유전자변형 알팔파 J163 안전성 심사결과 보고서

2017. 10. 20.

<차례>

□ 요약	٠3
□ 심사경위	4
□ 심사경과	4
□ 심사방법	4
□ 심사 신청 자료 검토	4
1. 유전자변형농축수산물의 개발목적 및 이용방법	٠5
2. 숙주	٠5
가. 분류학적 특성	٠5
나, 재배 및 품종개량의 역사	٠5
다. 이미 알려져 있는 독성, 알레르기 유발성 또는 병원성 외래인자와 관련성	5
라. 안전한 식경험의 유무	٠5
3. 공여체	٠6
가. 분류학적 특성	٠6
나. 안전한 식경험의 유무, 식품용 이외의 노출 경로	٠6
다. 공여체 및 근연종의 독성, 항영양성, 알레르기성	٠6
4. 유전자변형	٠6
가. 형질전환과정에 대한 정보	٠6
나. 도입 유전자에 대한 정보	. 8
5. 유전자변형농축수산물의 특성	11
가. 유전자변형농축수산물 내 도입된 유전자에 관한 정보	11
나. 유전자산물에 관한 정보	12
다. 독성	13
라. 알레르기성	13
마. 숙주와의 차이	14
바. 유전자산물이 대사경로에 미치는 영향	16
사. 식품용으로서의 저장 및 가공에 관한 설명	16
아. 외국의 식품유통 승인 및 식품용 등의 이용 현황	16
6. 심사신청 자료 검토 결과	16
7. 기타	16
[붙임] 영양성분 분석 자료	17

유전자변형 알팔파 J163 안전성 심사 결과 보고서

□ 요약

몬산토코리아(유)는 제초제내성 알팔파 J163에 대해 식품의약품안전처에 안전성 심사를 신청하였고, 유전자변형식품등 안전성 심사위원회(이하 '심사위원회'라 한다)는 「유전자변형식품등의 안전성 심사등에 관한 규정」(이하 '심사규정'이라 한다)에 따라 안전성을 심사하였다.

J163은 *cp4 epsps* 유전자 도입을 통한 CP4 EPSPS 단백질 발현으로 제초제 글리포 세이트 내성을 나타내는 알팔파이다.

J163에 도입된 CP4 EPSPS 단백질은 Southern blot 분석 결과 안정되게 삽입되었고, 5세 대에 걸쳐 안정적으로 유지되는 것이 확인되었다.

기존에 알려진 독소와의 유사성을 알아보기 위해 TOX_2016 독소 데이터베이스를 이용하여 독소 및 항영양소의 아미노산 서열과 CP4 EPSPS 단백질의 아미노산 서열을 생물정보학적으로 비교 분석한 결과, 서열 상동성이 없는 것으로 확인되었다. 또한, CP4 EPSPS 단백질에 대한 마우스 단회투여독성 평가 자료를 검토한 결과, 독성이 없는 것으로 확인되었다.

기존에 알려진 알레르겐과의 유사성을 알아보기 위해 AD_2016(FARRP, 2016) 알레르겐 데이터베이스를 이용, CP4 EPSPS 단백질에 대하여 기존의 알려진 알레르기 유발물질을 대상으로 80개 이상의 아미노산 서열에서 35% 이상 상동성을 가지는지 여부와 8개의 연속적인 아미노산이 일치하는지 여부를 검색한 결과, 기존 알레르기 유발 물질과 상동성이 없음이 확인되었다.

J163과 기존 알팔파의 주요영양성분, 미량영양성분, 항영양소 등의 함량을 비교한 결과, 생물학적 차이가 없었다. 젖소를 대상으로 알팔파 J101과 J163이 결합된 J101xJ163을 28일 동안 급이한 결과, 우유 성분, 우유 생산성 등에서 유의한 차이가 관찰되지 않아, 기존 알팔파와 영양성에 차이가 없는 것이 확인되었다.

결론적으로 J163 알팔파는 지금까지 식품으로 섭취해온 알팔파와 비교하여 안전성에 문제가 없음이 확인되었다.

□ 심사경위

- 몬산토코리아(유)는 제초제내성 유전자변형 알팔파 J163을 식품위생법 제18조에 따른 안전성 심사를 받기 위하여 2016년 9월 1일 식품의약품안전처 심사규정에서 규정한 관련 자료를 첨부하여 심사 신청하였다.
- 이에 식품의약품안전처장은 본 품목이 심사규정에 따라 안전성 평가가 이루어 졌는지 여부에 대하여 심사위원회에 검토 의뢰하고,
- 심사위원회는 신청인이 제출한 자료에 근거하여 아래와 같이 심사규정에 따라 안전성평가가 이루어졌는지 여부를 확인하였다.

□ 심사경과

○ 심사대상품목

대상품목	신청자	개발사	식품으로서 제외국의 안전성 확인(승인) 현황
유전자변형 알팔파 J163	몬산토코리아(유)	Monsanto	호주('07), 캐나다('05), 일본('05), 멕시코('05), 필리핀('11), 미국('04), 한국(기타, '07)

○ 심사경과

- 2016년 9월 1일 : 안전성 평가자료 신청- 2016년 10월 18일 : 1차 심사위원회 개최

□ 심사방법

- 본 품목과 관련하여 심사 신청된 유전자변형농산물이 심사규정의 적용대상인지를 검토하였고,
- 제출된 안전성 심사 자료가 심사규정에서 요구하는 자료를 갖추었는지를 확인한 후 자료의 내용을 토대로 안전성 평가 자료를 심사하였다.

□ 심사 신청 자료 검토

- 심사 신청된 식품의 개요
- 몬산토코리아(유)에서 심사 신청한 유전자변형 알팔파 J163은 *cp4 epsps* 유전자가 도입된 것으로 글리포세이트(glyphosate) 내성을 가진다.
- 식품으로의 적합성 검토
- 본 품목과 관련하여 제출된 안전성 평가 자료가 심사규정 제12조에서 요구하는 자료를 만족시키는지 여부를 검토하였으며,
- 자료의 내용을 토대로 다음과 같이 식품으로서의 안전성이 확보되어 있는지를 심사하였다.

1. 유전자변형농축수산물의 개발목적 및 이용방법

- 몬산토코리아(유)에서 심사 신청한 유전자변형 알팔파는 *cp4 epsps* 유전자가 도입된 것으로 글리포세이트(glyphosate) 내성을 가진다.
- 그 밖의 재배방법 및 이용방법은 기존의 일반 알팔파와 동일하다.

2. 숙주

가. 분류학적 특성

- 아종(subspecies) : Medicago sativa L. subsp. sativa

- 종(Species) : Medicago sativa L.

- 속(Genus) : *Medicago* L. - 과(Family) : Fabaceae

나. 재배·사육 및 품종개량의 역사

- 알팔파는 전세계적으로 약 3,000만 헥타르 면적에서 재배되고 있고, 주요한 재배지는 북미(41%), 유럽(25%), 남미(23%), 아시아(8%), 아프리카(2%), 오세아니아 (1%)이다.
- 알팔파는 1901년 미국에서 최초로 알려진 실험 이후, 100년이 넘는 기간 동안 유전적 개량이 이루어져 왔다. 알팔파 육종 초기의 노력은 전 세계에서 다양한 유전자원들을 수집, 평가하고 비교하는 데에 집중되었고, 20세기 초에는 휴면성에 따라 유전자원을 분류하고 각 그룹 내에서 더 많은 내한성 유형을 선발하는 것이 주 목적이었다.
- 현재 상업적 육종 프로그램은 1) 곤충, 선충(nematode) 및 질병에 대한 저항성 향상, 2) 수량 가능성 향상, 3) 입목 지속성(stand persistence) 증가, 및 4) 목초 품질 향상을 중심으로 개선된 특성을 갖는 품종 개발에 중점을 두고 있다.

다. 이미 알려져 있는 독성, 알레르기 유발성 또는 병원성 외래인자와 관련성

- 알팔파는 사포닌(saponin), 농축 탄닌(condensed tannin) 및 식물성에스트로겐 (phytoestrogen)등과 같은 잘 알려진 항영양소 화합물을 포함한다 (OECD, 2005).
- Soyasapogenol, zanhic acid glycoside 및 medicagenic acid로 구성된 사포닌은 이러한 항영양소 화합물 중에서 가장 주요한 성분이다.
- 알팔파에서 농축 탄닌의 수준은 매우 낮은 것으로 간주된다. 사람에서 알팔파에 대한 알레르기 반응은 보고된 바 없다(EFSA, 2009).

라. 안전한 식경험의 유무

- 알팔파의 섭취는 식품, 식이보충제 및 약초 치료제(herbal remedy)로서 소량 섭취된 이력이 있다 (OECD 2005).

- 사람이 섭취하는 95% 이상(중량기준)의 알팔파는, 새싹(sprout) 형태이다. 알 팔파의 섭취량은 1회 식사당 8-20g의 범위의 소량만을 섭취할 것으로 추정된다 (OECD 2005).
- 미국 식품의약국(Food and Drug Administration, FDA)에 따르면, 미국 내 알 팔파 종자(seed)의 2.5% 미만이 식품으로 이용되는 것으로 추정된다 (U.S. FDA 1998).

3. 공여체

가. 분류학적 특성

○ cp4 epsps 유전자 공여체 : Agrobacterium sp. strain CP4

- 계(Kingdom): Bacteria

- 문(Phylum): Proteobacteria

- 강(Class): Alphaproteobacteria

- 목(Order): Rhizobiales

- 과(Family): Rhizobiaceae

- 속(Genus): Agrobacterium

나. 안전한 식경혐의 유무, 식품용 이외의 노출 경로

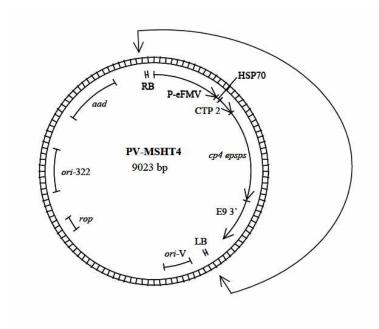
- *cp4 epsps*의 공여생물체 *Agrobacterium* sp. strain CP4는 인체나 동물의 병원균 으로 간주되지 않는다(FAO-WHO 1991).
- cp4 epsps를 인코딩하는 Agrobacterium sp. strain CP4의 안전한 사용이력은 MON40-3-2, MON89788 및 MON87705 (콩), NK603, MON88017 및 MON87427 (옥수수), RT73 및 MON88302 (카놀라), MON1445, MON88913 (면화) 및 H7-1 (사탕무)의 공여체로 이용되었다.

다. 공여체 및 근연종의 독성, 항영양성, 알레르기성

- 공여체 *Agrobacterium* sp. strain CP4는 인체나 동식물에 독성이나 알레르기성 또는 병원성을 나타낸다고 알려진 바 없다.

4. 유전자변형

가. 형질전환 과정에 대한 정보


1) 형질전환 방법

- 아그로박테리움법을 사용하였다.

2) 벡터에 대한 정보

가) 기원

- 형질전환에는 플라스미드 벡터인 PV-MSHT4를 사용하였으며, *Hind* III 및 *Nco* I와 연결된 Segment A1와 *Hind* III 및 *Nco* I와 연결된 Segment B1을 접합하여 구성하였다. Segment A1에는 P-eFMV와 L-Hsp70 서열이 포함되어 있으며, Segment B1에는 TS-CTP2, CS-cp4 epsps, T-E9, T-DNA의 경계서열, backbone 서열이 포함되어 있다.

<플라스미드 벡터 PV-MSHT4>

나) 숙주에서의 확인

- 플라스미드 벡터 PV-MSHT4는 좌우 경계서열로 둘러싸인 단일 *cp4 epsps* 발현 카세트를 가진 T-DNA를 포함한다. *cp4 epsps* 발현 카세트에는 35S promoter에 영향을 받는 *cp4 epsps* 코딩 서열, heat shock protein intron(HSP70), chloroplast transit peptide(CTP2) 서열 및 E9 3' polyadenylation sequence가 게놈에 삽입되었다. PV-MSHT4는 backbone 부분에 *E. coli* 및 *Agrobacterium* sp.와 같은 박테리아에서 플라스미드 벡터를 유지하는데 필요한 유전물질(*ori-322* 및 *ori-V*), 선택표지 유전자(*aadA*), 그리고 *E. coli* 에서 플라스미드의 복제수를 유지하는데 필요한 repressor of primer (ROP) 단백질의 코딩서열이 포함되어 있다.

다) 숙주에서의 기능

- *cp4 epsps* 코딩서열은 CP4 EPSPS를 인코딩하는 *Agrobacterium* sp. strain CP4에서 유래한 *aroA* 유전자에서 유래되었고, CP4 EPSPS 단백질은 glyphosate 내성을 제공한다.

라) 제한효소 절단 지도

- 제시되었다.

마) 유해염기 서열 유무

- 플라스미드 벡터 PV-MSHT4 내에 존재하는 유전인자나, J163로 삽입되는 DNA에 전이된 유전인자와 관련된 유해 염기서열은 존재하지 않는다.

바) 전달성에 관한 정보

- 플라스미드 벡터 PV-MSHT4는 숙주 이외의 다른 생물체로 스스로 이동될 수 있는 전달성과 관련된 유전자를 포함하고 있지 않다.

3) 중간숙주에 대한 정보

- 비병원성 Agrobacterim tumefaciens strain을 중간숙주로 사용하였다.

나. 도입유전자에 대한 정보

1) 구성 유전자의 특성, 염기서열, 제한효소 절단지도

가) 선발표지유전자

- *cp4 epsps* : *A. tumefaciens* strain CP4의 *aroA* 유전자 서열에서 유래되어 합성된 것이다. *cp4 epsps* 유전자는 CP4 EPSPS 단백질을 암호화하며 글리포세이트에 대한 내성을 부여한다. *aad*는 T-DNA 외부에 위치하여, J163에 존재하지 않는다.

나) 조절인자

- e355/Ract1 promoter : Oryza sativa 유래 act1 유전자의 promoter와 CaMV 35S RNA promoter에서 유래한 중복하는 enhancer 영역이 결합 한 융합(chimeric) promoter이다.
- CAB leader : *Triticum aestivum*의 엽록소 a/b-결합(CAB) 단백질에서 유래하는 5' 비번역영역으로 유전자 발현의 조절에 관여한다.
- Ract1 intron : Oryza sativa 유래 act1 유전자에서 유래한 intron이다.
- Hsp17 3 ' 비번역영역 : Triticum aestivum의 heat shock protein, Hsp17 유래 3 ' 비번역영역으로 mRNA의 polyadenylation을 지시한다.

다) DNA의 기능에 영향을 주는 기타 인자

- 삽입유전자 발현과 관련된 인자 이외의 다른 염기 서열은 삽입되지 않았다.

2) 크기 및 명칭

- 벡터 내 유전적 요소의 크기 및 명칭이 제시되었다.

<벡터 내 유전자 크기, 위치 및 기능>

Genetic Element	Position in Plasmid	Function (reference)		
cp4 epsps	9021-9023 1-1365	Coding sequence for the synthetic CP4 EPSPS protein from Agrobacterium sp. strain CP4 (Padgette, et al. 1996).		
Intervening Sequence	1366-1407	Synthetic sequence, polylinker		
E9 3'	1408-2040	A 3' nontranslated region of the pea ribulose-1,5-bisphosphate carboxylase, small subunit (rbc) E9 gene (Coruzzi, et al. 1984), which functions to terminate transcription and direct polyadenlyation of the cp4 epsps mRNA.		
Intervening Sequence	2041-2097	Synthetic sequence, polylinker		
Left Border Region	2098-2373	DNA sequences derived from Agrobacterium (Barker, et al. 1983).		
LB ³	2374-2397	Left border sequence essential for transfer of T-DNA derived from Agrobacterium (Barker et al. 1983)		
Intervening Sequence	2398-2553	DNA sequences derived from Agrobacterium (Barker et al. 1983).		
Intervening Sequence	2554-2646	Synthetic sequences and DNA derived from E. coli (Stalker, et al. 1981).		
ori-V	2647-3040	Origin of replication for <i>Agrobacterium</i> derived from the broad host range plasmid RK2 (Stalker et al. 1981).		
Intervening Sequence	3041-3281	Synthetic sequences and DNA derived from E. coli (Stalker et al. 1981).		
Intervening Sequence	3282-4544	Portion of the plasmid pBR322 (Sutcliffe 1979)		
ROP	4545-4736	Coding sequence for repressor of primer protein for maintenance of plasmid copy number in <i>E. coli</i> (G and Huang 1989).		

<벡터 내 유전자 크기, 위치 및 기능> (계속)

Genetic Element	Position in Plasmid	Function (reference)
Intervening Sequence	4737-5 <mark>15</mark> 3	Portion of the plasmid pBR322 (Sutcliffe 1979).
ori-322	5154-5779	Origin of replication from pBR322 for maintenance of plasmid in <i>E. coli</i> (Sutcliffe 1979).
Intervening Sequence	6239-6321	Derived from E. coli and synthetic sequences (Fling, et al. 1985).
Aad	6322-7110	Bacterial promoter and coding sequence for an aminoglycoside-modifying endonuclease, 3'(9)-O-nucleotidyltransferase from the transposon Tn7 (Fling et al. 1985).
Intervening Sequence	7111-7595	Derived from E. coli and synthetic sequences (Fling et al. 1985).
RB	7596-7620	Right border sequence essential for transfer of T-DNA derived from <i>Agrobacterium</i> (Depicker, et al. 1982).
Intervening Sequence	7621-7703	DNA sequences derived from E. coli, synthetic sequences and polylinker (Depicker et al. 1982).
P-eFMV	7704-8684	The 35S promoter (Figwort Mosaic Virus) with duplicated enhancer region (Richins, et al. 1987).
HSP70-Leader	8685-8790	The petunia heat shock protein 70 5' untranslated leader sequence (Rochester, et al. 1986).
Intervening Sequence	8791-8792	Synthetic sequence, polylinker
CTP2	8793-9020	Chloroplast transit peptide, isolated from Arabidopsis thaliana EPSPS, present to direct the CP4 EPSPS protein to the chloroplast, the site of aromatic amino acid synthesis (Klee, et al. 1987).

3) 완성된 발현 벡터내의 유전자 염기서열의 위치 및 방향성

- 벡터 내 유전자 서열의 위치 및 방향은 4, 가, 2), 가)에 제시되었다.

4) 구성 유전자의 기능

- 구성 유전자의 기능은 4, 나, 2)에 제시되었다.

5) 유해염기서열의 유무

- 벡터 PV-MSHT4의 모든 유전적 element들에 대한 기능, 유래, 특성 등에 관한 정보가 상세하게 밝혀져 있어서 유해염기서열이 없는 것으로 확인되었다.

6) 외래전사해독프레임의 유무와 그 전사 및 발현 가능성

- PV-MSHT4에서 유래한 어떠한 외래전사해독프레임도 J163의 도입 DNA로 전달되지 않았다.

7) 목적하는 유전자 이외의 염기서열의 혼입

- J163의 삽입체 전장에 걸친 단일 PCR 산물에 대해 DNA 서열분석을 실시하여 삽입체 내 유전인자의 구성을 확인한 결과 목적하는 유전자 이외의 염기서열은 혼입되지 않았다.

5. 유전자변형농축수산물의 특성

가. 유전자변형농축수산물 내 도입된 유전자에 관한 정보

1) 유전자변형농축수산물의 게놈에 삽입된 유전자의 특성 및 기능

- Agrobacterium sp. strain CP4 유래 *cp4 epsps* 유전자가 포함되어 있으며, 이는 농업용 제초제의 활성 성분인 glyphosate에 대한 내성을 제공한다.

2) 삽입부위의 수

- T-DNA의 단일 사본이 알팔파 게놈의 단일 부위에 삽입되었음을 확인하였다.

3) 각 삽입부의의 삽입유전자의 구성

가) 복제수, 염기서열

- 게놈 DNA를 제한효소군 *Sal I, Sca I* 및 *Xba* I로 처리하여 J163에서의 단일의 삽입체 수(게놈 내 T-DNA 삽입부위수)를 포함하고 있음을 확인하였다.
- 제한효소 *Sph* I(T-DNA 내부를 한번 분해시키는 효소)를 이용하여 시험용 및 대조용 게놈 DNA를 분해하여 삽입체내에 있는 T-DNA의 복제수를 분 석한 결과 단입 삽입 위치에 단일 사본을 포함하고 있음을 확인하였다

나) 이미 알려져 있는 독소나 항영양소를 암호화하는 유전자와의 상동성

- J163의 T-DNA에는 *cp4 epsps* 발현 카세트가 포함되어 있으며, 삽입 DNA로 전달된 기지의 독소나 항영양소를 인코딩하는 유전인자는 없다. 삽입 DNA 및 인접한 5' 및 3' DNA의 추정상 polypeptide를 대상으로 한 생물정보학적 분석에 의해 확인되었다.

4) 삽입유전자 및 인접하는 숙주 게놈 유전자의 외래전사해독프레임의 유무와 그 전사 및 발현가능성

- 목적하는 단백질의 발현과 관련된 서열 이외의 전사 및 발현 가능성이 있는 새로운 외래전사해독프레임이 존재하지 않는 것으로 나타났다.

5) 안정성에 관한 사항

가) 복수세대에서 삽입된 유전자의 서열, 크기

- T-DNA 안정성은 T0 및 Syn 1 세대(J101xJ163) 분석 결과 확인되었고, J163

내의 T-DNA의 유전정 및 안정성 평가를 위하여 복수세대에 걸쳐 카이제곱 분석을 실시하여 표현형 및 유전형 분리 자료를 통해 5세대에 걸쳐 안정적 으로 유지됨을 확인하였다.

나) 복수 세대에서 발현부위, 발현시기, 발현량

- J163의 육종 3세대에서 CP4 EPSPS 단백질의 존재 여부를 western blot 분석한 결과 CP4 EPSPS 단백질이 3세대에 걸쳐 제대로 발현되어 복수세대에서 CP4 EPSPS 발현의 안정성을 확인하였다.

나. 유전자산물에 관한 정보

1) 유전자산물의 화학적 성질

- E. coli에서 생산한 CP4 EPSPS 단백질을 참조표준으로 N-말단 서열분석, MALDI-TOF 질량분석, Western blot 분석, SDS-PAGE, 효소 분석 등을 통해 I163에서 발현하는 CP4 EPSPS 단백질과 다르지 않음을 확인하였다.

2) 유전자산물의 기능

- CP4 EPSPS 단백질은 내인성 식물 EPSPS 효소와 구조적으로 유사하며 기능적으로 동일하지만, 농업 제초제의 활성 성분인 glyphosate에 대한 친화력이내인성 식물 EPSPS에 비해 훨씬 적다. Glyphosate는 관행 식물에서 내인성 EPSPS와 결합하여 EPSP의 생합성을 차단하며, 결과적으로 식물에서 필수아미노산을 결핍시킨다. 농업 제초제에 내성을 가진 식물에서는 glyphosate의 존재하에 CP4 EPSPS 효소의 지속적인 작용으로 방향족 아미노산 및 기타 대사산물에 대한 필요량이 충족된다.

3) 발현단백질의 아미노산 서열의 번역 후 변이 유무

- *E. coli*에서 생산한 CP4 EPSPS 단백질을 참조표준으로 N-말단 서열분석, MALDI-TOF 질량분석, Western blot 분석, SDS-PAGE, 효소 분석 등을 통해 J163에서 발현하는 CP4 EPSPS 단백질과 다르지 않음을 확인하였다.

4) 발현단백질의 구조적 변화 여부

- E. coli에서 생산한 CP4 EPSPS 단백질을 참조표준으로 N-말단 서열분석, MALDI-TOF 질량분석, Western blot 분석, SDS-PAGE, 효소 분석 등을 통해 [163에서 발현하는 CP4 EPSPS 단백질과 다르지 않음을 확인하였다.

5) 새로운 특성의 표현형

- J163에는 계열 농업용 제초제의 활성 성분인 glyphosate에 대한 내성을 제공한다.

6) 유전자산물의 발현부위 및 발현량

- 단백질 발현량을 효소면역측정법(ELISA)으로 분석한 결과, CP4 EPSPS 단백질 의 평균 수준은 270 µg/g fwt 이었다.

다. 독성

1) 유전자산물이 단백질인 경우

가) 발현단백질의 안전한 식경험의 유무

- CP4 EPSPS 단백질 역시 식물뿐 아니라 *E. coli, Saccharomyces cerevisiae*(빵 효모) 및 *Bacillus subtilis*와 같은 균류 및 미생물 식품 소재에 자연적으로 존재하는 EPSPS 단백질과 상동성 있다. 작물 및 일반적인 미생물에 상동성 EPSPS 효소의 편재적 존재는 EPSPS 단백질이 사람의 섭취에 대해 위해한 영향을 제기하지 않음을 입증한다. 또한 J163에서 발현하는 CP4 EPSPS 단백질은 Roundup Ready 콩, 옥수수, 카놀라, 사탕무, 면화 등의 작물에서 발현하는 단백질과 동일하거나 99% 이상의 상동성을 가지고 있다. 이들 제품 및 그 가공품은 1996년 이래 식용 및 사료용으로 소비되어 왔다

나) 발현단백질의 이미 알려져 있는 독소 및 항영양소와의 아미노산 서열 유사성

- CP4 EPSPS 단백질과 유의한 구조 유사성과 기능을 공유할 가능성이 있는 단백질을 TOX_2016 데이터베이스에서 확인한 결과, TOX_2016 데이터베이스에 수록된 단백질에 대해 유관한 배열은 관찰되지 않았다.

다) 발현단백질의 물리화학적 처리에 대한 감수성

- 인공위액 안정성 : CP4 EPSPS 단백질의 98% 이상이 SGF에서 15초 이내에 분해되었다. Western blot 분석을 이용한 평가에서는 CP4 EPSPS 단백질의 95% 이상이 SGF에서 15 초 이내에 분해되었다.
- 인공장액 안정성 : Western blot 분석을 이용한 평가에서 CP4 EPSPS 단백 질의 50% 이상이 SIF에서 10분 이내에 분해되었다. SIF에서 100분 또는 그이상 처리한 후에는 CP4 EPSPS 단백질이 검출되지 않았다.
- 열 안정성 : *E. coli* 생산 CP4 EPSPS 단백질을 사용하여 배양 온도 75℃ 및 95℃에서 15분과 30분 열처리에서 모두 정량한계 (LOQ) 미만이었다.

라) 발현단백질의 단회투여독성

- CD-1 마우스(암수 각 10마리) 3개 집단을 대상으로 CP4 EPSPS 단백질을 최대 572 mg/kg 체중(bw)의 용량으로 단회투여한 결과, 생존율, 임상 관찰소 견, 체중증가, 사료섭취량 또는 육안 병리소견에 미친 영향은 없었다.

라. 알레르기성

1) 유전자산물이 알레르겐으로 알려져 있는지 여부

- 공여생물체인 *Agrobacterium* sp. strain CP4는 천연 glyphosate 내성 EPSPS 단백질이 생산됨으로써 생기는 glyphosate 내성을 바탕으로 분리되었다. *Agrobacterium* 좋은 일반적으로 인체나 동물의 병원성 또는 알레르기성 종으로 알려져 있지 않다.

2) 유전자산물의 물리화학적 처리에 대한 감수성

- 유전자산물의 물리화학적 처리에 대한 감수성은 5, 다, 1), 다)에 제시되었다.

3) 유전자산물 중 이미 알려져 있는 알레르겐과의 상동성

- CP4 EPSPS 단백질의 아미노산 서열과 이미 알려진 알레르겐의 아미노산 서열을 AD_2016(FARRP, 2016) 알레르겐 데이터베이스를 이용하여 분석한 결과, 80개 아미노산에 걸쳐 35% 이상의 상동성을 보이는 서열은 없었으며, 8 개씩의 인접아미노산과 일치하는 서열도 없었다.

4) 유전자산물이 1일 단백질섭취량의 유의한 양을 차지하고 있는지 여부

- CP4 EPSPS 단백질은 J163 목초에 함유되어 있는 총 단백질 중 일부이며, 전체 CP4 EPSPS 단백질의 평균함량은 270 μg/g (fresh weight 기준)이다. 이를 전체 단백질 함량에 대한 비율로 계산하면 약 0.5 %에 해당한다. 이는 갓수확한 알팔파 목초의 총 단백질 함량을 5.2 % fw로 하여 계산한 것이다 ((270 μg/g ÷ 5.2g/100g) × 100% = ~ 0.52%).
- 식용으로 섭취하는 알팔파 양에 대해 미국의 Dietary Exposure Evaluation Model(DEEM-FCID Ver. 4.02, 05-10-c, U.S. EPA/USDA, 2014)에 알팔파싹 (sprout) 섭취량에 대한 별도의 자료가 없어, 알팔파 종자 섭취량을 통해 CP4 EPSPS 단백질의 급성 및 만성 섭취량을 계산하였다. 식품섭취량은 2005 - 2010 기간 중 NHANES(National Health and Nutrition Examination Survey) 자료를 기본으로 2일 동안의 식품섭취량 자료를 기본으로 하였다. 이러한 평가는 섭취 알팔파의 100%가 J163이라고 가정한 것으로 가공, 저장, 요리 등의 과정 중 손실되는 CP4 EPSPS 단백질의 양을 고려하지 않은 보수 적인 가정하에 계산한 결과 [163에 대한 미국인의 평균 섭취량(섭취자 평균, mean per user)은 0.00297 mg/kg/day 이며, CP4 EPSPS 단백질에 대한 95th percentile 급성 섭취량(per user)은 0.00937 mg/kg/day 였다. 위 발현 단백질의 단회투여독성에서 설명한 바와 같이 급성 독성실험결과 CP4 EPSPS 단백질을 572 mg/kg 투여했을 때 부정적인 영향이 나타나지 않았으 므로, 이를 이용하여 노출한계 (MOE)를 계산하면 만성 섭취시는 192,000, 급 성 섭취시는 61,000으로 나타났다. 이와 같이 매우 높은 MOE는 J163 유래 CP4 EPSPS 단백질의 식이노출이 인체 건강상 위해를 주지 않는다는 것을 나타낸다.

마. 숙주와의 차이

- 2001년 미국 5개 지역에서 재배되었으며, 포장은 4개 반복구의 난괴법을 이용하였다. J163은 glyphosate로 처리하였다. 또한 상업용 관행 참조군으로써 각지역에서 상용화된 4종의 상업용 알팔파 품종도 같이 재배하였다.

1) 주요영양성분

(가) 일반성분

- 회분, 탄수화물, 산성세제불용성섬유(ADF), 중성세제불용성섬유(NDF), 리그닌 분석 결과, 산성세제불용성섬유(ADF), 중성세제불용성섬유(NDF), 리그닌에서 J163의 값이 관행 대조군의 값과 통계적 유의차가 있었으나, 산성세제불용성섬유(ADF), 리그닌은 허용 범위 내에 속하였고, 중성세제불용성섬유(NDF)의 최소·최대값은 각각 허용범위 또는 문헌범위내에 속하였다.

(나) 단백질 및 아미노산

- 단백질 및 아미노산(18개) 분석 결과, 4개 성분(cystine, histidine, lysine 및 tyrosine)에서 J163의 값이 관행 대조군의 값과 통계적 유의차가 있었으나, cystine, histidine 및 lysine은 허용범위 내에 속하였고, tyrosine의 최소·최대 값은 각각 허용범위 또는 문헌범위 내에 속하였다.

(다) 지방

- 지방은 J163의 값이 관행 대조군의 값과 통계적 유의차가 없음을 확인하였다.

2) 미량영양성분

- 미네랄(9개) 분석 결과, J163의 값이 관행 대조군의 값과 통계적 유의차가 없음을 확인하였다.

3) 내재성독소

- 알팔파를 안전하게 사용한 오랜 기간동안, 알팔파에 내인성 독소가 존재함으로써 인체나 동물 건강에 위해 영향을 끼쳤다고 보고된 바 없다.

4) 항영양소

- 에스트로겐과 유사한 식물화합물로서 Coumestrol을 분석한 결과 J163의 값이 관행 대조군의 값과 통계적 유의차가 없음을 확인하였다.

5) 알레르기 유발성분

- 알팔파에 대한 알레르기 반응에 관한 보고는 없다.

6) 삽입된 유전자산물의 대사산물

- 관행 알팔파와 비교할 때 J163 알팔파는 *cp4 epsps* 도입 및 이로 인한 CP4 EPSPS 단백질의 발현을 제외하고, 이로부터 유래된 식품 성분에 대한 의도 된 변화는 없었다.

7) 영양성

- J163과 관행 대조군 알팔파의 영양성분이 동등함을 입증하였으며, J163 알팔파가 2007년에 우리나라에서 승인(기타)된 이후로 영양성에 대한 부정적인보고는 없었다. 영양성 평가를 위해 알팔파를 급이한 젖소(lactating dairy cow)와 비교하여 Roundup Ready 알팔파 J163과 J163이 결합된 J163 × J163을 급이한 젖소의 생산성(performance)을 비교한 논문에서 유의한 차이가 관찰되지 않았다.

바. 유전자산물이 대사경로에 미치는 영향

- J163 알팔파로부터 생산된 목초는 관행 알팔파와 성분상 동등하다. 관행 알팔파와 비교하여, 도입된 glyphosate 내성 형질을 제외하면, J163에서 유래된 식품/사료의 성분에 대한 변화는 없었다. 따라서 J163에 TDNA를 도입함으로써 비의도적인 영향이 나타날 가능성은 없다.

사. 식품용으로서의 저장 및 가공에 관한 설명

- J163 알팔파의 저장 및 가공방법은 관행 알팔파와 다르지 않다.

아. 외국의 식품유통 승인 및 식용 등의 이용 현황

- 일본(2005), 미국(2004), 캐나다(2005), 호주(2007), 멕시코(2005), 필리핀(2011)에서 승인되었다.

6. 심사신청 자료 검토 결과

- 가. 이상의 검토 내용과 같이 심사규정에 따라 제출된 안전성 심사 자료를 심사한 결과, 사용된 공여체, 숙주 및 유전자변형 과정 등이 식품으로 이용시 안전성 문제를 유발하지 않는다고 판단되었다.
- 나. 유전자변형농축수산물에 관해서도 도입된 유전자, 유전자산물, 알레르기성, 독성 및 영양성 등에서 안전성 심사에 필요한 자료를 검토한 결과, 지금까지 식품으로 섭취해온 알팔파와 비교하여 안전성에 문제가 없음이 확인되었다.

7. 기타

- 가. 「유전자변형생물체의 국가간 이동 등에 관한 법률」에 의하여 유전자변형 알팔파 J163의 작물재배환경, 자연생태계, 해양생태계에 대한 환경위해성은 농촌진흥청, 환경부, 국립수산과학원에서 심사 완료하였다.
- 나. 유전자변형 알팔파 J163의 안전성 심사결과보고서(안)을 식품의약품안전처 홈페이지 및 정책고객서비스(PCRM)에 2017년 9월 18일 ~ 10월 17일까지 공개하여 의견을 수렴한 결과, 접수된 의견은 없었다.

붙임: 영양성분 분석 자료

[붙임] 영양성분 분석 자료

1) 아미노산

			Differe	Difference (Test minus Control)			
Amino Acid (% Total AA ^I)	Line	Mean ± S.E. ² (Range)	Mean ± S.E. (Range)	95% C.I. (Lower, Upper)	P-Value	(Com. Ref. ³) [99% T. I. ⁴]	
Alanine	Control	6.19 ± 0.097		1		(5.93 - 6.93)	
		(6.01 - 6.56)		i ii		[5.55, 6.80]	
	J163	6.27 ± 0.097	0.084 ± 0.063	-0.044, 0.21	0.190		
	12 10 12 12 12	(5.96 - 6.93)	(-0.19 - 0.75)		-9127-05	Ĭ.	
Arginine	Control	5.64 ± 0.063				(5.40 - 5.90)	
		(5.40 - 6.23)				[4.98, 6.21]	
	J163	5.58 ± 0.063	-0.060 ± 0.057	-0.18, 0.056	0.299		
Į.		(5.32 - 5.82)	(-0.51 - 0.27)				
Aspartic Acid	Control	12.86 ± 0.37				(11.83 - 15.40)	
		(10.95 - 16.22)				[9.75, 16.61]	
	J163	13.34 ± 0.37	0.48 ± 0.25	-0.023, 0.99	0.060		
1		(11.63 - 15.62)	(-1.67 - 2.27)			\$	
Cystine	Control	1.41 ± 0.057	s 92 33 3	*		(1.23 - 1.76)	
		(1.17 - 1.59)				[1.01, 1.96]	
	J163	1.56 ± 0.057	0.15 ± 0.042	0.062, 0.23	< 0.001		
		(1.35 - 1.90)	(-0.15 - 0.69)			1	

¹AA – Amino acid. ²S.E. – Standard error of the mean.

³Com. Ref. - Commercial references. Data in parenthesis are the range of values derived from commercial reference varieties.

⁴ T.I. - Tolerance interval. With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.

Amino Acid (% Total AA ¹)			Difference (Test minus Control)			
	Line	Mean ± S.E. ² (Range)	Mean ± S.E. (Range)	95% C.I (Lower, Upper)	P-Value	(Com. Ref. ³) [99% T. I. ⁴]
Glutamic Acid	Control	11.10 ± 0.077				(10.75 - 11.62)
		(10.85 - 11.79)				[10.28, 11.77]
	J163	11.02 ± 0.077	-0.075 ± 0.069	-0.21, 0.065	0.285	
		(10.64 - 11.42)	(-0.53 - 0.35)			8
Glycine	Control	5.56 ± 0.044	R 15			(5.35 - 5.64)
58	5-	(5.39 - 5.97)				[5.11, 5.84]
	J163	5.54 ± 0.044	-0.023 ± 0.039	-0.10, 0.056	0.562	
		(5.35 - 5.79)	(-0.30 - 0.20)			
Histidine	Control	2.76 ± 0.044	- th			(2.43 - 2.96)
		(2.57 - 3.01)			11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	[2.25, 3.22]
	J163	2.67 ± 0.044	-0.098 ± 0.032	-0.16, -0.032	0.004	
		(2.44 - 2.85)	(-0.56 - 0.088)			0
Isoleucine	Control	4.94 ± 0.052	- 20			(4.60 - 5.20)
		(4.65 - 5.31)				[4.25, 5.58]
	J163	4.91 ± 0.052	-0.029 ± 0.037	-0.10, 0.044	0.434	
		(4.69 - 5.29)	(-0.56 - 0.47)	10		

AA - Amino acid.

²S.E. – Standard error of the mean.

 ³Com. Ref. – Commercial references. Data in parenthesis are the range of values derived from commercial reference varieties.
 ⁴ T.I. – Tolerance interval. With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.

			Differe	Difference (Test minus Control)			
Amino Acid (% Total AA ¹)	Line	Mean ± S.E. ² (Range)	Mean ± S.E. (Range)	95% C.I. (Lower, Upper)	P-VALUE	(Com. Ref. ³) [99% T. I. ⁴]	
Leucine	Control	8.66 ± 0.059				(8.36 - 8.90)	
************	***************************************	(8.32 - 9.12)			nan-man	[8.08, 9.07]	
j	J163	8.59 ± 0.059	-0.072 ± 0.057	-0.19, 0.044	0.214		
2.5		(8.25 - 8.97)	(-0.61 - 0.25)		200.0000		
Lysine	Control	7.05 ± 0.098				(6.27 - 7.48)	
		(6.62 - 7.34)				[6.26, 7.85]	
	J163	6.89 ± 0.098	-0.16 ± 0.060	-0.28, -0.039	0.009		
		(6.50 - 7.37)	(-0.76 - 0.28)				
Methionine	Control	1.89 ± 0.031				(1.67 - 2.10)	
		(1.57 - 2.16)				[1.56, 2.30]	
	J163	1.91 ± 0.031	0.017 ± 0.040	-0.064, 0.098	0.672		
		(1.64 - 2.16)	(-0.29 - 0.36)				
Phenylalanine	Control	5.67 ± 0.065				(5.40 - 6.16)	
		(5.32 - 6.47)				[4.64, 6.61]	
	J163	5.57 ± 0.065	-0.096 ± 0.049	-0.20, 0.0044	0.060		
1		(5.33 - 5.99)	(-0.88 - 0.24)				

AA - Amino acid.

²S.E. – Standard error of the mean.

³Com. Ref. – Commercial references. Data in parenthesis are the range of values derived from commercial reference varieties.

⁴ T.I. – Tolerance interval. With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.

Amino Acid (% Total AA ¹)	1 1100		Differe	nce (Test minu <mark>s</mark> Co	entrol)	
		Line Mean ± S.E. ² (Range)	Mean ± S.E. (Range)	95% C.I. (Lower, Upper)	P-VALUE	(Com. Ref ³) [99% T. L ⁴]
Proline	Control	5.28 ± 0.11				(4.86 - 5.73)
		(4.32 - 5.97)				[4.57, 6.06]
	J163	5.37 ± 0.11	0.090 ± 0.079	-0.071, 0.25	0.264	
		(4.75 - 5.91)	(-0.22 - 1.27)		Carrier Control	
Serine	Control	5.36 ± 0.11				(4.92 - 5.91)
		(4.87 - 5.73)		c as		[4.31, 6.57]
38	J163	5.32 ± 0.11	-0.041 ± 0.073	-0.19, 0.11	0.578	
		(4.78 - 5.80)	(-0.79 - 0.54)			
Threonine	Control	4.57 ± 0.067				(4.10 - 4.85)
		(4.07 - 4.79)				[3.63, 5.48]
35	J163	4.60 ± 0.067	0.035 ± 0.051	-0.068, 0.14	0.497	
		(4.36 - 4.81)	(-0.38 - 0.31)			
Tryptophan	Control	1.22 ± 0.056		40		(0.86 - 1.38)
9		(0.81 - 1.48)		- 42		[0.62, 1.84]
47	J163	1.15 ± 0.056	-0.075 ± 0.044	-0.16, 0.013	0.093	
4		(0.78 - 1.48)	(-0.38 - 0.38)	4		

AA - Amino acid.

²S.E. – Standard error of the mean.
³Com. Ref. – Commercial references. Data in parenthesis are the range of values derived from commercial reference varieties.
⁴ T.I. – Tolerance interval. With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.

Amino Acid (% Total AA¹)	11126	Difference (Test minus Control)				
		Line Mean ± S.E. ² (Range)	Mean ± S.E. (Range)	95% C.I (Lower, Upper)	P-Value	(Com. Ref. ³) [99% T. L ⁴]
Tyrosine	Control	3.83 ± 0.045	2	15 165 20 A		(3.30 - 3.94)
		(3.46 - 4.51)	*	1		[3.33, 4.07]
	J163	3.69 ± 0.045	-0.14 ± 0.052	-0.24, -0.036	0.008	
		(3.19 - 3.86)	(-0.80 - 0.15)			3
Valine	Control	6.01 ± 0.051				(5.69 - 6.26)
		(5.58 - 6.41)				[5.36, 6.63]
	J163	6.01 ± 0.051	0.0071 ± 0.052	-0.096, 0.11	0.892	
		(5.74 - 6.35)	(-0.37 - 0.70)		3	2

AA - Amino acid.

²S.E. - Standard error of the mean.

Com. Ref. – Commercial references. Data in parenthesis are the range of values derived from commercial reference varieties.
 T.I. – Tolerance interval. With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.

2) 섬유소 및 무기질

			Difference (Test minus Control)			
Fiber (% DW ¹)	Line	Mean ± S.E. ² (Range)	Mean ± S.E. (Range)	95% C.I. (Lower, Upper)	P-Value	(Com. Ref. ³) [99% T. L ⁴]
Acid Detergent Fiber	Control	25.79 ± 1.61				(23.12 - 33.39)
		(18.81 - 33.47)				[15.76,40.19]
93	J163	28.31 ± 1.61	2.52 ± 0.92	0.70, 4.35	0.006	
	MINTEL TO 100 PC	(20.00 - 39.67)	(-5.54 - 12.86)			20
Lignin	Control	5.07 ± 0.56				(3.86 - 9.65)
1270	No. Historia	(1.64 - 8.10)	2	NO. 1 (100 - 2 - 100 - 1	CONTROL OF STREET	[0,12.92]
2	J163	6.01 ± 0.56	0.94 ± 0.39	0.17, 1.71	0.017	0. 0.00
		(3.94 - 8.13)	(-1.43 - 5.51)			Company of the Compan
Neutral Detergent Fiber	Control	28.09 ± 1.37				(26.53 - 35.72)
		(22.25 - 32.07)	Contract Contract		CANAL CANAL	[20.01, 41.80]
	J163	30.94 ± 1.37	2.85 ± 1.02	0.77, 4.92	0.008	
5000 100000000000	707-7.77	(24.49 - 43.57)	(-4.07 - 14.78)		- 3/32/10/14/19	
Minerals (% DW¹)		THE RESERVE OF THE PARTY OF THE				Company of the second s
Calcium	Control	1.12 ± 0.070				(0.90 - 1.53)
	100000000000000000000000000000000000000	(0.88 - 1.44)				[0.48, 1.89]
	J163	1.12 ± 0.070	0.0049 ± 0.044	-0.084, 0.094	0.911	
	7.7-7.7-7	(0.91 - 1.58)	(-0.20 - 0.40)			

¹DW - Dry weight. ²S.E. – Standard error of the mean.

³Com. Ref. – Commercial references. Data in parenthesis are the range of values derived from commercial reference varieties.

⁴T.I. – Tolerance interval. With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.

2) 섬유소 및 무기질(계속)

Minerals (mg/kg DW ¹)	Line		Difference (Test r	minus Control)		
		Line	Mean ± S.E. ² (Range)	Mean ± S.E. (Range)	95% C.I. (Lower, Upper)	P-Value
Copper	Control	9.41 ± 0.68				(5.29 - 10.18)
		(6.76 - 17.10)				[3.12, 12.64]
	J163	9.15 ± 0.68	-0.25 ± 0.59	-1.45, 0.95	0.672	
	2000000	(6.66 - 19.49)	(-7.39 - 10.49)		2000000	VA 10-72-72-72-72-72-72-72-72-72-72-72-72-72-
Iron	Control	410.19 ± 230.60				(235.53 - 1538.46)
		(184.32 - 764.23)				[0, 892.57]
	J163	614.37 ± 230.60	204.18 ± 115.24	-29.91, 438.28	0.085	
		(218.23 - 1882.35)	(-259.76 - 1230.18)		2.70.00	22
Manganese	Control	54.04 ± 8.57				(34.60 - 109.50)
		(32.97 - 81.01)				[0, 120.37]
	J163	62.36 ± 8.57	8.32 ± 4.29	-0.38, 17.03	0.060	**
		(30.29 - 117.23)	(-18.90 - 53.03)			
Zinc	Control	29.58 ± 2.93				(18.09 - 35.98)
		(16.70 - 46.15)				[5.05, 50.21]
	J163	29.25 ± 2.93	-0.33 ± 1.12	-2.60, 1.95	0.771	
		(16.45 - 40.36)	(-17.06 - 9.51)			59

¹DW – Dry Weight. ²S.E. – Standard error of the mean.

 ³Com. Ref. – Commercial references. Data in parenthesis are the range of values derived from commercial reference varieties.
 ⁴ T.I. – Tolerance interval. With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.

2) 섬유소 및 무기질(계속)

	line		Difference (Test minus Control)				
Minerals (% DW¹)		line	ine ine	95% C.I. (Lower, Upper)	P-Value	(Com. Ref. ³) [99% T. I. ⁴]	
Magnesium	Control	0.26 ± 0.051				(0.11 - 0.45)	
		(0.11 - 0.54)				[0, 0.68]	
	J163	0.27 ± 0.051	0.011 ± 0.015	-0.020, 0.042	0.471	100000000000000000000000000000000000000	
		(0.12 - 0.52)	(-0.045 - 0.15)	7	111		
Phosphorus	Control	0.33 ± 0.027	- N			(0.22 - 0.45)	
-		(0.25 - 0.45)				[0.095, 0.54]	
	J163	0.33 ± 0.027	0.0016 ± 0.0075	-0.014, 0.017	0.832		
		(0.24 - 0.49)	(-0.090 - 0.077)		.—CAS MIX S		
Potassium	Control	3.08 ± 0.41				(1.39 - 4.31)	
		(1.57 - 4.30)				[0.38, 5.75]	
	J163	3.01 ± 0.41	-0.074 ± 0.10	-0.28, 0.13	0.468		
		(1.18 - 4.41)	(-0.50 - 0.53)				
Sodium	Control	0.079 ± 0.041	3.000.00			(0.017 - 0.21)	
and the same of th	THE STATE OF THE S	(0.018 - 0.23)				[0, 0.31]	
	J163	0.092 ± 0.041	0.013 ± 0.015	-0.017, 0.043	0.388	1	
	-74.05.446	(0.017 - 0.24)	(-0.019 - 0.071)				

¹DW – Dry Weight. ²S.E. – Standard error of the mean.

³Com. Ref. – Commercial references. Data in parenthesis are the range of values derived from commercial reference varieties.

⁴ T.I. – Tolerance interval. With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.

3) 회분, 탄수화물 및 단백질

	Line	Mean ± S.E. ³ (Range)	Difference (Test minus Control)			
Proximates (% FW ¹ or % DW ²)			Mean ± S.E. (Range)	95% C.I. (Lower, Upper)	P-Value	(Com. R.ef ⁴) [99% T. I. ⁵]
Ash(% DW)	Control	11.31 ± 2.46				(8.58 - 15.25)
		(8.44 - 15.04)				[5.59, 16.40]
3.	J163	13.23 ± 2.46	1.92 ± 1.21	-0.55, 4.38	0.123	
5.	1.200.000	(8.87 - 26.13)	(-1.29 - 11.09)		1000000000	
Carbohydrates (% DW)	Control	65.08 ± 3.01				(58.03 - 74.38)
		(55.44 - 73.53)				[46.29, 85.59]
23	J163	63.29 ± 3.01	-1.78 ± 0.93	-3.67, 0.097	0.062	
ų.	2200000	(51.37 - 73.39)	(-8.82 - 4.77)	c c		
Moisture (% FW)	Control	76.77 ± 1.64				(70.90 - 82.10)
9		(70.70 - 84.20)	8	6		[62.91, 88.67]
9	J163	77.01 ± 1.64	0.24 ± 0.48	-0.75, 1.22	0.629	
9		(71.00 - 83.30)	(-3.30 - 4.50)	6		
Protein (% DW)	Control	21.35 ± 1.24	8	6		(15.29 - 25.81)
9		(16.02 - 28.20)	2	6		[7.98, 33.81]
9	J163	21.21 ± 1.24	-0.15 ± 0.52	-1.20, 0.91	0.779	
g.	2000	(15.80 - 26.32)	(-3.46 - 5.57)	Q 0		4

FW - Fresh Weight.
DW- Dry Weight.
S.E. - Standard error of the mean.

⁴Com. Ref. – Commercial references. Data in parenthesis are the range of values derived from commercial reference varieties.

⁵ T.I. – Tolerance interval. With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.

4) 지방

Proximates (% DW¹)	Line		Difference (Test minus Control)			
		Mean ± S.E. ² (Range)	Mean ± S.E. (Range)	95% C.I (Lower, Upper)	P-Value	(Com. Ref. ³) [99% T. L ⁴]
Total Fat	Control	2.26 ± 0.17	S CONCRETE OF THE SECOND			(1.33 - 3.15)
	1111	(1.45 - 3.58)	Ç:	* *		[0, 4.61]
Ĩ	J163	2.27 ± 0.17	0.014 ± 0.16	-0.31, 0.34	0.932	
		(1.21 - 3.68)	(-1.67 - 0.78)			9

¹DW – Dry weight. ²S.E. – Standard error of the mean.

 ³Com. Ref. – Commercial references. Data in parenthesis are the range of values derived from commercial reference varieties.
 ⁴ T.I. – Tolerance interval. With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.

5) 2차 대사산물

Coumestrol (ppm DW)		Differen	Commercial (Range) ²		
	Mean ± S.E. (Range)	Mean ± S.E. ¹ (Range)	95% CI (Lower, Upper)	p-Value	[99% T.I.] ³
J163	45.98 ± 15.05 (3.49 - 94.56)	8.32 ± 6.02 (-79.87 - 45.52)	-3.81, 20.46	0.173	(2.99 - 104.37) [0, 145.77]
Control	37.66 ± 15.05 (3.66 - 124.50)				

¹S.E. – Standard error of the mean.

²Com. Ref. – Commercial references. Data in parenthesis are the range of values derived from commercial reference varieties.

³ T.I. – Tolerance interval. With 95% confidence, interval contains 99% of the values expressed in the population of commercial lines. Negative limits were set to zero.

6) 문헌범위 및 OECD 범위

Components ¹	Literature Range ²	OECD Range ³	
Forage Nutrients			
Proximates (% dw)			
Ash	8.62 - 14.81 °; 6.86 - 15.25 °; 5.8 - 7.5°	8.4 - 15.3	
Carbohydrates by calculation	56.63 - 74.80 ^b	NA	
Fat, total	1.80 - 3.24 *; 1.33 - 4.49 * 2.8 - 3.1 °	1.3 - 3.2	
Moisture (% fw)	7.74 - 18.10 °; 70.90 - 83.50 °	9.0 - 82.1	
Protein	14.91 - 25.35 a; 15.29 - 28.34 b; 17.0 - 21.3 c	15.3 - 25.8	
Fiber (% dw)			
Acid detergent fiber	23.17 - 42.59 °; 21.26 - 39.25 °	23.1 - 33.4	
Neutral detergent fiber	29.08 - 53.56 °; 26.53 - 51.09 °	26.5 - 40.0	
Acid Detergent Lignin	5.69 - 9.37 °; 2.31 - 13.71 °	3.9 - 9.7	
Minerals			
Calcium (% dw)	1.03 - 1.93 *; 0.90 - 1.86 b	0.90 - 1.96	
Copper (mg/kg dw)	3.43 - 14.72 b	5.3 - 13.4	
Iron (ppm dw)	1 - 4749 °; 63.49 - 1538.46 b	0.2 - 15.4	
Magnesium (% dw)	0.20 - 0.40°; 0.11 - 0.45°	0.11 - 0.45	
Manganese (ppm dw)	16 - 64 °; 15.91 - 109.50 °	31.5 - 109.5	
Phosphorus (% dw)	0.24 - 0.42 °; 0.22 - 0.46 °	0.22 - 0.45	
Potassium (% dw)	1.59 - 3.21 a; 1.39 - 4.31 b	1.39 - 4.31	
Zinc (mg/kg dw)	15.20 - 43.62 b	18.0 - 36.0	

¹ fw=fresh weight; dw=dry weight

² Literature range references: ³ (Dairyland Laboratories 2011); ⁶ (McCann, et al. 2006);

³ (OECD 2005)

⁴ NA=not available

7) OECD 범위(아미노산)

	Hay NRC82 ¹	Hay NRC01 ²	Hay Literature ³	Hay Monsanto ⁴	Hay Range	Silage Range⁵
Ala	34	99	.70	.79-1.59	.70 - 1.59	.6994
Arg	1.14	1.18	.62	.71-1.54	.62 - 1.54	.2751
Asp	3-	-	1.40	1.75-3.52	1.40 - 3.52	1.83-1.95
Cys	€	.32	.20	.1835	.1835	92
Glu) -	-	1.20	1.52-3.03	1.20 - 3.03	1.27-1.48
Gly	1.03	228	.60	.71-1.47	.60-1.47	.6776
His	.50	.44	.28	.3774	.2874	.1428
Ile	.96	.97	.50	.66-1.26	.50 - 1.26	.5576
Leu	1.64	1.68	.90	1.11-2.25	.90 - 2.25	.90-1.23
Lys	1.27	1.17	.59	.99-1.81	.59 - 1.81	.3274
Met	.36	.36	.18	.2448	.1848	.0621
Phe	1.07	1.09	.65	.72-1.59	.72 - 1.59	.5379
Pro	-	(=)	.70	.75-1.34	.70 - 1.34	.89-1.14
Ser	.97	323	.60	.75-1.36	.60 - 1.36	.5767
Thr	1.08	1.00	.60	.61-1.15	.60 - 1.15	.6372
Trp	12	.35	S2	.1631	.1635	22
Tyr	.74	(4)	.50	.50-1.16	.50 - 1.16	.2541
Val	1.22	1.20	.60	.79-1.55	.60 - 1.55	.7694

¹NRC, 1982. ²NRC, 2001. ³Cunningham *et al.*, 1994; Phuntsok *et al.* 1998. ⁴Monsanto, 2003. ⁵Christensen, 2004a; Phuntsok *et al.*, 1998.