that alateAphis middletonii,
A. citricola, M. persicae, Lipaphis erysimi, Aphis
craccivoraandAcyrthosiphon pisum, trapped alive
in Florida, transmitted ZYMV toC. pepowith a
mean efficiency of 28.4%. In a similar study
conducted in California,M. persicae and A.
gossypiiwere found to transmit ZYMV with 41%
and 35% efficiencies, respectively, whileAcyrtho-
siphon kondoi, A. pisum, Aphis spiraecolaand L.
erysimi transmitted ZYMV with less than 10%
frequency. Field-collected alate aphids transmitted
the virus more efficiently than the laboratory-
derived alates (Castleet al., 1992).

Blua & Perring (1992) observed a modification of
the colonization and feeding behaviour ofA. gossypii
on ZYMV-infected zucchini plants: the longevity and
fecundity of aphids were higher, and more alate
aphids were produced in the early stage of infection.
In late infections, the yellow colour of infected plants
is more attractive for aphids, but their feeding
behaviour is modified: more probing events and
fewer phloem contacts are observed than on healthy
plants, and aphids stay for a shorter time on the
plants. All these characteristics might indirectly
favour the spread of ZYMV.

Two viral proteins are required for aphid
transmission of potyviruses: the coat protein (CP)
and a nonstructural protein, the helper component
(HC) (Pirone, 1991).

In vitro transmission experiments using purified
ZYMV, PRSV and WMV2 virions and heterolo-
gous HCs revealed some degree of specificity in the
virus–HC interaction although in all cases some
transmission occurred (Lecoq & Pitrat, 1985).
Strains of ZYMV deficient for aphid transmission
either in their CP or HC can be aphid-transmitted
when present in mixed infection with another
potyvirus that provides the functional complemen-
tary protein. In vivo ‘heteroassistance’ was
observed in the case of mixed infections with
WMV2 (Lecoq et al., 1991a). Aphid transmission
of ZYMV-NAT, a CP-deficient aphid nontransmis-
sible strain, has also been described in presence of
PRSV. In this case, heterologous encapsidation of
the ZYMV RNA by PRSV CP was responsible for
the aphid transmission of ZYMV (Bourdin &
Lecoq, 1991). ‘Heteroencapsidation’ also occurred
when ZYMV-NAT infected transgenic N.
benthamianaplants expressing the CP of an aphid
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transmissible strain of plum pox virus (PPV) (Lecoq
et al., 1993).

Ecology and dissemination of the virus

The presence of ZYMV worldwide raises the
question of its means of dissemination and
conservation when susceptible cultivated cucurbit
crops are not grown.

Very few potential reservoirs of the virus have
been identified so far, although some weeds
(Ranunculus sardous, Lamium amplexicaule) or
crops (Sesamum indicum) were reported to be
sytemically infected in experimental conditions
(Lecoq et al., 1981; Mahgoubet al., 1997, in
press). ZYMV was even found to be seed-
transmitted from mechanically inoculatedRanun-
culus sardous (Al-Musa, 1989a). ZYMV was
isolated from the wild perennial cucurbitMelothria
pendulain Florida (Adlerzet al., 1983). Some other
wild cucurbit species were also reported to be
infected by ZYMV in the USA (Perringet al., 1992)
or Sudan (Maghoubet al., 1997, in press). In
Jordan,Moluccella laeviswas described as a natural
reservoir of ZYMV (Al-Musa, 1989a). No natural
reservoirs of ZYMV have been found so far in
temperate regions, despite extensive searching
(Lecoq, 1990; H. Lecoq, 1996, unpublished data).
The extension of the period of cucurbit cultivation
in the Mediterranean basin, with the development of
plastic tunnels or glasshouses, might play an

important role for overwintering of ZYMV.
Indeed, with these conditions early plantings may
grow alongside late infected crops. In the desert
valleys of California, sources of ZYMV were
clearly identified to be old cucurbit crops or
volunteer plants surviving in residential areas
(Perringet al., 1992).

Once ZYMV is introduced into a cucurbit
planting, its spread to the rest of the field is
generally very rapid. This can occur concomittantly
with the spread of other aphid borne viruses. A
recent study showed that non colonizer aphids (such
as A. craccivora) had both a higher transmission
efficiency and propensity to disseminate ZYMV
thanA. gossypii, which settles on cucurbits (Yuan &
Ullman, 1996). This corroborates observations
made in California, where intense ZYMV spread
was associated with heavy aphid colonization of
noncucurbit crops growing nearby (Perringet al.,
1992).

Although potyviruses are aphid-transmitted in a
nonpersistent manner, Ferereset al. (1992)
observed a ZYMV transmission rate of 1%, 30 h
after acquisition byM. persicae, and 10–20 h after
acquisition byA. gossypii. This could contribute to
the long-distance spread of ZYMV by aphids
carried by the wind, as described for maize dwarf
mosaic potyvirus (MDMV) in the USA (Zeyenet
al., 1987).

Another factor that might contribute to the rapid
dissemination of ZYMV is seed transmission.
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Table 3 Seed transmission of ZYMV

Host Number of seeds Transmission (%) Reference

Cucurbita pepo 1400 0.00 Namethet al. (1985)
1298 18.95a Davis & Mizuki (1986)
1000 0.00 Greberet al. (1987)
100 1.00 Greberet al. (1988)

6800 0.00 Gleason & Provvidenti (1990)
4196 0.05 Schrijnwerkerset al. (1991)

10 888 0.00 Robinsonet al. (1993)
127 0.00 Wonget al. (1994)

7892 0.00 H. Lecoq (1997), unpublished data
Cucurbita maxima 1000 0.00 Greberet al. (1987)

506 0.00 Robinsonet al. (1993)
Cucurbita moschata 423 0.00 Robinsonet al. (1993)
Cucumis melo 1000 0.00 Lecoqet al. (1981)

2700 0.00 H. Lecoq & C. Desbiez (1997), unpublished data
434 0.00 Provvidenti & Robinson (1987)
200 0.00 Greberet al. (1988)

Cucumis sativus 11 475 0.00 Robinsonet al. (1993)

aTransmission detected serologically but without typical symptoms on seedlings.



Several experiments were conducted in different
laboratories with conflicting results (Table 3).
Schrijnwerkerset al. (1991) showed that ZYMV
was seed-transmissible inC. pepo, although at a
very low rate (0.047%). ZYMV seems to be present
externally on the squash seeds (Schrijnwerkerset
al., 1991), so seedling infection might occur when
the seeds germinate. ZYMV-infected plants usually
produce very few viable seeds, but even a small
number of virus-transmitting seeds could provide a
primary inoculum sufficient to initiate devastating
epidemics. No seed transmission has been reported
so far inC. meloor C. sativus.

BIOLOGICAL VARIABILITY (STRAIN)

Symptomatology

Since its first descriptions, ZYMV appeared to
present important biological variability: field iso-
lates from the South-west of France induced milder
symptoms than isolates from the south-east of
France, and were different from the type strain from
Italy (Lisa & Lecoq, 1984). A similar variability
was reported among isolates from different parts of
the USA (Provvidentiet al., 1984a). Some isolates
induce symptoms strongly resembling those of
PRSV-W or WMV2, preventing a reliable field
diagnosis based on symptomatology.

In 1986, a mild isolate was recovered from a
mechanically inoculated melon plant presenting an
axillary branch with attenuated symptoms. (Lecoq
et al., 1991a; Lecoq & Purcifull, 1992). Viral
multiplication of this weak strain, named ZYMV-
WK, estimated by ELISA tests, is equivalent to that
of severe strains. ZYMV-WK is used for cross-
protection at an economical scale (Lecoqet al.,
1991a; Wanget al., 1991; Walkeyet al., 1992).

Some strains also differed in their ability to
induce rapid and lethal wilting on muskmelon cv.
‘Doublon’ possessing theFn gene (Lecoqet al.,
1981; Lecoq & Pitrat, 1984). Two pathotypes, F
(wilting) and NF (nonwilting), were defined
according to the reaction of ‘Doublon’. This
reaction was observed with many other cultivars,
because theFn gene is frequent in germplasm
collections (Pitratet al., 1996). The ratio between F
and NF pathotypes is similar in groups of ZYMV
isolates originating from temperate as well as
subtropical or tropical regions (Lecoq & Purcifull,
1992; Desbiezet al., 1996).

Host range

ZYMV strains present some variability in their

experimental host range. Some strains can infect
systemically cultivars ofPisum sativum(Lesemann
et al., 1983; Antignuset al., 1989) without any
visible symptoms.Phaseolus vulgariscv. ‘Pinto’ is
systemically infected by a Lebanon strain of ZYMV
(Lesemannet al., 1983), but not by other strains
from France and the USA, whose infection is
limited to the inoculated leaves, with or without
induction of local lesions (Lecoqet al., 1981;
Provvidenti et al., 1984a). ZYMV strains induce
latent infection ofNicotiana benthamianaeither
systemic or limited to the inoculated organs
(Lesemann et al., 1983; Wang et al., 1992).
Recently, an isolate inducing severe mosaic and
leaf deformation was observed on greenhouse-
grown, mechanically inoculatedN. benthamiana
(H. A. Mahgoub & H. Lecoq, 1995, unpublished
data).

In addition, some variability has been observed in
the interactions with some resistant cucurbit lines.
Three pathotypes can be defined regarding the
ability of the strains to infect the muskmelon
PI414723 possessing theZym resistance gene.
Strains from pathotype 0 induce no systemic
infection and no symptoms, or only local lesions,
on inoculated cotyledons; pathotype 1 strains
induce chlorotic or necrotic lesions on systemically
infected leaves, while pathotype 2 strains cause
severe systemic symptoms of mosaic, stunting and
leaf deformations (Lecoq & Pitrat, 1984). Provvi-
denti (1991) also described resistance inCitrullus
lanatus to ZYMV that was specific to a Florida
strain of the virus.

Aphid transmission

Isolates of ZYMV differing in aphid transmissi-
bility have been described (Antignuset al., 1989;
Lecoqet al., 1991a). Loss of aphid transmissibility
can result from a deficiency of the CP (Antignuset
al., 1989; Leeet al., 1993) or from the lack of
biologically active HC (Lecoqet al., 1991a; Granier
et al., 1993).

Sequence comparisons between the coat proteins
of aphid-transmissible and aphid nontransmissible
potyvirus strains suggested that an amino-acid
triplet Asp-Ala-Gly (DAG) at the N-terminal part
of the coat protein is required for aphid transmis-
sibility (Harrison & Robinson, 1988). Atreyaet al.
(1990) showed that an A to T mutation in the DAG
triplet could abolish aphid transmission of tobacco
vein mottling potyvirus (TVMV). Two natural
aphid nontransmissible ZYMV strains, with a
DAG to DTG mutation, were described (Gal-On
et al., 1990; Leeet al., 1993). Synthesis of an
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infectious complementary DNA (cDNA) of the
ZYMV genome (Gal-Onet al., 1991) allowed a
more accurate study, at the molecular level, of the
role of this sequence. Gal-Onet al. (1992) showed
that a mutation from T to A in the DTG triplet could
restore aphid transmissibility of the virus.

Strains of ZYMV were described that were either
poorly or non-aphid transmissible but could be
complemented for their transmission by extracts of
plants infected with aphid-transmissible strains
containing active helper component (Lecoqet al.,
1991a). These strains, named PAT (poorly aphid
transmissible), are deficient in their helper compo-
nent activity. Granieret al. (1993) compared the
helper component sequences of two PAT strains to
that of the highly aphid transmissible (HAT) strains
from which they derived. They observed in one case
a K to E mutation in the N-terminal part of the HC
similar to that observed in the PVC aphid
nontransmissible variant of potato virus Y (PVY)
(Thornburyet al., 1990). The same mutation was
also found in a helper-deficient strain of ZYMV
from Connecticut (Grumetet al., 1992). For another
ZYMV isolate, two mutations were found between
the HAT and PAT strains, one of them occurring in
a conserved cluster of amino-acids Pro-Thr-Lys
(PTK) (Granier et al., 1993). Huetet al. (1994)
modified the PTK of ZYMV to PAK in an
infectious cDNA clone and observed a total loss
of HC activity in aphid transmission. An amino-
acid exchange (R to I) in another conserved box (the
FRNK box) resulted in more than 50% reduction in
aphid transmission, but did not completely abolish
transmission (Huetet al., 1994).

METHODS FOR IDENTIFICATION AND
DETECTION

Assay on indicator hosts

ZYMV in single infection can be easily distin-
guished from other common cucurbit-infecting
viruses using differential diagnostic species (Lisa
& Lecoq, 1984). However, unequivocal identifica-
tion of the virus in field samples is difficult, because
of the frequent mixed infections with other viruses,
which can mask or render difficult the interpretation
of differential host reactions.

Chenopodium amaranticolouris a useful local
lesion assay host for ZYMV. It can be used for
single local lesion transfers, but because of
inhibitors, back inoculation to cucurbits is erratic.
Chenopodium quinoamight be a useful intermedi-
ate host. Zucchini squash or melon seedlings are
very convenient systemic assay hosts.

Serological techniques

Polyclonal antisera raised against the virions of an
Italian ZYMV isolate (Lisa et al., 1981) and a
French ZYMV isolate (Lecoqet al., 1981) were
obtained, with titres up to 1:4096 in the slide
precipitin test (Lecoqet al., 1983). Detection of
ZYMV was also possible using Ouchterlouny gel
double-diffusion tests in a medium containing 0.8%
agar, 1% sodium azide and 0.5% sodium dodecyl
sulphate (SDS-ID) as described by Purcifull &
Batchelor (1977). This method contributed to the
rapid and practical detection of ZYMV in several
countries (Lecoqet al., 1983; Greberet al., 1987).
SDS-ID is also useful to detect other mosaic-
inducing viruses in cucurbits (Purcifullet al., 1988)
and is therefore very convenient for establishing
diagnosis in a limited number of samples. However,
the relatively large amount of antiserum required
for each test makes it inappropriate for large-scale
detection.

A current widely used technique for large-scale
detection of ZYMV is enzyme-linked immunosor-
bent assay (ELISA) (Clark & Adams, 1977).
Double antibody sandwich (DAS)-ELISA is the
most commonly used variant of this method,
because of its specificity and reproductibility. The
cross reactions often observed with the nonpre-
coated indirect ELISA can result in misdiagnosis of
ZYMV, for instance with the serologically related
WMV2 (Somowiyarjoet al., 1988), but this method
can be improved by the use of cross-absorbed
antisera (Sasaya & Yamamoto, 1995) or mono-
clonal antibodies (Somowiyarjoet al., 1988).
Menassaet al. (1986) described the detection of
ZYMV in intact leaf disks by direct or indirect
ELISA tests; attempts to detect ZYMV in virulifer-
ous aphids were not satisfactory. Dietzgen &
Herrington (1991) used a semiquantitative biotin-
streptavidin ELISA, with a sensitivity increased 4–
8 times compared to DAS-ELISA.

As an alternative to ELISA tests, serological
assays using nitrocellulose membranes were used.
Direct ‘tissue printing’ of whole infected leaves on
the membrane can provide information relating to
viral concentration and can be used to some extent
to map virus distribution on the leaf surface
(Polston et al., 1991). The specificity of the
reactivity with differential monoclonal antibodies,
for leaf surfaces or petiole sections, was the same in
‘tissue printing’ as in ELISA tests and could be an
interesting alternative for serotyping isolates (C.
Desbiez, 1994, unpublished data). Crude extract
preparations of leaf samples ground in usual ELISA
buffers could also be tested on nitrocellulose
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membranes (‘dot blots’), using cross-absorbed
polyclonal antibodies (Somowiyarjoet al., 1989)
or a highly specific monoclonal antibody
(Somowiyarjo et al., 1988). Somowiyarjoet al.
(1987) used latex flocculation (LF) and protein A-
coated latex-linked antisera (PALLAS) tests to
detect ZYMV in pumpkin extracts, the latter
method being more efficient. A two-step method
employing immunofilter paper assay was also used
for diagnosis of multiple virus infections (Multi-
RIPA), and was applied successfully to ZYMV
(Tsudaet al., 1993).

Serological variability of ZYMV

Some serological variability was observed by ID-
SDS tests among ZYMV isolates. Using an
antiserum raised against ZYMV-E9 from France,
the precipitation line formed by ZYMV-E9 formed
a definite spur with the precipitin bands produced
by isolates from Reunion island (H. Lecoq & D. E.
Purcifull, 1986, unpublished data). Similarly, dif-
ferences were observed with an isolate from Taiwan
(Huanget al., 1989).

Monoclonal antibodies (MAbs) raised against the
coat protein of strains from Japan (isolate 169)
(Somowiyarjo et al., 1988), Florida (ZYMV-FL)
(Wisleret al., 1989; Wisler, 1992), France (ZYMV-
E9) (Desbiez et al., 1996), Israel (NAT) and
Reunion island (R5 A) (C. Desbiez & H. Lecoq,
1995, unpublished data) were produced. According
to the results obtained in triple antibody sandwich
(TAS) ELISA tests with the MAbs raised against
the France, Israel and Reunion strains, a collection
of ZYMV isolates from different geographical
regions could be classified in 15 serotypes (Table
4). Strains from Reunion island showed an
important serological variability, in agreement with
their sequence divergence from the type strains
(Bakeret al., 1992). Interestingly, these isolates were
more closely related to isolates from other islands of
the Indian Ocean (Madagascar, Mauritius, Mayotte)
than to isolates of other origins. Serotype I was the
most frequently observed (Table 4). It is the sero-
type of the type strain from Italy and was found in
Europe, the Middle East, Australia, the USA and
Africa. Serological variability using this set of
monoclonal antibodies was observed at different
geographical levels: field, region, country. No
correlation has been found so far between sero-
logical variability and biological properties, such as
host range and aphid transmission (Desbiezet al.,
1996; C. Desbiez, C. Wipf-Scheibel & H. Lecoq,
1997, unpublished data).

Serological relationships with other viruses

Using antisera against virions and SDS-immuno-
diffusion, no serological cross-reaction was
observed between ZYMV and PRSV, WMV-
Morocco, bean yellow mosaic (BYMV), ZYFV,
clover yellow vein (ClYVV), lettuce mosaic
(LMV), and wisteria vein mosaic (WVMV) poty-
viruses (Lisaet al., 1981; Lisa & Lecoq, 1984) but
some cross-reactions were consistently detected
between ZYMV and WMV2 antisera (Lecoqet al.,
1981; Lisaet al., 1981; Davis, 1986; Greberet al.,
1987; Somowiyarjo et al., 1989). This cross-
reactivity depends on the antiserum used for the
tests. Antisera produced from early bleedings are
usually more specific than those from late bleedings
(Lecoqet al., 1981; Shuklaet al., 1992).

Polyclonal antibodies raised against nonstruc-
tural proteins (P1, cytoplasmic inclusions) of
ZYMV often cross-reacted with other potyviruses
(Suzukiet al., 1990; Wisleret al., 1995). Western
blot analysis revealed that ZYMV-CI antiserum
cross-reacted with WMV2-CI more than with
PRSV-CI (Suzukiet al., 1990), in correlation with
results obtained for CP antisera. PRSV-CI and
WMV2-CI antisera also reacted with ZYMV CI in
western blot (Suzukiet al., 1990). Antisera to
tobacco etch virus (TEV) nuclear inclusions NIa
and NIb and to PVY and TVMV helper component
cross-reacted in immunoprecipitation tests within
vitro translation products of ZYMV (Hiebertet al.,
1984; in Purcifull & Hiebert, 1992). A polyclonal
antiserum and a monoclonal antibody to PRSV-W
amorphous inclusion protein (AI) could also detect
ZYMV HC in ELISA tests using plant extracts or
purified protein (Baker, 1989; in Purcifull &
Hiebert, 1992).

Electron microscopy

The 750 nm long, flexuous ZYMV particles present
at high concentration in plant tissues are usually
easily observed in crude plant extracts using the leaf
dip assay (Brandes, 1957). ZYMV also induces the
presence of tubular scroll-like cytoplasmic cylind-
rical inclusions (CIs) of type 1 according to the
classification of Edwardson & Christie (1978)
(Edwardson, 1992), but some isolates were found
to induce CIs of types 3 and 4 (pinwheels, scrolls,
bundles and laminated aggregates) (Petersenet al.,
1991). Unambiguous identification of ZYMV
particles in infected leaves can be achieved by
immunosorbent electron microscopy (ISEM): virus
particles are first trapped on a grid activated by
antisera (Derrick, 1973) and subsequently deco-
rated specifically by a homologous antiserum. Virus

C. Desbiez & H. Lecoq818
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particles appear coated by a ‘halo’ of antibody
molecules (Milne & Luisoni, 1977). ISEM proce-
dures provide a high sensitivity and allow detection
of viruses present in mixed infections, even at very
low concentrations, as well as the establishment of
serological relationships between strains or viruses
(Lesemannet al., 1983; Wonget al., 1994).

Molecular techniques

Polymerase chain reaction (PCR) has been devel-
oped as an efficient diagnostic tool. In the case of
ZYMV, reverse-transcription (RT)-PCR was used
successfully to amplify viral fragments of the 3’
terminal part of the genome, from extracted total
plant RNA (Thomsonet al., 1995). The amplified
fragment is then directly available for further
molecular analysis. Immunocapture of the virus
from crude plant extracts followed by RT-PCR
avoids the time-consuming step of RNA extraction.
Immunocapture (IC)-PCR followed by restriction
fragment length polymorphism (RFLP) analysis
was used to differentiate serologically indistin-
guishable isolates of ZYMV (Barbaraet al., 1995).

A dot-blot hybridization system using digoxi-
genin-labelled probes was also used successfully
for detection of ZYMV; extraction of the viral
nucleic acid was required for effective virus
detection (Harper & Creamer, 1995).

MOLECULAR DATA

The genome of ZYMV has been totally sequenced
for strains from California (Balintet al., 1990), and
Reunion (Bakeret al., 1992). Sequence data for the
30 terminal part of the genome, including the coat
protein coding region, have been obtained for
strains from Connecticut (Grumet & Fang, 1990),
Florida (Quemadaet al., 1990), Israel (Gal-Onet
al., 1990), and Singapore (Leeet al., 1993). The

sequence of the N-terminal part of the coat protein
coding region was established for three strains from
Australia (Thomsonet al., 1995) and 15 strains
from Martinique (Desbiezet al., 1996). Sequences
of the HC gene are also available for the Israel
strain, and for French strains (Granieret al., 1993,
Huet et al., 1994). Wisleret al. (1995) sequenced
the P1 coding region of three Florida isolates.
Amino acid sequence identity between the CP of
distinct ZYMV strains is over 90%, as reported by
Shuklaet al. (1994) for strains of potyviruses (Table
5). In contrast, Singapore and Reunion strains are
more divergent from the other strains, particularly
in the N-terminal part of the coat protein coding
region, one of the most variable parts of potyvirus
genome (Shuklaet al., 1988). Sequence analysis of
the 30 extremities of the genome of ZYMV strains
suggested that recombination events between strains
might have occurred, although not enough data are
available to confirm this (Reverset al., 1996).

Classification of potyviruses based on the coat
protein gene sequence indicated that ZYMV is a
distinct potyvirus, related to WMV2, peanut stripe
virus (PStV) and passionfruit woodiness virus
(PWV) (Wardet al., 1992).

A full-length cDNA of the NAT isolate of
ZYMV was obtained by Gal-Onet al. (1992). It
was introduced into a construct allowing direct
inoculation of plants with the cDNA, without a
transcription step, using a particle gun (Gal-Onet
al., 1995). Shooting the plants with a particle gun
improved significantly the cDNA inoculation pro-
cedure (Gal-Onet al., 1995).

CONTROL

During the last two decades many efforts have been
made to reduce the incidence of ZYMV in cucurbit
crops. Among the different control measures some
are non specific to ZYMV, and will prevent the
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Table 5 Amino acid sequence identity (%) of coat proteins of ZYMV strains

California Connecticut Israel Florida Reunion Singapore

California – 97.6 95.1 84.9 54.2 58.5
Connecticut 99.6 – 92.7 80.5 48.8 56.1
Israel 99.3 98.9 – 78.0 48.8 58.5
Florida 96.8 96.4 96.1 – 41.5 46.3
Reunion 91.0 90.7 90.7 89.6 – 65.9
Singapore 92.8 92.5 92.8 90.7 93.9 –

Figures above the diagonal: N–terminal part of the protein (41 amino acids). Figures below the diagonal: total of the coat
protein (279 amino acids).



dissemination of other aphid borne viruses as well,
while others will be effective only against ZYMV.
However, the control of ZYMV should be inte-
grated within a more general framework to control
aphid borne viruses in cucurbits.

Control of virus spread

ZYMV is very efficiently transmitted by aphids and
some control methods are intended to limit the
contact of viruliferous aphids with the crops.

Weeding to remove virus or aphid sources near
planting has been shown to delay slightly the spread
of CMV in melons (Lecoq & Pitrat, 1983). This
would probably have little direct effect on ZYMV
infection, because, in contrast to CMV, reservoirs
of ZYMV are very rare (if any) around cultivated
fields. It might, however, decrease vector popula-
tions in the vicinity of the crop. Avoiding over-
lapping crops in the same area, particularly by
removing old infected crops before planting any
new ones in the vicinity, might reduce the sources
for early contamination of the young crops.

Insecticide applications generally reduce signifi-
cantly the aphid population colonizing a crop, but
they were not effective in reducing ZYMV spread
within a crop. This is probably because insecticides
do not kill viruliferous alate aphids quickly enough
to prevent virus transmission, and because the most
efficient ZYMV vectors are noncolonizers (Webb
& Linda, 1993; Perring & Farrar, 1993).

Mineral oil sprays (Makkouk & Menassa, 1985;
Webb & Linda, 1993), in association with pyre-
throids (Raccah, 1985), might provide temporary
protection under certain ecological conditions, but
applications must be repeated frequently with
adapted machinery to be effective. Mineral oil
seems to interfere with retention of potyvirus
particles on the aphid stylet, thus limiting aphid
acquisition and transmission of the viruses (Wang
& Pirone, 1996). Perring & Farrar (1993) showed
that pyrethroid treatment did not lower the rate of
ZYMV infection of field-grown cantaloupes, but
had a significant positive impact on plant growth
and yield.

Plastic mulches were shown to be efficient as
aphid repellents (Giunchediet al., 1991; Lecoq,
1992a, 1992b; Brownet al., 1993), and to delay
virus spread. However, they have two major
drawbacks; their efficiency is progressively
decreased when plant growth covers their surfaces
and they generally need to be removed and disposed
of in a landfill after use. Sprayable silver film
mulches proved to be as efficient in delaying the
onset of ZYMV in zucchini squash, and, being

watersoluble and biodegradable, they might be
incorporated into the soil at the end of the season
(Summerset al., 1995).

Covers of different types (unwoven, perforated
plastic. . .) were also efficient in preventing ZYMV
transmission, but they must be removed at the
flowering stage to allow insect pollination (Lecoq,
1992a; Reydet al., 1993; Tomassoliet al., 1993).

All these methods are more efficient when used
in association, but seldom give complete control at
an economical cost.

Cross-protection

An alternative method for ZYMV control until
agronomically acceptable resistant cultivars are
available is the use of the mild ZYMV-WK strain
(Lecoq et al., 1991b) for cross-protection against
severe challenging strains. This protection method
has been used successfully under greenhouse and
field conditions in south-eastern France (Lecoqet
al., 1991b), and Taiwan (Wanget al., 1991).
Increase in marketable production of cross-pro-
tected plants was up to 14.7 times that of
unprotected zucchini squash plants under natural
infection conditions in France (Lecoqet al., 1991b),
whilst in mechanically inoculated fields under high
inoculum pressure, yield increase for cross-pro-
tected plants vs. unprotected was 1256% (Wanget
al., 1991). Cross-protection using the ZYMV-WK
strain was also applied successfully in Hawaii
(Choet al., 1992), the United Kingdom (Walkeyet
al., 1992), Turkey (Yilmazet al., 1994), Israel
(Singeret al., 1994), California (Perringet al., 1995),
and Italy (V. Lisa, 1995, personal communication).
Artificial aphid inoculations of the severe challen-
ging strain at different times after inoculation with
the mild strain showed that about 14 days of incu-
bation were required to provide protection against
subsequent infection with a severe strain (Walkeyet
al., 1992). Cross-protection was not efficient against
strains from Reunion or Mauritius in greenhouse
tests, in relation to the very great molecular
divergence of these strains (H. Lecoq, 1993,
unpublished data).

Resistance by conventional methods

The most convenient way to control viral diseases is
the use of resistant cultivars when they are
available. The importance of the economic losses
associated with ZYMV infection and the difficulty
to limit the efficient dissemination of the virus make
the search for resistance genes a priority in breeding
programs for cucurbits. Lecoqet al. (1979)
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described resistance to virus transmission byA.
gossypii in melon PI161375. This resistance,
governed by a single dominant gene (Pitrat &
Lecoq, 1981) is efficient against ZYMV, but is
specific toA. gossypii(Risseret al., 1981). In the
field, this resistance was not efficient to protect
plants against ZYMV, probably because the virus
was being spread by noncolonizing aphid species
(H. Lecoq, 1995, unpublished data).

Resistance genes against ZYMV have been
described for most cultivated cucurbit species
(Table 6, modified from Provvidenti & Hampton,
1992). These resistances are usually found in wild
accessions, and breeding programs are necessary to
introduce them into agronomically acceptable
cultivars. Most of these resistances are governed
by single genes, and viral variability might result in
some of them being rapidly ‘overcome’. This is the
case for melon, where some ZYMV isolates from
the field or obtained in the laboratory after
successive inoculations on resistant plants totally
overcome theZym resistance gene of muskmelon
PI414723. However, most field isolates are either
controlled by theZymgene (pathotype 0) or induce
systemic chloronecrotic lesions (pathotype 1)
(Lecoq & Pitrat, 1984). A resistance to ZYMV in
watermelon was also found to be strain-specific
(Provvidenti, 1991).

Resistance genes were found in germplasms of
different geographical origin, mainly in the sup-
posed areas of diversification of cucurbits: Asia for
the genusCucumis, America, Africa and Europe for
Cucurbita, Africa for Citrullus. Genes for resis-
tance to ZYMV are often described in accessions
exhibiting multiple resistance to other viruses. The
cucumber accession TMG was resistant to ZYMV,
WMV2, PRSV-W and ZYFV (Provvidenti, 1987;
Gilbert-Albertini et al., 1995). In C. moschata
‘Menina’, theZymresistance gene was found to be

identical or closely linked to the gene for resistance
to WMV2 (Gilbert-Albertini et al., 1993). Melon
accession PI414723 is also resistant to PRSV and
CABYV (Dogimont et al., 1996). These character-
istics are of interest for selection of multiresistant
commercial cultivars. Seed companies are introdu-
cing some of these resistances into commercial
cultivars, but it will take several years before they
are available to farmers, in all of the cultivated
cucurbit species.

Pathogen-derived resistance

During the last 10 years, the concept of pathogen-
derived resistance has attracted much attention. It
depends upon the expression of viral genes in
transgenic plants in order to obtain resistance
against the homologous virus. Nambaet al.
(1992) expressed the coat protein of ZYMV in
Nicotiana benthamianaplants (not a natural host of
ZYMV) and observed a range of protection levels
against seven different potyviruses (WMV2,
BYMV, pea mosaic virus (PeaMV), pepper mottle
virus (PeMV), PVY, ClYVV, and (TEV) dependent
of the virus and the inoculum concentration. A
symptom delay of 1 to more than 16 days was
observed. Symptoms were usually less severe in
transgenic than in control plants. Fang & Grumet
(1993) introduced several constructs derived from
the ZYMV coat protein gene into muskmelon and
tobacco plants: the full-length coat protein gene, a
conserved ‘core’ portion of the gene, and an
antisense version. Transgenic melon plants expres-
sing the full-length coat protein were highly
resistant to ZYMV infection. Transgenic plants
expressing only the core part of the coat protein
showed a limited protection against ZYMV. The
antisense construct allowed variable levels of
protection, correlated with transcript level. The
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Table 6 Sources of resistance to ZYMV in cucurbits

Species Resistance gene(s) Geographical origin Reference

Citrullus lanatus Africa (Zimbabwe) Boyhanet al. (1992)
C. lanatusa zym Africa (Nigeria) Provvidenti (1991)
C. colocynthis Africa (Nigeria) Provvidenti (1986)
Cucumis meloa Zym Asia (India) Pitrat & Lecoq (1984)
Cucumis sativus zym Asia (Taiwan) Provvidenti (1987)
Cucurbita moschata Zym Europe (Portugal) Pariset al. (1988)
C. moschata 1 dominant Africa (Nigeria) Munger & Provvidenti (1987)
C. equadorensis Zym America (Ecuador) Robinsonet al. (1988)
Lagenaria siceraria Asia (India) Provvidentiet al. (1984a)

aStrain-specific resistance.



different constructs also allowed limited protection
against two heterologous viruses, TEV and PVY, in
tobacco plants.

More recently, transgenic squash hybrids con-
taining combinations of the ZYMV, WMV2 and
CMV coat protein coding regions were obtained by
Asgrow Seed Co., Kalamazoo, Michigan, USA, as
well as cantaloupe containing the coat protein
coding regions of the three viruses (Clough &
Hamm, 1995). The plants were tested in the
greenhouse and field for resistance against the
Florida strain of ZYMV (Quemadaet al., 1990),
used for obtaining the transgenic plants, and against
the homologous strains of WMV2 and CMV.
Transgenic lines containing single CP constructs
showed no or only partial resistance, whereas ZW-
20 plants expressing CP constructs of ZYMV and
WMV2 had a high level of resistance to both
viruses (Fuchs & Gonsalves, 1995; Tricoliet al.,
1995). All plants were sensitive to the unrelated
PRSV. It is of interest that ZYMV-resistant
squashes were the first such pathogen-derived
resistant plants to be deregulated in the USA, and
will probably be the first commercialised ones. This
can be related to the important losses caused
worldwide by this virus, and the limited efficiency
of most control strategies.

CONCLUSION

ZYMV, first observed in Italy in 1973, was detected
worldwide within the last 20 years. The reasons for
the sudden appearence of the virus are still largely
unknown, as is the case for most plant or animal
‘emerging’ viruses. The availability of sera since
1981 has made possible the rapid identification of
the virus concomitantly in several countries. This
revealed that ZYMV spread rapidly in the decade
from 1980 to 1990, but this could be the result of
either an epidemic of a ‘new’ virus, or an outburst
of an existing virus present in localized areas where
it remained undetected. ZYMV was once thought to
be a ‘new’ virus originating from mutations or
recombinations of other potyviruses (WMV2,
PRSV. . .) but this could not be confirmed when
genome sequences were made available. On the
other hand, ZYMV could have been an endemic
virus in geographically limited areas for a long
time. For instance, in 1955 Tarr observed symptoms
on cucurbits grown in Sudan very similar to those
caused by ZYMV. However, in Europe, such
symptoms were not described, and it seems unlikely
that a severe disease like that caused by ZYMV
could have gone unobserved for many years.

The rapid spread of ZYMV could result from

changes in transmission. However, the hypothesis
of changes in vector transmissibility can probably
be ruled out, because many aphid species can
transmit ZYMV, as is the case for many other
potyviruses. Seed transmission might have con-
tributed to ZYMV spread, although transmission
rates observed so far are very low and inconsistent.
Finally, evolution of cultural practices applied to
cultivated cucurbits in the last 30 years might also
have favoured the survival of the virus under winter
conditions, and its subsequent increased occurrence
in the field during the growing season.

ZYMV is now present worldwide, and is
responsible for dramatic losses in cucurbit crops.
Control strategies have been developed, and
resistant plants (obtained by conventional breeding
programs, or pathogen-derived strategies) should be
available within a few years for all of the cultivated
cucurbits. However, the important potential of
variability of the virus reveals that some resistances
might be rapidly overcome by ZYMV isolates, and
that control programs will have to integrate several
strategies in order to remain effective.
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