United States Patent

Dicks et al.
(10) Patent No.: US 9,714,435 B2

(45) Date of Patent:

SIMLAN ADENOVIRUS AND HYBRID ADENOVIRAL VECTORS

Assignee: OXFORD UNIVERSITY INNOVATION LIMITED, Oxford (GB)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: $14 / 119,413$

PCT No.: PCT/GB2012/000467
§ 371 (c)(1),
(2), (4) Date: Mar. 19, 2014

PCT Pub. No.: WO2012/172277
PCT Pub. Date: Dec. 20, 2012
Prior Publication Data
US 2015/0044766 A1 Feb. 12, 2015

Foreign Application Priority Data

May 25, 2011 (GB) \qquad 1108879.6
(51) Int. Cl.

C12N 15/861
(2006.01)

C12N 15/11
(2006.01)

A61K 39/235
(2006.01)

C12N 15/86
(2006.01)

C12N $7 / 00$
(2006.01)
(52) U.S. Cl.

CPC C12N 15/86 (2013.01); C12N 7/00
(2013.01); C12N $2710 / 10021$ (2013.01); C12N

2710/10042 (2013.01); C12N 2710/10044
(2013.01); C12N 2800/204 (2013.01)
(58) Field of Classification Search

None
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

2004/0136963	A1	7/2004	Wilson et al.	
2008/0090281	A1*	4/2008	Wilson et al.	435/235.1
2009/0110695	A1*	4/2009	Havenga et al.	424/199.1
2010/0303859	Al^{*}	12/2010	Williams	424/215.1
2011/0217332	Al^{*}	9/2011	Colloca et al	424/233.1

OTHER PUBLICATIONS

Dicks et al, , 2) 90% identical to nucleotides 18302-21130 of SEQ ID No. 1, 3) 90% identical to nucleotides 13891-15486 of SEQ ID No. 1, 4) is 90% identical to nucleotides 32290-33621 of SEQ ID No. 1 or 5) a nucleic acid that hybridizes to any of these sequences, PLOS one, 2012, vol. 7(7), pp. 1-12.*
Yan et al, Developing Novel Oncolytic Adenoviruses through Bioselection, Journal of Virology, Feb. 2003, p. 2640-2650.*
Guo et al, Protein tolerance to random amino acid change, PNAS, 2004, vol. 101 (25), pp. 9205-9210.*
Lesk et al, Prediction of Protein Function from Protein Sequence and Structure, p. 27 and 28, downloaded Sep. 16, 2007.*
Farina, Steven F., Gao, Guang-Ping, Xian, Z.Q., Rux, John J., Burnett, Roger M., Alvira, Mauricio R., Marsh, Jonathan, Ertl, Hildegund C.J., and Wilson, James M. "Replication-Defective Vector Based on a Chimpanzee Adenovirus", Journal of Virology, Dec. 201, pp. 11603-11613; Copyright ©2001, American Society of Microbiology, All Rights Reserved.; vol. 75, No. 23.; Received Jun. 21, $2001 /$ Accepted Aug. 30, 2001.
Hillis, William D. and Goodman, Rosanne "Serologic Classification of Chimpanzee Adenoviruses By Hemagglutination And Hemagglutination Inhibition"; The Journal of Immunology, Copyright © 1969 by The Williams \& Wilkins Co.; vol. 103, No. 5, Nov. 1, 1969, 103(5) pp. 1089-1095; Printed in U.S.A., Received Apr. 21, 1969.

* cited by examiner

Primary Examiner - Maria Marvich
(74) Attorney, Agent, or Firm - Avery N. Goldstein; Blue Filament Law PLLC

Abstract

(57)

ABSTRACT The present invention provides recombinant adenoviral vectors, immunogenic compositions thereof and their use in medicine, and methods for generating recombinant adenoviral vectors. In particular, the present invention provides an adenovirus vector comprising a capsid derived from chimpanzee adenovirus AdY25, wherein said capsid encapsidates a nucleic acid molecule comprising an exogeneous nucleotide sequence of interest.

13 Claims, 9 Drawing Sheets

Figure 1

Figure 2

A

C

	Y25 E4 modified construct	
	Ad5 E4 ORFs	Y25 E4ORFs
A	E4Orf6 only	Nil
B	E4Orf6 only	E4Orf1,2,3
C	E4Orf6/7	Nil
D	E40rf6/7	E4Orf1,2,3
E	E4Orf4,6/7	E4Orf1,2,3

B

D

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

FLU ELISpot response

Figure 9

SIMIAN ADENOVIRUS AND HYBRID ADENOVIRAL VECTORS

The present invention relates to novel adenoviral vectors derived from a chimpanzee adenovirus, immunogenic compositions thereof and their use in medicine.

All publications, patents and patent applications cited herein are incorporated in full by reference.

BACKGROUND

Traditionally, vaccines have been based on whole inactivated or attenuated pathogens. However, for many infectious diseases such as malaria, this approach is impractical and the focus of research has changed to the development of 'subunit vaccines' expressing only those pathogen-derived antigens that induce immune correlates of protection.

Subunit vaccines present an antigen to the immune system without introducing a whole infectious organism. One such method involves the administration of a specific, isolated protein from an infectious organism. However, this technique often induces only a weak immune response and the isolated proteins may have a different three-dimensional structure than the protein in its normal context, resulting in the production of antibodies that may not recognize the infectious organism.

An alternative method has therefore been developed which utilizes viral vectors for the delivery of antigens. Viruses are obligate intracellular parasites which replicate by transfecting their DNA into a host cell, and inducing the host cell to express the viral genome. This reproductive strategy has been harnessed to create vectored vaccines by creating recombinant, non-replicating viral vectors which carry one or more heterologous transgenes. Transfection or transduction of the recombinant viral genome into the host cell results in the expression of the heterologous transgene in the host cell. When the heterologous transgene encodes an antigen, for example, expression of the antigen within the host cell can elicit a protective or therapeutic immune response by the host immune system. As such, the viral vectors may function as effective vaccines. Alternatively, the heterologous transgene may encode a functional allele of a gene, expression of which can be used to counteract the effects of a deleterious mutant allele of the gene, in a process known as gene therapy.

Particularly suitable for use as viral vectors are adenoviruses. Adenoviruses are non-enveloped viruses, approximately $90-100 \mathrm{~nm}$ in diameter, comprising a nucleocapsid and a linear double stranded DNA genome. The viral nucleocapsid comprises penton and hexon capsomers. A unique fibre is associated with each penton base and aids in the attachment of the virus to the host cell via the Coxsackieadenovirus receptor on the surface of the host cell. Over 50 serotype strains of adenoviruses have been identified, most of which cause respiratory tract infections, conjunctivitis and gastroentiritus in humans. Rather than integrating into the host genome, adenoviruses normally replicate as episomal elements in the nucleus of the host cell. The genome of adenoviruses comprises 4 early transcriptional units (E1, E2, E3 and E4), which have mainly regulatory functions and prepare the host cell for viral replication. The genome also comprises 5 late transcriptional units (L1, L2, L3, L4 and L5), which encode structural proteins including the penton (L2), the hexon (L3), the scaffolding protein (L4) and the fiber protein (L5), which are under the control of a single
promoter. Each extremity of the genome comprises an Inverted Terminal Repeat (ITR) which is necessary for viral replication.

Recombinant adenoviruses were originally developed for gene therapy, but the strong and sustained transgene-specific immune responses elicited by these gene delivery agents prompted their use as vaccine carriers. In addition to being highly immunogenic, adenoviruses offer many other advantages for clinical vaccine development. The adenoviral genome is relatively small (between 26 and 45 kbp), well characterised and easy to manipulate. The deletion of a single transcriptional unit, E1, renders the virus replicationincompetent which increases its predictability and reduces side effects in clinical applications. Recombinant adenoviruses can accommodate relatively large transgenes, in some cases up to 8 kb , allowing flexibility in subunit design, and have a relatively broad tropism facilitating transgene delivery to a wide variety of cells and tissues. Importantly for clinical applications, methods for scaled-up production and purification of recombinant adenoviruses to high titre are well established. Thus far, subgroup C serotypes AdHu2 or AdHu 5 have predominantly been used as vectors.

However, the first generation of vaccine vectors based on the archetypal human adenovirus AdHu5 showed poor efficacy in clinical trials, despite encouraging pre-clinical data ${ }^{1}$. It was subsequently discovered that a large proportion of human adults harbour significant titres of neutralising antibodies to common human serotypes such as AdHu 2 and AdHu5, as a result of natural infection. Neutralising antibodies could reduce the potency of viral vector vaccines by blocking viral entry into host cells and hence delivery of the target transgene.

The occurrence of pre-existing anti-vector immunity is being addressed through the development of new adenoviral vectors based on serotypes to which the human population is less likely to have been exposed, including those of chimpanzee origin ${ }^{2,3}$. However, some such chimpanzee adenoviral vectors have limited efficacy on the grounds of unexplained immunity in human populations, varying levels of cross-reactivity with human adenoviruses, and sub-optimal growth in transformed cell lines. In addition, it is advantageous to have a range of different adenoviral vectors available for use in immunising against different diseases, on the grounds that induction of neutralising antibodies against a vector may prevent its re-administration for another indication.

Thus, there continues to be a need in the art for highly immunogenic, non-human adenoviral vectors which effectively deliver the target transgene, minimize the effect of pre-existing immunity to adenovirus serotypes and replicate efficiently in transformed cell lines.

SUMMARY OF INVENTION

In a first aspect, the present invention provides the complete genomic sequence of a chimpanzee adenovirus referred to herein as AdY25.

In a second aspect, the present invention provides an adenovirus vector comprising a capsid derived from chimpanzee adenovirus AdY25, wherein said capsid encapsidates a nucleic acid molecule comprising an exogeneous nucleotide sequence of interest operably linked to expression control sequences which direct the translation, transcription and/or expression thereof in an animal cell and an adenoviral packaging signal sequence.

A third aspect provides immunogenic compositions comprising the adenoviral vector according to the second aspect,
optionally in combination with one or more additional active ingredients, a pharmaceutically acceptable carrier, diluent, excipient or adjuvant.

A fourth aspect provides the use of the adenoviral vector according to the second aspect or the immunogenic composition according to the third aspect in medicine. In particular, the adenoviral vector and immunogenic compositions are provided for delivery of a transgene into a host cell, elicitation of an immune response in an animal, boosting an immune response in an animal, treating or preventing at least one disease, inducing an immune response in an animal that will break tolerance to a self antigen and gene therapy.

A fifth aspect of the present invention provides a polynucleotide sequence encoding the adenoviral vector according to the second aspect of the present invention.

A sixth aspect of the present invention provides a host cell transduced with the viral vector according to the second aspect of the present invention.

A seventh aspect of the present invention provides a method of producing the viral vector according to the second aspect of the present invention, preferably by generating a molecular clone of AdY25 in a Bacterial Artificial Chromosome (BAC).

An eighth aspect of the present invention therefore provides a Bacterial Artificial Chromosome (BAC) clone comprising the polynucleotide sequence according to the fifth aspect of the present invention.

A ninth aspect of the present invention provides a packaging cell line producing the viral vector according to the second aspect of the present invention.

A tenth aspect of the present invention provides an adenoviral vector other than AdHu5 having a nucleic acid molecule comprising the E4Orf4, E4Orf6 and E4Orf6/7 coding regions from AdHu5.

FIGURES

The present invention is described with reference to the following figures in which:

FIG. 1 shows a phylogenetic sequence alignment of the amino acid sequences of (A) the hexon protein and (B) the fiber protein of different adenovirus serotypes. Sequences are clustered into the six adenovirus groups A-F.

FIG. 2 shows a phylogenetic sequence alignment based on the whole genomic nucleotide sequence of wild type adenoviruses of different species. Sequences are clustered into the six adenovirus groups A-F.

FIG. 3A is a histogram of the viral yield (infectious units $/ \mathrm{ml}$) of AdHu5 and three AdY25-based vectors expressing Green Fluorescent Protein (GFP): i) AdY25 E4 wildtype ("Y25E4 wt"); ii) AdY25 E4 AdHu5 Orf6 ("Y25Ad5E4Orf6") and iii) AdY25 AdHu5 E4Orf4/6/7 ("AdChOX1").

FIG. 3B is a histogram of the ratio of GFP foci to anti-hexon titer for AdHu5, AdCh63, AdY25 E4 wildtype and the constructs A-E as described in FIG. 3C, all expressing the TIPeGFP antigen.

FIG. 3C is a table detailing the construction of the E4-modified AdY25 vector constructs A, B, C, D and E.

FIG. 3D is a histogram of the ratio of marker gene: hexon titer for AdChOX1-based vectors expressing TIPeGFP, having either GFP or mCherry fluorescent transgenes. All data is representative of at least two independent experiments. Error bars show mean and SEM.

FIG. 4 is a graphical representation of cellular immunogenicity (spot forming cells (SFC)/million) of ChAdOX1 as compared to AdCh63 and AdCh68.

FIG. 5 is a graphical representation of the effect of E4 modification on IFN- γ, spleen ELISpot responses (SFC/ million) to two epitopes, Pb 9 and P 15 , two weeks after intramuscular immunisation of Balb/c mice (4/group) with either 10^{8} or 10^{6} infectious units (ifu) of AdY25-based vectors with the following E4 regions: i) wildtype E4 region ("E4 wt"); ii) E4Orf6 from AdHu5 ("E4Orf6"); or iii) E4Orf4, 6 and 7 from AdHu5 ("E4Orf4/6/7").

FIG. 6 is a histogram showing the prevalence of vectorneutralising antibodies in human sera from (A) the UK and (B) the Gambia, against Y25Ad5E4Orf6 (referred to in FIG. 6 as "ChAdOX1") and AdCh63.

FIG. 7 is a graphical representation of the humoral immunogenicity of ChAdOX1 and AdCh68-based vectors carrying TIPeGFP antigen. After 56 days post prime, mice were boosted with 10^{6} pfu MVA-TIPeGFP Serum was collected and responses measured by endpoint ELISA a) 50 days post prime and b) 10 days post boost. Mean and significance indicated. Statistical analyses performed by one way ANOVA. Dotted line indicates limit of detection of the assay.

FIG. 8A is a graphical representation of cellular immunogenicity (spot forming cells (SFC)/million splenocyltes) of ChAdOX1 vector carrying the Mycobacterium tuberculosis Ag85A antigen, at three different doses. Cellular immune responses to Ag85A were determined by IFN- γ ELIspot assay using splenocytes stimulated with synthetic peptides corresponding to the known immunodominant $\mathrm{CD} 4^{+} \mathrm{T}$ cell $\mathrm{H}-2^{d}$ restricted epitope in Ag 85 A (p 15).

FIG. 8B is a graphical representation of cellular immunogenicity (spot forming cells (SFC)/million splenocyltes) of ChAdOX1 carrying the Mycobacterium tuberculosis Ag 85 A antigen, at three different doses. Cellular immune responses to Ag 85 A were determined by IFN- γ ELIspot assay using splenocytes stimulated with synthetic peptides corresponding to the known immunodominant $\mathrm{CD8}^{+} \mathrm{T}$ cell $\mathrm{H}-2^{d}$ restricted epitope in Ag 85 A (p11).

FIG. 9 is a graphical representation of cellular immunogenicity (spot forming cells (SFC)/million splenocyltes) of ChAdOX1 and HAdV-5 carrying the nucleoprotein (NP) and matrix protein 1 (M1) of Influenza A virus, at two different doses. Cellular immune responses to nucleoprotein (NP) were determined by IFN- γ ELIspot assay using splenocytes stimulated with synthetic peptides corresponding to the known immunodominant $\mathrm{CD}^{+} \mathrm{T}$ cell $\mathrm{H}-2_{d}$ restricted epitope in NP.

DETAILED DESCRIPTION

The present invention relates to novel adenoviral vectors derived from a chimpanzee adenovirus, AdY25, immunogenic compositions thereof and their use in medicine.

AdY25 is a chimpanzee adenovirus which has been sequenced for the first time by the present inventors. The nucleotide sequence is provided in SEQ ID NO. 1.

A first aspect of the present invention therefore provides a nucleic acid molecule having the sequence of SEQ ID NO. 1. In one embodiment, the nucleic acid molecule is isolated.

The person skilled in the art will appreciate that there are homologues, equivalents and derivatives of all of the nucleic acid sequences described herein. Thus, the invention also encompasses nucleic acid molecules having a sequence substantially identical to the nucleic acid sequences described herein over their entire length.
One of skill in the art will appreciate that the present invention can also include variants of those particular nucleic acid molecules which are exemplified herein. These
may occur in nature, for example because of strain variation. For example, additions, substitutions and/or deletions are included. One of skill in the art will also appreciate that variation from the particular nucleic acid molecules exemplified herein will be possible in view of the degeneracy of the genetic code. Preferably, the variants have substantial identity to the nucleic acid sequences described herein over their entire length.

As used herein, nucleic acid sequences which have "substantial identity" preferably have at least $80 \%, 90 \%, 91 \%$, $92 \%, 93 \%, 94 \%, 95 \% 96 \%, 97 \%, 98 \%, 98.1 \%, 98.2 \%$, $98.3 \%, 98.4 \%, 98.5 \%, 98.6 \%, 98.7 \%, 98.8 \%, 98.9 \%, 99 \%$, $99.1 \%, 99.2 \%, 99.3 \%, 99.4 \% 99.5 \%, 99.6 \%, 99.7 \%, 99.8 \%$ or 99.9% identity with said sequences. Desirably, the term "substantial identity" indicates that said sequence has a greater degree of identity with any of the sequences described herein than with prior art nucleic acid sequences.

When comparing nucleic acid sequences for the purposes of determining the degree of homology or identity one can use programs such as BESTFIT and GAP (both from the Wisconsin Genetics Computer Group (GCG) software package). BESTFIT, for example, compares two sequences and produces an optimal alignment of the most similar segments. GAP enables sequences to be aligned along their whole length and finds the optimal alignment by inserting spaces in either sequence as appropriate. Suitably, in the context of the present invention, when discussing identity of nucleic acid sequences, the comparison is made by alignment of the sequences along their whole length. The above applied mutatis mutandis to all nucleic acid sequences disclosed in the present application.

Preferably, the nucleic acid molecule according to the first aspect has a sequence at least 98% identical to SEQ ID NO. 1, more preferably at least 98.6% identical to SEQ ID NO. 1.

Preferably, the nucleic acid molecule according to the first aspect comprises one or more nucleotide sequences selected from the group consisting of;
(a) nucleotides 18302 to 21130 of SEQ ID NO. 1 or a sequence substantially identical thereto;
(b) nucleotides 13891 to 15486 of SEQ ID NO. 1 or a sequence substantially identical thereto; and
(c) nucleotides 32290 to 33621 of SEQ ID NO. 1 or a sequence substantially identical thereto.
These nucleotide sequences encode the (a) hexon, (b) 45 penton and (c) fibre capsid proteins of AdY25, the exterior regions of which determine the properties of the viral vector, including serotype.

The nucleic acid molecule according to the first aspect may also comprise one or more nucleotide sequences selected from the group consisting of:
(a) a nucleotide sequence encoding a hexon protein comprising the amino acid sequence of SEQ ID NO. 2, or a sequence at least 98.2% identical thereto; or a nucleotide sequence encoding a hexon protein having a sequence at least 98.2% identical to the protein encoded by nucleotides 18302 to 21130 of SEQ ID NO. 1 ;
(b) a nucleotide sequence encoding a penton protein comprising the amino acid sequence of SEQ ID NO. 3, or a sequence at least 98.3% identical thereto; or a nucleotide sequence encoding a penton protein having a sequence at least 98.3% identical to the protein encoded by nucleotides 13891 to 15486 of SEQ ID NO. 1 ; and
(c) a nucleotide sequence encoding a fiber protein comprising the amino acid sequence of SEQ ID NO. 4 or a
sequence at least 99.1% identical thereto; or a nucleotide sequence encoding a fiber protein having a sequence at least 99.1% identical to the protein encoded by nucleotides 32290 to 33621 of SEQ ID NO. 1.

Nucleic acid molecules comprising a sequence complementary to the nucleic acid molecule according to the first aspect of the present invention are within the scope of the present invention
Nucleic acid molecules which hybridize only to the nucleic acid molecule according to the first aspect of the present invention are also encompassed by the present application. Thus, the conditions used for hybridisation are sufficiently stringent that only such nucleic acid sequences would remain hybridised. The person skilled in the art would easily be able to determine such conditions.

The nucleic acid can be DNA, including cDNA, RNA including mRNA or PNA (peptide nucleic acid) or a mixture thereof.

Table 1 provides an overview of the wildtype AdY25 sequences disclosed herein:

TABLE 1

SEQ ID NO.	Description	Corresponding nucleotides in SEQ ID NO. 1
1	Genome (nucleotide sequence)	N/A
2	Hexon protein	Nucleotides 18302 to 21130 (L3)
3	Penton protein	Nucleotides 13891 to 15486 (L2)
4	Fibre protein	Nucleotides 32290 to 33621 (L5)
5	E1A	Nucleotides 577 to 1143 and 1237 to 1443
6	E1B 19 KDa	Nucleotides 1602 to 2165
7	E1B 55 KDa	Nucleotides 1907 to 3406
8	pIX	Nucleotides 3491 to 3919
9	IVa2	Nucleotides 5587 to 5602 and 3978 to 5311 (E2)
10	Polymerase	Nucleotides 13838 to 13846 and 5081 to 8662 (E2)
11	pTP	Nucleotides 13838 to 13846 and 8463 to 10392 (E2)
12	$52 / 55 \mathrm{kDa}$	Nucleotides 10827 to 12017 (L1)
13	IIIa	Nucleotides 12041 to 13807 (L1)
14	VII	Nucleotides 15493 to 16074
15	V	Nucleotides 16119 to 17141
16	Mu	Nucleotides 17161 to 17394
17	VI	Nucleotides 17470 to 18201
18	Endoprotease	Nucleotides 21146 to 21775
19	DNA binding protein	Nucleotides 21852 to 23390
20	100 kDa	Nucleotides 23419 to 25827 (L4)
21	22 KDa	Nucleotides 25544 to 26098
22	33 KDa	Nucleotides 25544 to 25871 and 26041 to 26372 (L4)
23	pVIII	Nucleotides 25602 to 26285 (L4)
24	E3 12.5 KDa	Nucleotides 27139 to 27459
25	E3 CRIaI	Nucleotides 27413 to 28051
26	E3 gp19 KDa	Nucleotides 28033 to 28563
27	E3 22.3 KDa	Nucleotides 29350 to 29979
28	E3 31 KDa	Nucleotides 29999 to 30907
29	E3 10.4 KDa	Nucleotides 30916 to 31191
30	E3 15.2 KDa	Nucleotides 31200 to 31643
31	E3 14.7 KDa	Nucleotides 31636 to 32040
32	E4 Orf 6/7	Nucleotides 34688 to 34861 and 33716 to 33965
33	E4 Orf 6	Nucleotides 33965 to 34861
34	E4 Orf 4	Nucleotides 34764 to 35132
35	E4 Orf 3	Nucleotides 35141 to 35494
36	E4 Orf 2	Nucleotides 35491 to 35880
37	E4 Orf 1	Nucleotides 35930 to 36304

The genome sequence data has confirmed early serological studies that simian AdY25 is closely related to human group E adenovirus, $\mathrm{AdHu} 4^{4}$. Alignment of the amino acid sequences of hexon and fibre proteins from different adeno-
viral serotypes have been used to create the phylogenetic trees in FIG. 1. These are the major surface-exposed capsid components and are believed to be the primary determinants of vector tropism. Alignment of whole genomic nucleotide sequences of different adenoviral species have been used to create the phylogenetic tree in FIG. 2. The genome and the fibre proteins align AdY25 with the group E adenoviruses However, the hexon proteins align AdY25 with the group D adenoviruses.

Merely for the convenience of those of skill in the art, a sample of E. coli strain DH10B containing bacterial artificial chromosomes (BACs) containing the cloned genome of chimpanzee adenovirus Y25 (pBACe3.6 Y25, cell line name "Y25") was deposited by Isis Innovation Limited on 24 May 2012 with the European Collection of Cell Cultures (ECACC) at the Health Protection Agency Culture Collections, Health Protection Agency, Porton Down, Salisbury SP4 0JG, United Kingdom under the Budapest Treaty and designated by provisional accession no. 12052401.

The E. coli containing the BAC is a class I genetically modified organism. The genotype of E. coli strain DH is: F-mcrA Δ (mrr-hsdRMS-mcrBC) $\Phi 80 \mathrm{dlacZ} \mathrm{\Delta M15} \Delta$ lacX74 endA1 recA1 deoR Δ (ara, leu) 7697 araD 139 gal U galK nupG rpsL λ-. Chimpanzee adenovirus Y25 is provisionally classified within the species Human adenovirus E based on the nucleotide sequence of the viral DNA polymerase.

The BAC propagates within the bacteria during replication and can be maintained by selection with chloramphenicol. The E. coli strain DH10B containing the BAC into which the genome is cloned can be propagated in LuriaBertani broth or agar containing $12.5 \mu \mathrm{~g} / \mathrm{mL}$ chloramphenicol at $37^{\circ} \mathrm{C}$.

Converting the BAC clones of the viral genomes into viruses ("rescue") can be carried out by the following steps. The E. coli host is propagated and the BAC DNA is purified from the bacteria according to standard methods. The DNA is linearised with the restriction endonuclease PmeI and transfected into any cell line supporting growth of human adenoviruses (e.g. A549 cells). The resulting adenovirus can then be propagated and purified for use as a vaccine, for example. All of these reagents and cells are publicly available. If the deposition were rescued, the resulting virus would be a wild-type adenovirus.

In respect of all designated states to which such action is possible and to the extent that it is legally permissible under the law of the designated state, it is requested that a sample of the deposited material be made available only by the issue thereof to an independent expert, in accordance with the relevant patent legislation, e.g. Rule 32(1) EPC, Rule 13(1) and Schedule 1 of the UK Patent Rules 2007, Regulation 3.25(3) of the Australian Patent Regulations and generally similar provisions mutatis mutandis for any other designated state.

Furthermore, merely for the convenience of those of skill in the art, a sample of E. coli strain DH 10 B containing bacterial artificial chromosomes (BACs) containing the cloned genome of chimpanzee adenovirus Y25 with deletion of the E1 region (pBACe3.6 Y25delE1, cell line name "Y25delE1") was deposited by Isis Innovation Limited on 24 May 2012 with the European Collection of Cell Cultures (ECACC) at the Health Protection Agency Culture Collections, Health Protection Agency, Porton Down, Salisbury SP4 0JG, United Kingdom under the Budapest Treaty and designated by provisional accession no. 12052402.

The E. coli containing the BAC is a class I genetically modified organism. The genotype of E. coli strain DH10B is: F-mcrA Δ (mrr-hsdRMS-mcrBC) $\Phi 80$ dlacZ $\Delta \mathrm{M} 15$ $\Delta l a c X 74$
endA1 recA1 deoR Δ (ara,leu) 7697 araD139 galU galK nupG rpsL λ-. Chimpanzee adenovirus Y25 is provisionally classified within the species Human adenovirus E based on the nucleotide sequence of the viral DNA polymerase.

The BAC propagates within the bacteria during replication and can be maintained by selection with chloramphenicol. The E. coli strain DH10B containing the bacterial artificial chromosomes into which the genomes are cloned can be propagated in Luria-Bertani broth or agar containing $12.5 \mu \mathrm{~g} / \mathrm{mL}$ chloramphenicol at $37^{\circ} \mathrm{C}$.
Converting the BAC clones of the viral genomes into viruses ("rescue") can be carried out by the following steps. The E. coli host is propagated and the BAC DNA is purified from the bacteria according to standard methods. The DNA is linearised with the restriction endonuclease Pmel and transfected into HEK293 cells (or a similar E1 complementing cell line). The resulting adenovirus can then be propagated and purified for use as a vaccine for example. All of these reagents and cells are publicly available. If the deposition were rescued, the resulting virus would be a class I genetically modified organism.

In respect of all designated states to which such action is possible and to the extent that it is legally permissible under the law of the designated state, it is requested that a sample of the deposited material be made available only by the issue thereof to an independent expert, in accordance with the relevant patent legislation, e.g. Rule 32(1) EPC, Rule 13(1) and Schedule 1 of the UK Patent Rules 2007, Regulation 3.25(3) of the Australian Patent Regulations and generally similar provisions mutatis mutandis for any other designated state.

A specific embodiment of the first aspect of the present invention provides the complete genomic sequence of a chimpanzee adenovirus referred to herein as AdY25, wherein said genomic sequence comprises or consists of the genomic sequence deposited in a BAC in E. coli strain DH10B by Isis Innovation Limited on 24 May 2012 with the European Collection of Cell Cultures (ECACC) at the Health Protection Agency Culture Collections, Health Protection Agency, Porton Down, Salisbury SP4 0JG, United Kingdom under the Budapest Treaty and designated by provisional accession no. 12052401, or the genomic sequence deposited in a BAC in E. coll strain DH10B by Isis Innovation Limited on 24 May 2012 with the European Collection of Cell Cultures (ECACC) at the Health Protection Agency Culture Collections, Health Protection Agency, Porton Down, Salisbury SP4 0JG, United Kingdom under the Budapest Treaty and designated by provisional accession no. 12052402.

The inventors have discovered that viral vectors based on the newly sequenced AdY25 can be highly effective. A second aspect of the present invention therefore provides an adenovirus vector comprising a capsid derived from chimpanzee adenovirus AdY25, wherein said capsid encapsidates a nucleic acid molecule comprising an exogeneous nucleotide sequence of interest operably linked to expression control sequences which direct the translation, transcription and/or expression thereof in an animal cell and an adenoviral packaging signal sequence.

As used herein, the phrase "viral vector" refers to a recombinant virus or a derivative thereof which is capable of introducing genetic material, including recombinant DNA, into a host cell or host organism by means of transduction or non-productive infection. For example, the vector of the present invention may be a gene delivery vector, a vaccine vector, an antisense delivery vector or a gene therapy vector.

As used herein, "AdY25" and "Y25" refer to the chimpanzee adenovirus AdY25 or vectors derived therefrom or based thereon. Shorthand terms are used to indicate modifications made to the wildtype virus. For example, " $\Delta E 1$ " or "delE1" indicates deletion or functional deletion of the E1 locus. The phrase "Ad5E4Orf6" indicates that the viral vector comprises heterologous E4 open reading frame 6 from the Ad5 virus.

The vector of the present invention comprises a capsid derived from chimpanzee adenovirus AdY25. Preferably, the capsid comprises the native or wildtype AdY25 capsid proteins, including penton proteins, hexon proteins, fiber proteins and/or scaffolding proteins. However, one of skill in the art will readily appreciate that small modifications can be made to the capsid proteins without adversely altering vector tropism. In a particularly preferred embodiment, the vector capsid comprises one or more capsid proteins selected from the group consisting of:
(a) a hexon protein comprising the amino acid sequence of SEQ ID NO. 2 or a sequence substantially identical thereto;
(b) a penton protein comprising amino acid sequence of SEQ ID NO. 3 or a sequence substantially identical thereto; and
(c) a fibre protein comprising the amino acid sequence of SEQ ID NO. 4 or a sequence substantially identical thereto.
One of skill in the art will appreciate that the present invention can include variants of those particular amino acid sequences which are exemplified herein. Particularly preferred are variants having an amino acid sequence similar to that of the parent protein, in which one or more amino acid residues are substituted, deleted or added in any combination. Especially preferred are silent substitutions, additions and deletions, which do not alter the properties and activities of the protein of the present invention. Various amino acids have similar properties, and one or more such amino acids of a substance can often be substituted by one or more other such amino acids without eliminating a desired activity of that substance. Thus, the amino acids glycine, alanine, valine, leucine and isoleucine can often be substituted for one another (amino acids having aliphatic side chains). Of these possible substitutions it is preferred that glycine and alanine are used to substitute for one another (since they have relatively short side chains) and that valine, leucine and isoleucine are used to substitute for one another (since they have larger aliphatic side chains which are hydrophobic). Other amino acids which can often be substituted for one another include: phenylalanine, tyrosine and tryptophan (amino acids having aromatic side chains); lysine, arginine and histidine (amino acids having basic side chains); aspartate and glutamate (amino acids having acidic side chains); asparagine and glutamine (amino acids having amide side chains); and cysteine and methionine (amino acids having sulphur containing side chains). Variants include naturally occurring and artificial variants. Artificial variants may be generated using mutagenesis techniques, including those applied to nucleic acid molecules, cells or organisms. Preferably, the variants have substantial identity to the amino acid sequences exemplified herein.

As used herein, amino acid sequences which have "substantial identity" preferably have at least $80 \%, 90 \%, 91 \%$, $92 \%, 93 \%, 94 \%, 95 \% 96 \%, 97 \%, 98 \%, 98.1 \%, 98.2 \%$, $98.3 \%, 98.4 \%, 98.5 \%, 98.6 \%, 98.7 \%, 98.8 \%, 98.9 \%, 99 \%$, $99.1 \%, 99.2 \%, 99.3 \%, 99.4 \%, 99.5 \%, 99.6 \%, 99.7 \%, 99.8 \%$ or 99.9% identity with said sequences. Desirably, the term "substantial identity" indicates that said sequence has a
greater degree of identity with any of the sequences described herein than with prior art amino acid sequences.

One can use a program such as the CLUSTAL program to compare amino acid sequences. This program compares amino acid sequences and finds the optimal alignment by inserting spaces in either sequence as appropriate. It is possible to calculate amino acid identity or similarity (identity plus conservation of amino acid type) for an optimal alignment. A program like BLASTx will align the longest stretch of similar sequences and assign a value to the fit. It is thus possible to obtain a comparison where several regions of similarity are found, each having a different score. The above applied mutatis mutandis to all amino acid sequences disclosed in the present application.

Preferably, the hexon protein comprises an amino acid sequence at least 98.2% identical to SEQ ID NO. 2. Preferably, the penton protein comprises an amino acid sequence at least 98.3% identical to SEQ ID NO. 3. Preferably, the fiber protein comprises an amino acid sequence at least 99.1% identical to SEQ ID NO. 4.
The nucleotide sequences for the AdY25 hexon, penton and fibre proteins are set out in nucleotides 18302 to 21130 of SEQ ID NO. 1 (hexon protein), nucleotides 13891 to 15486 of SEQ ID NO. 1 (penton protein) and nucleotides 32290-33621 of SEQ ID NO. 1 (fibre protein). The vector capsid may comprise one or more AdY25 capsid proteins encoded by these nucleotide sequences or sequences substantially identical thereto.
The vector according to the second aspect of the present invention may comprise one of the hexon, penton and fibre proteins as described above, any combination of two of said proteins, or all three of said proteins.

The vector of the present invention also comprises a nucleic acid molecule. As a minimum, the nucleic acid molecule comprises an exogeneous nucleotide sequence of interest, operably linked to expression control sequences which direct the translation, transcription and/or expression thereof in an animal cell and an adenoviral packaging signal sequence.

Preferably, the exogeneous nucleotide sequence encodes a molecule of interest. The molecule of interest may be a protein, polypeptide or nucleic acid molecule of interest. The exogeneous nucleotide sequence may encode one or more, two or more or three or more molecules of interest.
Proteins and polypeptides of interest include antigens, molecular adjuvants, immunostimulatory proteins and recombinases.

Preferably, the protein or polypeptide of interest is an antigen. In one embodiment, the antigen is a pathogenderived antigen. Preferably, the pathogen is selected from the group consisting of bacteria, viruses, prions, fungi, protists and helminthes. Preferably, the antigen is derived from the group consisting of M. tuberculosis, Plasomodium sp, influenza virus, HIV, Hepatitis C virus, Cytomegalovirus, Human papilloma virus, malaria parasites, leishmania parasites or any mycobacterial species. Preferred antigens include TRAP, MSP-1, AMA-1 and CSP from Plasmodium, influenza virus antigens and ESAT6, TB10.4 85A and 85B antigens from Mycobacterium tuberculosis. Particularly preferred antigens include Ag 85 A from Mycobacterium tuberculosis and nucleoprotein (NP) and matrix protein 1 (M1) from influenza A virus, preferably Influenza A virus.

In an alternative embodiment, the antigen is a selfantigen. Suitable self-antigens include antigens expressed by tumour cells which allow the immune system to differentiate between tumour cells and other cell types. Suitable selfantigens include antigens that are either inappropriate for the
cell type and/or its environment, or are only normally present during the organisms' development (e.g. foetal antigens). For example, GD2 is normally only expressed at a significant level on the outer surface membranes of neuronal cells, where its exposure to the immune system is limited by the blood-brain barrier. However, GD2 is expressed on the surfaces of a wide range of tumour cells including small-cell lung cancer, neuroblastoma, melanomas and osteosarcomas. Other suitable self-antigens include cell-surface receptors that are found on tumour cells but are rare or absent on the surface of healthy cells. Such receptors may be responsible for activating cellular signalling pathways that result in the unregulated growth and division of the tumour cell. For example, ErbB2 is produced at abnormally high levels on the surface of breast cancer tumour cells. Preferably, the self antigen comprises a tumour-associated antigen (TAA).

As used herein, the term 'antigen' encompasses one or more epitopes from an antigen and includes the parent antigen, and fragments and variants thereof. These fragments and variants retain essentially the same biological activity or function as the parent antigen. Preferably, they retain or improve upon the antigenicity and/or immunogenicity of the parent antigen. Generally, "antigenic" is taken to mean that the protein or polypeptide is capable of being used to raise antibodies or T cells or indeed is capable of inducing an antibody or T cell response in a subject. "Immunogenic" is taken to mean that the protein or polypeptide is capable of eliciting a potent and preferably a protective immune response in a subject. Thus, in the latter case, the protein or polypeptide may be capable of generating an antibody response and a non-antibody based immune response.

Preferably, fragments of the antigens comprise at least n consecutive amino acids from the sequence of the parent antigen, wherein n is preferably at least, or more than, 7,8 , $9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24$, $25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40$, $41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56$, $57,57,58,59,60,70,80,90$ or 100 . The fragments preferably include one or more epitopic regions from the parent antigen. Indeed, the fragment may comprise or consist of an epitope from the parent antigen. Alternatively, the fragment may be sufficiently similar to such regions to retain their antigenic/immunogenic properties.

The antigens of the present invention include variants such as derivatives, analogues, homologues or functional equivalents of the parent antigen. Particularly preferred are derivatives, analogues, homologues or functional equivalents having an amino acid sequence similar to that of the parent antigen, in which one or more amino acid residues are substituted, deleted or added in any combination. Preferably, these variants retain an antigenic determinant or epitope in common with the parent antigen.
Preferably, the derivatives, analogues, homologues, and functional equivalents have an amino acid sequence substantially identical to amino acid sequence of the parent antigen.

The exogeneous nucleotide sequence may encode more than one antigen. The viral vector may be designed to express the one or more antigen genes as an epitope string. Preferably, the epitopes in a string of multiple epitopes are linked together without intervening sequences such that unnecessary nucleic acid and/or amino acid material is avoided. The creation of the epitope string is preferably achieved using a recombinant DNA construct that encodes the amino acid sequence of the epitope string, with the DNA encoding the one or more epitopes in the same reading
frame. An exemplary antigen, TIPeGFP, comprises an epitope string which includes the following epitopes: E6FP, SIV-gag, PyCD4 and Py3. Alternatively, the antigens may be expressed as separate polypeptides.

One or more of the antigens or antigen genes may be truncated at the C -terminus and/or the N -terminus. This may facilitate cloning and construction of the vectored vaccine and/or enhance the immunogenicity or antigenicity of the antigen. Methods for truncation will be known to those of skill in the art. For example, various well-known techniques of genetic engineering can be used to selectively delete the encoding nucleic acid sequence at either end of the antigen gene, and then insert the desired coding sequence into the viral vector. For example, truncations of the candidate protein are created using 3^{\prime} and/or 5^{\prime} exonuclease strategies selectively to erode the 3^{\prime} and/or 5^{\prime} ends of the encoding nucleic acid, respectively. Preferably, the wild type gene sequence is truncated such that the expressed antigen is truncated by $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15$, $16,17,18,19,20$ or more amino acids relative to the parent antigen. Preferably, the antigen gene is truncated by $10-20$ amino acids at the C-terminus relative to the wild type antigen. More preferably, the antigen gene is truncated by 13-18 amino acids, most preferably by 15 amino acids at the C-terminus relative to the wild type antigen. Preferably, the Ag 85 A antigen is C -terminally truncated in this manner.

One or more of the antigen genes may also comprise a leader sequence. The leader sequence may affect processing of the primary transcript to mRNA, translation efficiency, mRNA stability, and may enhance expression and/or immunogenicity of the antigen. Preferably, the leader sequence is tissue plasminogen activator (tPA). Preferably, the tPA leader sequence is positioned N -terminal to the one or more antigens.

The leader sequence such as the tPA leaders sequence may be linked to the sequence of the antigen via a peptide linker. Peptide linkers are generally from 2 to about 50 amino acids in length, and can have any sequence, provided that it does not form a secondary structure that would interfere with domain folding of the fusion protein.

One or more of the antigen genes may comprise a marker such as the Green Fluorescent Protein (GFP) marker to facilitate detection of the expressed product of the inserted gene sequence.

One or more of the antigen genes may comprise a nucleic acid sequence encoding a tag polypeptide that is covalently linked to the antigen upon translation. Preferably the tag polypeptide is selected from the group consisting of a PK tag, a FLAG tag, a MYC tag, a polyhistidine tag or any tag that can be detected by a monoclonal antibody. The nucleic acid sequence encoding the tag polypeptide may be positioned such that, following translation, the tag is located at the C-terminus or the N -terminus of the expressed antigen or may be internal to the expressed antigen. Preferably, the tag is located at the C-terminus of the expressed antigen. In a preferred embodiment, one or more of the antigen genes encode a PK tag. A tag of this type may facilitate detection of antigen expression and clones expressing the antigen, and/or enhance the immunogenicity or antigenicity of the antigen.

If a tag polypeptide is used, nucleotides encoding a linker sequence are preferably inserted between the nucleic acid encoding the tag polypeptide and the nucleic acid encoding the expressed antigen. An exemplary linker is IPNPLLGLD (SEQ ID NO. 49).

In an alternative embodiment, the exogeneous sequence of interest may be non-protein encoding. For example, the
exogeneous nucleotide sequence may be an miRNA or immunostimulatory RNA sequence.

The adenoviral vector may comprise one or more exogeneous nucleotide sequences, for example 1,2 or 3 or more exogeneous nucleotide sequences. Preferably, each exogeneous nucleotide sequence embodies a transgene. The exogeneous nucleotide sequence embodying the transgene can be a gene or a functional part of the gene. The adenoviral vector may comprise one nucleotide sequence encoding a single molecule of interest. Alternatively, the adenoviral vector may comprise one nucleotide sequence or more than one nucleotide sequence encoding more than one molecule of interest.

Preferably, the exogeneous nucleotide sequence is located in a nucleic acid molecule that contains other, adenoviral sequences. The exogeneous nucleotide sequence may be inserted into the site of a partially or fully deleted AdY25 gene, for example into the site of an E1 deletion or an E3 deletion. The exogeneous nucleotide sequence may be inserted into an existing AdY25 gene region to disrupt the function of that region. Alternatively, the exogeneous nucleotide sequence may be inserted into a region of the AdY25 genome with no alteration to the function or seqeuence of the surrounding genes.

The exogeneous nucleotide sequence or transgene is preferably operably linked to regulatory sequences necessary to drive translation, transcription and/or expression of the exogeneous nucleotide sequence/transgene in a host cell, for example a mammalian cell. As used herein, the phrase "operably linked" means that the regulatory sequences are contiguous with the nucleic acid sequences they regulate or that said regulatory sequences act in trans, or at a distance, to control the regulated nucleic acid sequence. Such regulatory sequences include appropriate expression control sequences such as transcription initiation, termination, enhancer and promoter sequences, efficient RNA processing signals, such as splicing and polyadenylation signals, sequences that enhance translation efficiency and protein stability and sequences promote protein secretion. Additionally they may contain sequences for repression of transgene expression, for example during production in cell lines expression a transactivating receptor. Promoters and other regulatory sequences which control expression of a nucleic acid have been identified and are known in the art. Preferably, the promoter is selected from the group consisting of human CMV promoters, simian CMV promoters, murine CMV promoters, ubiquitin, the EF1 promoter, frog EF1 promoter, actin and other mammalian promoters. Most preferred are human CMV promoters and in particular the human CMV major immediate early promoter.

The exogeneous nucleotide sequence(s) of interest may be introduced into the viral vector as part of a cassette. As used herein, the term "cassette" refers to a nucleic acid molecule comprising at least one nucleotide sequence to be expressed, along with its transcriptional and translational control sequences to allow the expression of the nucleotide sequence(s) in a host cell, and optionally restriction sites at the 5^{\prime} and 3^{\prime} ends of the cassette. Because of the restriction endonuclease sites, the cassettes can easily be inserted, removed or replaced with another cassette. Changing the cassette will result in the expression of different sequence(s) by the vector into which the cassette is incorporated. Alternatively, any method known to one of skill in the art could be used to construct, modify or derive said cassette, for example PCR mutagenesis, In-Fusion ${ }^{(1)}$, recombineering, Gateway® cloning, site-specific recombination or topoisomerase cloning.

The expression control sequences preferably include the adenovirus elements necessary for replication and virion encapsidation. Preferably, the elements flank the exogeneous nucleotide sequence. Preferably, the Y25 vector comprises the 5^{\prime} inverted terminal repeat (ITR) sequences of Y25, which function as origins of replication, and 3' ITR sequences.

The packaging signal sequence functions to direct the assembly of the viral vector.

As one of skill in the art will appreciate, there are minimum and maximum contraints upon the length of the nucleic acid molecule that can be encapsidated in the viral vector. Therefore, if required, the nucleic acid molecule may also comprise "stuffing", i.e. extra nucleotide sequence to bring the final vector genome up to the required size. Preferably, the nucleic acid molecule comprises sufficient "stuffing" to ensure that the nucleic acid molecule is about 80% to about 108% of the length of the wild-type nucleic acid molecule.
The nucleic acid molecule may also comprise one or more genes or loci from the AdY25 genome. The wildtype AdY25 genome comprises 4 early transcriptional units (E1, E2, E3 and E4), which have mainly regulatory functions and prepare the host cell for viral replication. The genome also comprises 5 late transcriptional units (L1, L2, L3, L4 and L5), which encode structural proteins including the penton (L2), the hexon (L3), the scaffolding protein (L4) and the fiber protein (L5), which are under the control of a single promoter. Each extremity of the genome comprises an Inverted Terminal Repeat (ITR) which is necessary for viral replication. The viral vector of the present invention may comprise the complete native AdY25 genome, into which the exogeneous nucleotide sequence has been inserted. However, one of skill in the art will appreciate that various modifications to the native AdY25 genome are possible, and indeed desirable, when creating a viral vector.

One or more native AdY25 genes may be deleted, functionally deleted or modified to optimise the viral vector. As used herein, the phrase "deleted" refers to total deletion of a gene, whilst "functional deletion" refers to a partial deletion of a gene/locus, or some other modification such as a frame shift mutation, which destroys the ability of the adenovirus to express the gene/locus or renders the gene product non-functional. The AdY25 genome may be modified to increase the insert capacity or hinder replication in host cells and/or increase growth and yield of the viral vector in transformed packaging cell lines. One of skill in the art will appreciate that any number of early or late genes can be functionally deleted. Replication of such modified viral vectors will still be possible in transformed cell lines which comprise a complement of the deleted genes. For example, the viral proteins necessary for replication and assembly can be provided in trans by engineered packaging cell lines or by a helper virus.

Therefore, in addition to the exogeneous nucleotide sequence, the vector of the present invention may comprise the minimal adenoviral sequences, the adenoviral genome with one or more deletions or functional deletions of particular genes, or the complete native adenoviral genome, into which has been inserted the exogeneous nucleotide sequence.

Preferably, the vector of the present invention comprises the native Y 25 late transcriptional units (L1-L5) and/or the native Y25 Inverted Terminal Repeats (ITR) or sequences substantially identical thereto. The amino acid sequences of the native L1, L2, L3, L4, L5 loci, and the corresponding nucleic sequences, are set out in Table 1, above.

Preferably, one or more of the early transcriptional units are modified, deleted or functionally deleted.

In one embodiment, the viral vector is non-replicating or replication-impaired. As used herein, the term "non-replicating" or "replication-impaired" means not capable of replicating to any significant extent in the majority of normal mammalian cells, preferably normal human cells. It is preferred that the viral vector is incapable of causing a productive infection or disease in the human patient. However, the viral vector is preferably capable of stimulating an immune response. Viruses which are non-replicating or replication-impaired may have become so naturally, i.e. they may be isolated as such from nature. Alternatively, the viruses may be rendered non-replicating or replicationimpaired artificially, e.g. by breeding in vitro or by genetic manipulation. For example, a gene which is critical for replication may be functionally deleted. Preferably, the adenoviral vector replication is rendered incompetent by functional deletion of a single transcriptional unit which is essential for viral replication. Preferably, the E1 gene/locus is deleted or functionally deleted. The E1 gene/locus may be replaced with a heterologous transgene, for example a nucleotide sequence or expression cassette encoding a protein or polypeptide of interest

The wildtype AdY25 E1 amino acid sequence, and the corresponding nucleic acid sequence, are set out in Table 1, above

As discussed herein, the recombinant adenovirus may be created by generating a molecular clone of AdY25 in a Bacterial Artificial Chromosome (BAC), and the E1 locus is preferably deleted by including an extra homology flank downstream of the adenovirus E1 region to enable simultaneous deletion of E1 during homologous recombination between the AdY25 viral DNA and a linearised BAC "rescue vector", as described in Example 1.

Preferably, the viral vector according to the present invention comprises one or more recombination sites to enable the insertion of one or more transgenes or cassettes comprising the exogeneous nucleotide sequence. Preferably, the recombination sites comprise phage lambda site specific recombination sites. These recombination sites may be introduced at any suitable locus, but are preferably introduced at the Ad E1 locus. Thus, the non-replicating or replication-impaired vector may be prepared by replacing the E1 gene with a nucleotide sequence encoding the protein or polypeptide of interest. Preferably, the recombination sites attR1 and attR2 are introduced at the Ad E1 locus as part of an Invitrogen Gateway(${ }^{(}$destination cassette as described in Example 1.

Preferably, the vector lacks an adenovirus E3 gene/locus. Deletion of the adenovirus E3 region increases the insert capacity of the new vector by approximately 5 kb . Deletion of E3 has little consequence to viral vector yield since this region is not required for virus replication and therefore does not need to be provided in trans in the packaging cell line. The E3 locus may be deleted using GalK recombineering as described in Example 2.

The wildtype AdY25 E3 amino acid sequence, and the corresponding nucleic acid sequence, are set out in Table 1, above.

In a particularly preferred embodiment of the present invention, both the E1 and E3 loci are deleted from the AdY25 genome.

Preferably, the vector of the present invention comprises the native E2 locus. E2 is a transcriptional unit comprising the open reading frames encoding the Polymerase, PTP and IVa2 proteins. The wildtype AdY25 E4 amino acid sequence, and the corresponding nucleotide sequence, are
set out in Table 1, above. Preferably, the vector of the present invention comprises a nucleotide sequence encoding E2 or a sequence substantially identical thereto.

As stated above, the viral vectors of the present invention may be produced in engineered cell lines containing a complement of any deleted genes required for viral replication. However, replication of viral vectors according to the present invention may be sub-optimal in cells designed to facilitate replication of other serotypes. For example, as shown in FIG. 3A, the first generation of AdY25-based vectors comprising the wildtype E4 locus were found to grow inefficiently in HEK293 cells and yield was approximately two logs lower than for comparable AdHu5-based vectors. It is hypothesized that the low yield resulted from suboptimal interaction between the cell-expressed E1 proteins (designed to support propagation of AdHu5 viruses) and vector-encoded E4 gene products. Therefore, the adenoviral vectors according to the present invention preferably further comprise one or more modifications designed to optimise vector growth and yield in transformed cell lines, such as HEK293, expressing the genes functionally deleted in the adenoviral vector according to the present invention.

In one embodiment, the native E4 region may be replaced in its entirety with a heterologous E4 region from other serotype(s), which heterologous E4 region preferably increases vector yield and growth in a transformed cell line. For example, the native E4 region may be replaced with the E4 region from AdHu5 to increase vector yield and growth in HEK293.

The adenovirus E4 region comprises at least 6 Open Reading Frames (ORFs or Orfs). Thus, in an alternative embodiment, one or more of the ORFs in the E4 region may be replaced with one or more heterologous ORFs from the E4 region of other adenoviral serotype(s), which heterologous ORF(s) preferably increase(s) vector yield and growth in a transformed cell line. Preferably, $1,2,3,4,5$ or 6 ORFs in the E4 region may be replaced $1,2,3,4,5$ or 6 heterologous ORFs from the E4 region of other serotype(s), e.g. AdHu5.

Of particular importance for viral replication in HEK293 cells is the gene product of E4Orf6, a multifunctional protein implicated in late viral mRNA splicing and selective export of viral mRNA, viral DNA synthesis and inhibition of apoptosis. Suboptimal interaction between E4Orf6 and the cell-expressed E1B-55K is believed to reduce the yield of AdChOX1 vectors in HEK293 cells. Therefore, the native E4Orf6 region may be replaced with a heterologous E4Orf6 region. For example, the entire native E4 locus may be replaced with the E4Orf6 gene from AdHu 5 , as described in Example 3. The amino acid sequence of E4Orf6 from AdHu5 is found in SEQ ID NO. 40. A corresponding nucleotide sequence is found at nucleotides 28248 to 29132 of SEQ ID NO. 38. In one embodiment, the vector of the present invention comprises the nucleotide sequence of AdHu5E4Orf6 or a sequence substantially identical thereto. As described in Example 3 and shown in FIG. 3A, this modification was found to improve viral yield and growth.

In a preferred embodiment, more than one ORF in the E4 region is replaced with more than one heterologous ORF from the E4 region of other serotype(s). For example, native E4Orf4, E4Orf6 and E4Orf7 may be replaced with the E4Orf4, E4Orf6 and E4Orf6/7 coding regions from AdHu5. In a particularly preferred embodiment, the recombinant E4 region comprises the E4Orf1, E4Orf2 and E4Orf3 coding regions from AdY25 and the E4Orf4, E4Orf6 and E4Orf6/7 coding regions from AdHu 5 . The amino acid sequence of E4Orf4 from AdHu5 is found in SEQ ID NO. 41. A
corresponding nucleotide sequence is found at nucleotides 29053 to 29397 of SEQ ID NO. 38. The amino acid sequence of the E4Orf6 from AdHu5 is found in SEQ ID NO. 40. A corresponding nucleotide sequence is found at nucleotides 28248 to 29132 of SEQ ID NO. 38. The amino acid sequence of the E4Orf6/7 from AdHu5 is found in SEQ ID NO. 39. A corresponding nucleotide sequence is found at nucleotides 28959 to 29132 and 27969 to 28247 of SEQ ID NO. 38. In one embodiment, the vector of the present invention comprises the nucleotide sequences of AdHu 5 E4Orf4, E4Orf6 and E4Orf6/7 or sequences substantially identical thereto.

In a particularly preferred embodiment of the present invention, the genome of the viral vector according to the present invention lacks the nucleotide sequences which encode the adenovirus E1 and E3 regions, and has the native E4 locus replaced with E4Orf4, E4Orf6 and E4Orf6/7 coding regions from AdHu5, and the E4Orf1, E4Orf2 and E4Orf3 coding regions from AdY25. This particularly preferred embodiment is referred to herein interchangeably as "ChAdOX1" or "AdChOX1". As described in Example 3, and shown in FIG. 3A, the modification of the vector in this way was surprisingly found to increase the rate of hexon production and the growth and replication of the virus.

An exemplary nucleotide sequence encoding ChAdOX1 is set out in SEQ ID NO. 38. In this embodiment, E1A, E1B 19 kDa and E 1 B 55 kDa are deleted and replaced with a Gateway(R) Destination Cassette (nucleotides 592 to 2550 of SEQ ID NO. 38). E3 CR1a1, E3 gp19 kDa, E3 22.3 kDa , E3 31 kDa , E3 10.4 kDa , E3 15.2 kDa and E3 14.7 kDa are deleted and replaced with a Pacl site (nucleotides 26286 to 26293 of SEQ ID NO. 38). The native E4 region is deleted and replaced with E4Orf4, E4Orf6 and E4Orf6/7 coding regions from AdHu5, and the E4Orf1, E4Orf2 and E4Orf3 coding regions from AdY25, as described above. The viral vector encoded by SEQ ID NO. 38 also comprises a number of wild-type AdY25 proteins, the nucleotide sequences of which are set out in Table 2, below:

TABLE 2

	Corresponding nucleotides in SEQ ID
Protein	NO. 38
pIX	2638 to 3066
IVa2	4734 to 4749 and 3125 to 4458
Polymerase	12985 to 12993 and 4228 to 7809
pTP	12985 to 12993 and 7610 to 9539
52/55 kD	9974 to 11164
IIIa	11188 to 12954
Penton	13038 to 14633
VII	14640 to 15221
V	15266 to 16288
Mu	16308 to 16541
VI	16617 to 17348
Hexon	17449 to 20277
Endoprotease	20293 to 20922
DNA Binding Protein	20999 to 22537
100 kDa	22566 to 24974
22K	24691 to 25245
33K	24691 to $25018,25188 \ldots 25519$
VIII	25602 to 26285
Fiber	26543 to 27874
E4Orf3	29406 to 29759
E4Orf2	29756 to 30145
E4Orf1	30195 to 30569

Preferably, the genome of the viral vector according to the present invention comprises the nucleotide sequence of SEQ ID NO. 38 or a sequence substantially identical thereto, into
which is inserted the exogeneous nucleotide sequence encoding the protein of interest.

As described in Example 5 and shown in FIG. 5, modification of the E4 region was found to have little impact on immunogenicity of the viral vector, but did improve the rate of viral growth and replication. Therefore, such E4 modifications can be used to enhance the rate of production of the viral vectors, but will not have a negative impact on the immunogenicity of the vectors.
Example 4 and FIG. 4 demonstrate that the immune responses elicited by the AdY25-based vector ChAdOX1 are robust and comparable to those elicited by AdCh63 (also known as ChAd63) and AdCh68 (also known as AdC68, ChAd68, C9 or SAdV-25). However, the humoral immunogenicity of ChAdOX1 was found to be superior to that of AdCh68, as described in Example 7 and FIG. 7. One of skill in the art would expect T-cell responses and antibody responses to correlate fully with one another. The superiority of the humoral responses to ChAdOX1 is therefore surprising.

The prevalence of vector neutralising antibodies in human sera from the UK and the Gambia was also surprisingly found to be much lower for the AdY25-based vectors than for another chimpanzee adenoviral vector, AdCh63 (see Example 6 and FIG. 6). This data suggest that vectors based on AdY25 may encounter less pre-existing immunity within the human population, not only in comparison to vectors based on human adenoviruses, but also in comparison to other existing vectors based on chimpanzee adenoviruses.

Example 8 and FIGS. 8A and 8B demonstrate that ChAdOX1 is capable of inducing immune responses against Mycobacterium tuberculosis, whilst Example 9 and FIG. 9 demonstrate that ChAdOX1 is capable of inducing immune responses against Influenza A.

A third aspect of the present invention provides a pharmaceutical or immunogenic composition comprising the viral vector according to the second aspect of the present invention optionally in combination with one or more additional active ingredients, a pharmaceutically acceptable carrier, diluent, excipient or adjuvant.

Preferably, the composition is an immunogenic and/or antigenic composition. The immunogenic and/or antigenic compositions according to the present invention may be prophylactic (to prevent infection), post-exposure (to treat after infection but before disease) or therapeutic (to treat disease). Preferably, the composition is prophylactic or post-exposure. Preferably, the composition is a vaccine.
Where the immunogenic composition is for prophylactic use, the subject is preferably an infant, young child, older child or teenager. Where the immunogenic composition is for therapeutic use, the subject is preferably an adult.

The composition may comprise one or more additional active agents, such as an anti-inflammatory agent (for example a p38 inhibitor, glutamate receptor antagonist, or a calcium channel antagonist), AMPA receptor antagonist, a chemotherapeutic agent and/or an antiproliferative agent. The composition may also comprise one or more antimicrobial compounds. Examples of suitable antimicrobial compounds include antituberculous chemotherapeutics such as rifampicin, isoniazid, ethambutol and pyrizinamide.

Suitable carriers and/or diluents are well known in the art and include pharmaceutical grade starch, mannitol, lactose, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, (or other sugar), magnesium carbonate, gelatin, oil, alcohol, detergents, emulsifiers or water (preferably sterile). The composition may be a mixed preparation
of a composition or may be a combined preparation for simultaneous, separate or sequential use (including administration).

Suitable adjuvants are well known in the art and include incomplete Freund's adjuvant, complete Freund's adjuvant, Freund's adjuvant with MDP (muramyldipeptide), alum (aluminium hydroxide), alum plus Bordatella pertussis and immune stimulatory complexes (ISCOMs, typically a matrix of Quil A containing viral proteins).

The composition according to the invention for use in the aforementioned indications may be administered by any convenient method, for example by oral (including by inhalation), parenteral, mucosal (e.g. buccal, sublingual, nasal), rectal or transdermal administration and the compositions adapted accordingly.

For oral administration, the composition can be formulated as liquids or solids, for example solutions, syrups, suspensions or emulsions, tablets, capsules and lozenges.

A liquid formulation will generally consist of a suspension or solution of the compound or physiologically acceptable salt in a suitable aqueous or non-aqueous liquid carrier(s) for example water, ethanol, glycerine, polyethylene glycol or oil. The formulation may also contain a suspending agent, preservative, flavouring or colouring agent.

A composition in the form of a tablet can be prepared using any suitable pharmaceutical carrier(s) routinely used for preparing solid formulations. Examples of such carriers include magnesium stearate, starch, lactose, sucrose and microcrystalline cellulose.

A composition in the form of a capsule can be prepared using routine encapsulation procedures. For example, powders, granules or pellets containing the active ingredient can be prepared using standard carriers and then filled into a hard gelatine capsule; alternatively, a dispersion or suspension can be prepared using any suitable pharmaceutical carrier(s), for example aqueous gums, celluloses, silicates or oils and the dispersion or suspension then filled into a soft gelatine capsule.

Compositions for oral administration may be designed to protect the active ingredient against degradation as it passes through the alimentary tract, for example by an outer coating of the formulation on a tablet or capsule.

Typical parenteral compositions consist of a solution or suspension of the compound or physiologically acceptable salt in a sterile aqueous or non-aqueous carrier or parenterally acceptable oil, for example polyethylene glycol, polyvinyl pyrrolidone, lecithin, arachis oil or sesame oil. Alternatively, the solution can be lyophilised and then reconstituted with a suitable solvent just prior to administration.

Compositions for nasal or oral administration may conveniently be formulated as aerosols, drops, gels and powders. Aerosol formulations typically comprise a solution or fine suspension of the active substance in a physiologically acceptable aqueous or non-aqueous solvent and are usually presented in single or multidose quantities in sterile form in a sealed container, which can take the form of a cartridge or refill for use with an atomising device. Alternatively the sealed container may be a unitary dispensing device such as a single dose nasal inhaler or an aerosol dispenser fitted with a metering valve, which is intended for disposal once the contents of the container have been exhausted. Where the dosage form comprises an aerosol dispenser, it will contain a pharmaceutically acceptable propellant. The aerosol dosage forms can also take the form of a pump-atomiser.
Compositions suitable for buccal or sublingual administration include tablets, lozenges and pastilles, wherein the
active ingredient is formulated with a carrier such as sugar and acacia, tragacanth, or gelatin and glycerin.

Compositions for rectal or vaginal administration are conveniently in the form of suppositories (containing a conventional suppository base such as cocoa butter), pessaries, vaginal tabs, foams or enemas.

Compositions suitable for transdermal administration include ointments, gels, patches and injections including powder injections.

Conveniently the composition is in unit dose form such as a tablet, capsule or ampoule.

The pharmaceutical composition is preferably sterile. It is preferably pyrogen-free. It is preferably buffered e.g. at between pH 6 and pH 8 , generally around pH 7 . Preferably, the composition is substantially isotonic with humans.

Preferably, the pharmaceutical compositions of the present invention deliver an immunogenically or pharmaceutically effective amount of the viral vector to a patient.
As used herein 'immunogenically or pharmaceutically effective amount' means that the administration of that amount to an individual, either as a single dose or as a series of doses, is effective for prevention or treatment of a disease or condition. In particular, this phrase means that a sufficient amount of the viral vector is delivered to the patient over a suitable timeframe such that a sufficient amount of the antigen is produced by the patient's cells to stimulate an immune response which is effective for prevention or treatment of a disease or condition. This amount varies depending on the health and physical condition of the individual to be treated, age, the capacity of the individual's immune system, the degree of protection desired, the formulation of the vaccine, the doctor's assessment of the medical situation and other relevant factors.

In general, a pharmaceutically effective dose comprises 1×10^{7} to 1×10^{12} viral particles, preferably 1×10^{10} to $1 \times 10^{\prime \prime}$ particles.

The immunogenic composition of the present invention may also comprise one or more other viral vectors, preferably other adenoviral vectors.
A fourth aspect of the present invention provides the use of the viral vector according to the second aspect of the present invention or the immunogenic composition according to the third aspect of the present invention. In particular, the fourth aspect provides the use of the viral vector or the immunogenic composition of the present invention in medicine.

This aspect also provides: i) the viral vector or the immunogenic composition according to the present invention for use in medicine and ii) the use of the viral vector or the immunogenic composition according to the present invention in the manufacture of a medicament for use in medicine. Some exemplary medical uses are described in further detail below.
In one embodiment, the viral vector according to the second aspect of the present invention or the immunogenic composition according to the third aspect of the present invention may be used to deliver a transgene into a host cell.

This method preferably comprises the step of administering to said host cell a viral vector according to the second aspect of the present invention or the immunogenic composition according to the third aspect of the present invention.

Preferably, the host cell is an animal cell, more preferably a mammalian cell. Preferred mammals include chickens, other poultry, cows, sheep, goats, pigs, wild boar, buffalo, bison, horses, camelids, deer, elephants, badgers, possums, cats, lions, monkeys and humans. Preferably, the host cell is
a somatic cell. The host cell may be selected from the group consisting of an antigen-presenting dendritic cell, langerhans cell, macrophage, B cell, lymphocyte, leukocyte, myocyte and fibroblast.

This method may be carried out in vitro or in vivo. Where the method is carried out in vitro, the viral vector or immunogenic composition is brought into contact with the host cell under suitable conditions such that transduction or non-productive infection of the host cell with the viral vector is facilitated. In this embodiment, the host cell may comprise an isolated host cell or a sample from an animal subject. Where the method is carried out in vivo, the viral vector or immunogenic composition is preferably administered to the animal subject such that transduction of one or more cells of the subject with the viral vector is facilitated. Preferably, the viral vector or immunogenic composition is administered to the subject by oral (including by inhalation), parenteral, mucosal (e.g. buccal, sublingual, nasal), rectal or transdermal administration.

Preferably, the transduction of the host cell with the viral vector of the present invention results in the stable delivery of the exogeneous nucleotide sequence of interest into the host cell.

Therefore, in another embodiment, the viral vector according to the second aspect of the present invention or the immunogenic composition according to the third aspect of the present invention may be used to elicit an immune response in an animal. This method preferably comprises the step of administering to said animal a viral vector according to the second aspect of the present invention or the immunogenic composition according to the third aspect of the present invention.

Where the protein or polypeptide of interest is an antigen, expression of the protein or polypeptide in an animal will result in the elicitation of a primary immune response to that antigen, leading to the development of an immunological memory which will provide an enhanced response in the event of a secondary encounter, for example upon infection by the pathogen from which the antigen was derived.

Preferably, the animal is a naïve animal, i.e. an animal that has not previously been exposed to the pathogen or antigens in question.

As well as eliciting an immune response in an animal, the viral vector of the present invention or the immunogenic composition thereof can be used to boost the immune response of an animal previously exposed to the antigen.

Therefore, in a further embodiment, the viral vector according to the second aspect of the present invention or the immunogenic composition according to the third aspect of the present invention may be used to boost an immune response in an animal. This method preferably comprises the step of administering to said animal a viral vector according to the second aspect of the present invention or the immunogenic composition according to the third aspect of the present invention.

Preferably, the animal subject has been previously exposed to the antigen in question, or "primed". For example, the subject may have previously been inoculated or vaccinated with a composition comprising the antigen, or may have previously been infected with the pathogen from which the antigen was derived. The subject may be latently infected with the pathogen from which the antigen was derived.

In another embodiment, the vector according to the second aspect of the present invention or the immunogenic composition according to the third aspect of the present invention may be used to treat or prevent at least one disease
in a patient. This method preferably comprising the step of administering to said patient a viral vector according to the second aspect of the present invention or the immunogenic composition according to the third aspect of the present invention.

Preferably, the disease is selected from the group consisting of Tuberculosis and other mycobacterial infections, malaria, influenza, HIV/AIDS, Hepatitis C, Cytomegalovirus infection, Human papilloma virus infection, adenoviral infection, leishmaniasis, streptococcus spp., staphylococcus spp., meningococcus spp., infection, rift valley fever, foot and mouth disease and chikungunya virus infection.

As well as inducing an immune response against the pathogenic organism from which the heterologous antigen is derived, the adenoviral vector of the present invention may also induce an immune response against the adenovirus from which the viral vector is derived. As such, an immune response against AdY25 may be elicited. The immune response induced against AdY25 may also be cross-reactive with other adenoviral serotypes, and as such an immune response against more than one adenovirus may be elicited. The viral vector according to the second aspect of the present invention or the immunogenic composition according to the third aspect of the present invention can therefore also be used for treating or preventing an adenoviral disease.

This embodiment of the present invention therefore also provides the treatment or prevention of at least one adenoviral disease and at least one non-adenoviral disease in a patient.

In a further embodiment, the viral vector according to the second aspect of the present invention or the immunogenic composition according to the third aspect of the present invention may be used to induce an immune response in an animal that will break tolerance to a self antigen. This method preferably comprises the step of administering to said animal a viral vector according to the second aspect of the present invention or the immunogenic composition according to the third aspect of the present invention.

Many tumour cells are tolerated by the patient's immune system, on the grounds that tumour cells are essentially the patient's own cells that are growing, dividing and spreading without proper regulatory control. Thus, cancerous tumours are able to grow unchecked within the patient's body. However, the viral vector of the present invention can be used to stimulate a patient's immune system to attack the tumour cells in a process known as "cancer immunotherapy". Specifically, the vector of the present invention can be used to 'train' the patient's immune system to recognise tumour cells as targets to be destroyed. This can be achieved by including within the viral vector an exogeneous nucleotide sequence encoding a suitable self-antigen. As described previously, suitable self-antigens include antigens expressed by tumour cells which allow the immune system to differentiate between tumour cells and other cell types. Suitable self-antigens include antigens that are either inappropriate for the cell type and/or its environment, or are only normally present during the organisms' development (e.g. foetal antigens). For example, GD2 is normally only expressed at a significant level on the outer surface membranes of neuronal cells, where its exposure to the immune system is limited by the blood-brain barrier. However, GD2 is expressed on the surfaces of a wide range of tumour cells including small-cell lung cancer, neuroblastoma, melanomas and osteosarcomas. Other suitable self-antigens include cell-surface receptors that are found on tumour cells but are rare or absent on the surface of healthy cells. Such receptors may be responsible for activating cellular signalling path-
ways that result in the unregulated growth and division of the tumour cell. For example, ErbB2 is produced at abnormally high levels on the surface of breast cancer tumour cells. Thus, the adenoviral vector of the present invention may be used to induce an immune response against a tumour cell, and can therefore be used in the treatment of cancer.

The following details apply mutatis mutandis to all of the above uses of the vector and immunogenic composition of the present invention.

The treatment and prevention of many diseases, including liver stage malaria, tuberculosis and influenza, are associated with the maintenance of a strong cell-mediated response to infection involving both $\mathrm{CD} 4+$ and $\mathrm{CD} 8+\mathrm{T}$ cells and the ability to respond with Th1-type cytokines, particularly IFN- γ, TNF- α, IL-2 and IL-17. Although many subunit vaccine platforms effectively generate human immunity, the generation of robust cell-mediated immune responses, particularly CD4+ and CD8+ T cell immune responses, has been much more challenging. The viral vector of the present invention preferably stimulates both cellular and humoral immune responses against the encoded antigen.

It is also desirable to induce a memory immune response. Memory immune responses are classically attributed to the reactivation of long-lived, antigen-specific T lymphocytes that arise directly from differentiated effector T cells and persist in a uniformly quiescent state. Memory T cells have been shown to be heterogeneous and to comprise at least two subsets, endowed with different migratory capacity and effector function; effector memory T cells (TEM) and central memory T cells (CTM). TEM resemble the effector cells generated in the primary response in that they lack the lymph node-homing receptors L-selectin and CCR7 and express receptors for migration into inflamed tissues. Upon reencounter with antigen, these TEM can rapidly produce IFN- γ or IL-4 or release pre-stored perform. TCM express L-selectin and CCR7 and lack immediate effector function. These cells have a low activation threshold and, upon restimulation in secondary lymphoid organs, proliferate and differentiate to effectors.

Preferably, the viral vector according to the second aspect of the present invention or the immunogenic composition according to the third aspect of the present invention is capable of eliciting, inducing or boosting an antigen-specific immune response. Preferably, the immune response is a strong T cell immune response, for example a strong CD8+ and CD4+ T cell response. Preferably, the T cell immune response is a protective T cell immune response. Preferably, the T cell immune response is long lasting and persists for at least $1,2,5,10,15,20,25$ or more years. Preferably, the immune response induced is a memory T cell immune response.

The viral vector of the second aspect of the present invention or immunogenic composition according to the third aspect of the present invention may be administered to the host cell or subject either as a single immunisation or multiple immunisations. Preferably, the viral vector or immunogenic composition thereof are administered as part of a single, double or triple vaccination strategy. They may also be administered as part of a homologous or heterologous prime-boost immunisation regime.

The vaccination strategy or immunisation regime may include second or subsequent administrations of the viral vector or immunogenic composition of the present invention. The second administration can be administered over a short time period or over a long time period. The doses may be administered over a period of hours, days, weeks, months or years, for example up to or at least $1,2,3,4,5,6,7,8$,

9 , or 10 or more weeks or $0.25,0.5,0.75,1,5,10,15,20$, $25,30,35$ or 40 or more years after the first administration. Preferably, the second administration occurs at least 2 months after the first administration. Preferably, the second administration occurs up to 10 years after the first administration. These time intervals preferably apply mutatis mutandis to the period between any subsequent doses.

The viral vector and/or immunogenic composition may be administered alone or in combination with other viral or non-viral DNA/protein vaccines. Preferred examples include MVA, FP9 and other adenoviral vector vaccines.

The viral vector and/or immunogenic composition may be administered to the subject by oral (including by inhalation), parenteral, mucosal (e.g. buccal, sublingual, nasal), rectal or transdermal administration. Alternatively, the viral vector and/or immunogenic composition may be administered to an isolated host cell or sample from a subject by contacting the cell(s) with the viral vector or immunogenic composition in vitro under conditions that facilitate the transduction of the host cell with the viral vector.

The viral vector and immunogenic composition of the present invention are not limited to the delivery of nucleic acid sequences encoding antigens. Many diseases, including cancer, are associated with one or more deleterious mutant alleles in a patient's genome. Gene therapy is a process involving the insertion of genes into the patient's cells or tissues to replace the deleterious mutant or non-functional allele(s) with 'normal' or functional allele(s). Commonly, a functional allele is inserted into a non-specific location within the genome to replace the non-functional allele. Alternatively, the non-functional allele may be swapped for the functional allele through homologous recombination. Subsequent expression of the functional allele within the target cell restores the target cell to a normal state and thus provides a treatment for the disease. The 'normal' or functional allele(s) may be inserted into a patient's genome using a viral vector. The present invention therefore also provides the use of the viral vector according to the second aspect of the present invention or the immunogenic composition according to the third aspect of the present invention in gene therapy.

This method preferably comprises the step of administering to said animal a viral vector according to the second aspect of the present invention or the immunogenic composition according to the third aspect of the present invention.

The vector of the present invention may comprise an exogeneous nucleotide sequence encoding the functional or 'normal' protein, the non-functional or 'Mutant' version of which is associated with a disease or condition.
Preferably, the target cell is a somatic cell. The subject to be treated is preferably mammalian. Preferred mammals include chickens, other poultry, cows, sheep, goats, pigs, wild boar, buffalo, bison, horses, camelids, deer, elephants, badgers, possums, cats, lions, monkeys and humans.

A fifth aspect of the present invention provides a polynucleotide sequence encoding the viral vector according to the second aspect of the present invention. Preferably, the polynucleotide sequence comprises the sequence of SEQ ID NO. 38 or a sequence substantially identical thereto. The polynucleotide may additionally comprise the exogeneous nucleotide sequence of interest.

A sixth aspect of the present invention provides a host cell transduced or infected with the viral vector according to the second aspect of the present invention. Following transduction or infection, the host cell will express the exogeneous nucleotide sequence in the nucleic acid molecule to produce
the molecule of interest, in addition to any other adenoviral proteins encoded by the nucleic acid molecule. Preferably, the host cell is stably transduced and suitable for viral propagation.

The host cell may be an isolated host cell, part of a tissue sample from an organism, or part of a multicellular organism or organ or tissue thereof.

Preferably, the host cell is a somatic cell. Preferably, the host cell is not a stem cell, more particularly an embryonic stem cell, more particularly a human embryonic stem cell.

The host cell may be selected from the group consisting of an antigen-presenting dendritic cell, langerhans cell, macrophage, B cell, lymphocyte, leukocyte, myocyte and fibroblast.

Preferably, the host cell is an animal cell, more preferably a mammalian cell.

Preferred mammals include chickens, other poultry, cows, sheep, goats, pigs, wild boar, buffalo, bison, horses, camelids, deer, elephants, badgers, possums, cats, lions, monkeys and humans

The fifth aspect of the present invention also encompasses an animal transduced or infected with the viral vector according to the second aspect of the present invention. Preferably, the animal comprises one or more cells transformed or transfected with the viral vector according to the second aspect of the present invention. Preferably, the animal is a mammal. Preferred mammals include chickens, other poultry, cows, sheep, goats, pigs, wild boar, buffalo, bison, horses, camelids, deer, elephants, badgers, possums, cats, lions, monkeys and humans.

In a seventh aspect, the present invention provides a method of producing the viral vector according to the second aspect of the present invention. Preferably, the method comprises the step of incorporating a nucleotide sequence derived from AdY25 into a Bacterial Artificial Chromosome (BAC) to produce an $\mathrm{Ad}-\mathrm{BAC}$ vector.

Unlike plasmid vectors, BACs are present within E. Coli in single copy conferring increased genetic stability. In addition, the single copy BAC vectors permit very precise modifications to be made to the viral genome by recombineering (recombination mediated genetic engineering).

Preferably, incorporation of the nucleotide sequence derived from AdY25 into a Bacterial Artificial Chromosome (BAC) comprises the steps of:
i) constructing a BAC rescue vector comprising regions of homology to the left and right flanks of the viral nucleotide sequence;
ii) linearising the BAC rescue vector; and
iii) performing homologous recombination in a host cell between the viral nucleotide sequence and the linearised BAC rescue vector to incorporate the viral nucleotide sequence into the BAC rescue vector.
Preferably, the nucleotide sequence incorporated into the BAC rescue vector comprises the sequence of SEQ ID NO. 1 or SEQ ID NO. 38 or a sequence substantially identical thereto.

Preferably, the method additionally comprises the step of further modifying the Ad-BAC vector genome. These further modifications may be carried out by GalK recombineering. This technique, pioneered by Soren Warming and colleagues, utilises the GalK gene for both positive and negative selection of recombinant clones ${ }^{6}$. SW102 E. Coli cells, in which recombination may be performed, have been specifically engineered to lack the GalK gene which is required for the utilisation of galactose as the sole carbon source. Gene deletion is performed by recombination between the vector genome and a PCR amplified GalK
cassette, flanked by 50 bp regions of homology either side of the gene targeted for deletion. Selection on minimal media containing only galactose should ensure that only recombinants containing the GalK gene (in place of the target gene) should grow. Replacement of GalK with a different gene sequence can be performed in a similar fashion, this time using GalK for negative selection. The addition of 2-deoxygalactose (DOG) to selection media will select clones in which GalK has been replaced since the product of GalK, galactokinase, metabolises DOG into a product that is highly toxic to E. Coli. Preferably, the host cell is BJ5183 E. Coli for steps i) to iii) above and SW102 for further modifications.
Preferably, an extra homology flank is included downstream of the adenovirus E1 region to enable simultaneous deletion of E1, as described in Example 1.

Preferably, the method further includes deletion of the E3 region of the Ad-BAC vector genome. Deletion of the E3 region may be carried out by GalK recombineering, as described in Example 2.

Preferably, the method further includes modifying the E4 region to optimise vector growth and yield. In one embodiment, the entire native E4 locus is replaced with the E4Orf6 gene from AdHu5. In a second embodiment, the native E4 locus is replaced with E4Orf4, E4Orf6 and E4Orf6/7 coding regions from AdHu5, and the E4Orf1, E4Orf2 and E4Orf3 coding regions from AdY25, as described in Example 3.

Preferably, the method further includes introducing phage lambda site specific recombination sites attR1 and attR2 at the Ad E1 locus as part of an Invitrogen Gateway(ß) destination cassette. Such a modification enables the efficient directional insertion of vaccine transgenes. Transgenes could also be inserted by recombineering, In-Fusion \mathbb{B}, conventional ligation or gap repair.

An eighth aspect of the present invention provides a Bacterial Artificial Chromosome (BAC) clone comprising a polynucleotide sequence encoding the viral vector according to the second aspect of the present invention.

Preferably, the BAC clone comprises:
(a) a BAC backbone;
(b) the polynucleotide sequence according to the fifth aspect of the present invention.
As described above, the viral vector according to the second aspect of the present invention may be replicated in a transformed cell line or helper virus (gutless vector system) which, if necessary, comprises the complement of any genes deleted from the virus. Such genes may be deleted from the virus in order to hinder replication in host cells, but are of course required in order to replicate the viral vector to produce immunogenic compositions according to the second aspect of the present invention. One can make use of any cell line permissive of wild type adenovirus replication that has been modified to express the functionally deleted genes, or a cell line which is not permissive of wild-type virus replication which has additionally or alternatively been modified to express CAR or integrins in addition to the functionally deleted genes.

The present invention provides host cells comprising a Bacterial Artificial Chromosome (BAC) in accordance with the eighth aspect of the present invention, and suitable for propagation thereof. Preferably such host cells are bacteria, most preferably E. coli. Suitable examples include E. coli strains DH10B and SW102 ${ }^{9}$.

A ninth aspect of the present invention therefore provides a packaging cell or cell line producing or capable of producing the viral vector according to the second aspect of the present invention. The packaging cell or cell line comprises
one or more nucleotide sequences which encode the viral vector of the second aspect of the present invention. Expression of these sequences results in the production of the viral vector. Some of the required genes may be provided by infection of the cell or cell line with a viral vector according to the second aspect. Preferably, the cell comprises the complement of any genes deleted or functionally deleted from the viral vector. Preferably, the cell comprises the complement of the AdY25 E1 gene. Preferably, the cell is an HEK293 cell or a PER.C6® cell.

As described above, modification of the E4 locus of the adenoviral vector to include the E4Orf4, E4Orf6 and E4Orf6/7 coding regions from AdHu5 increased the rate of hexon production, increasing the sensitivity of anti-hexon titre to allow quantification of the infectious titre of the viral vector, in particular those viral vectors developed for clinical use which do not contain a fluorescent marker gene. In addition, this modification was surprisingly found to increase the yield and rate of growth of the vector. One of skill in the art would appreciate that such a modification is expected to have a beneficial effect on a wide variety of adenoviruses, and not simply those derived from AdY25.

A tenth aspect of the present invention therefore provides an adenoviral vector other than AdHu5 comprising a nucleic acid molecule, wherein said nucleic acid molecule comprises heterologous E4Orf4, E4Orf6 and E4Orf6/7 coding regions from AdHu5.

In one embodiment, the native E4 locus is deleted and replaced with heterologous E4Orf4, E4Orf6 and E4Orf6/7 coding regions from AdHu5. Alternatively, nucleic acid molecule may comprise the native coding regions in addition to heterologous E4Orf4, E4Orf6 and E4Orf6/7 coding regions from AdHu5. Preferably, the native coding regions are E4Orf1, E4Orf2 and E4Orf3.

Preferred adenoviral vectors are selected from the group consisting of AdY25 and AdY68.

Preferably, the adenoviral vector according to the tenth aspect lacks and E1 and an E3 locus.

Merely for the convenience of those of skill in the art, a sample of E. coli strain $\mathrm{SW} 102^{9}$ (a derivative of DH10B) containing bacterial artificial chromosomes (BACs) containing the cloned genome of AdChOX1 (pBACe3.6 AdChOx1 (E4 modified) TIPeGFP, cell line name "AdChOx1 (E4 modified) TIPeGFP") was deposited by Isis Innovation Limited on 24 May 2012 with the European Collection of Cell Cultures (ECACC) at the Health Protection Agency Culture Collections, Health Protection Agency, Porton Down, Salisbury SP4 0JG, United Kingdom under the Budapest Treaty and designated by provisional accession no. 12052403.

As described herein, the vector AdChOx 1 is derived from chimpanzee adenovirus Y25, with deletion of E1 region, E3 region, modification of E4 region and insertion of TIPeGFP model antigen into E1 locus. The E. coli containing the BAC is a class I genetically modified organism

The BAC propagates within the bacteria during replication and can be maintained by selection with chloramphenicol. The E. coli strain SW102 containing the bacterial artificial chromosomes into which the genomes are cloned can be propagated in Luria-Bertani broth or agar containing $12.5 \mu \mathrm{~g} / \mathrm{mL}$ chloramphenicol at $32^{\circ} \mathrm{C}$. The genome may be modified by genetic engineering in E. coli according to standard methods, as described in the specification, e.g. to insert an alternative recombinant antigen in place of TIPeGFP.

Converting the BAC clones of the viral genomes into viruses ("rescue") can be carried out by the following steps.

The E. coli host is propagated and the BAC DNA is purified from the bacteria according to standard methods. The DNA is linearised with the restriction endonuclease PmeI and transfected into HEK293 cells (or a similar E1 complementing cell line). The resulting adenovirus can then be propagated and purified for use as a vaccine, for example. All of these reagents and cells are publicly available. If the deposition were rescued, the resulting virus would be a class I genetically modified organism.
In respect of all designated states to which such action is possible and to the extent that it is legally permissible under the law of the designated state, it is requested that a sample of the deposited material be made available only by the issue thereof to an independent expert, in accordance with the relevant patent legislation, e.g. Rule 32(1) EPC, Rule 13(1) and Schedule 1 of the UK Patent Rules 2007, Regulation $3.25(3)$ of the Australian Patent Regulations and generally similar provisions mutatis mutandis for any other designated state.

A specific embodiment of the fifth aspect of the present invention provides a polynucleotide sequence encoding an adenoviral vector according to the second aspect of the present invention, wherein said polynucleotide sequence comprises or consists of the polynucleotide sequence of the viral vector AdChOX1, deposited in a BAC contained in E. coli strain SW 102^{9} by Isis Innovation Limited on 24 May 2012 with the European Collection of Cell Cultures (ECACC) at the Health Protection Agency Culture Collections, Health Protection Agency, Porton Down, Salisbury SP4 0JG, United Kingdom under the Budapest Treaty and designated by provisional accession no. 12052403. The deposited BAC additionally comprises a transgene encoding the antigen TIPeGFP. In this aspect of the present invention, the polynucleotide sequence for AdChOX 1 preferably does not include the sequence encoding the TIPeGFP antigen.

A further embodiment of the present invention provides a host cell transduced with the viral vector according to the second aspect of the present invention, wherein said host cell is preferably a bacterium, more preferably E. coli strain SW 102^{9} containing a bacterial artificial chromosome (BAC) containing the cloned genome of $\mathrm{AdChOX1}$ deposited by Isis Innovation Limited on 24 May 2012 with the European Collection of Cell Cultures (ECACC) at the Health Protection Agency Culture Collections, Health Protection Agency, Porton Down, Salisbury SP4 0JG, United Kingdom under the Budapest Treaty and designated by provisional accession no. 12052403. The deposited BAC additionally comprises a transgene encoding the antigen TIPeGFP. In this aspect of the present invention, the polynucleotide sequence for AdChOX1 preferably does not include the sequence encoding the TIPeGFP antigen. Such a host cell may be used for BAC propagation.
A specific embodiment of the seventh aspect of the present invention provides a method of producing the viral vector according to the second aspect of the present invention by generating a molecular clone of AdY 25 in a Bacterial Artificial Chromosome (BAC), wherein said BAC is the BAC containing the cloned genome of AdChOX1, deposited in E. coli strain SW102 ${ }^{9}$ by Isis Innovation Limited on 24 May 2012 with the European Collection of Cell Cultures (ECACC) at the Health Protection Agency Culture Collections, Health Protection Agency, Porton Down, Salisbury SP4 0JG, United Kingdom under the Budapest Treaty and designated by provisional accession no. 12052403. The deposited BAC additionally comprises a transgene encoding the antigen TIPeGFP. In this aspect of the present invention,
the polynucleotide sequence for AdChOX 1 preferably does not include the sequence encoding the TIPeGFP antigen.

A specific embodiment of the eighth aspect of the present invention provides a Bacterial Artificial Chromosome (BAC) clone comprising the polynucleotide sequence according to the fifth aspect of the present invention, wherein said $B A C$ is the $B A C$ containing the cloned genome of AdChOX1, deposited in E. coli strain SW 102^{9} by Isis Innovation Limited on 24 May 2012 with the European Collection of Cell Cultures (ECACC) at the Health Protection Agency Culture Collections, Health Protection Agency, Porton Down, Salisbury SP4 0JG, United Kingdom under the Budapest Treaty and designated by provisional accession no. 12052403. The deposited BAC additionally comprises a transgene encoding the antigen TIPeGFP. In this aspect of the present invention, the polynucleotide sequence for AdChOX1 preferably does not include the sequence encoding the TIPeGFP antigen.

For the avoidance of doubt, it is hereby expressly stated that features described herein as 'preferred', 'preferable', "alternative" or the like may be present in the invention in isolation or in any combination with any one or more other features so described (unless the context dictates otherwise) and this constitutes and explicit disclosure of such combinations of features.

All the features of each embodiment described above apply mutatis mutandis to all other embodiments of the present invention.

EXAMPLES

Example 1: Generation of a Molecular Clone of AdY25 in a Bacterial Artificial Chromosome

Wild type chimpanzee adenovirus AdY25 was obtained from Goran Wadell of Umea University, Sweden. The virus was propagated to high titer in HEK293 cells and the viral DNA phenol extracted and sequenced. The nucleotide sequence of the wild type AdY25 virus is found in SEQ ID NO. 1. Based on the sequencing data, a BAC 'rescue vector' was constructed containing regions of homology to the left and right flanks of the viral genome (homology flanks were PCR amplified from viral DNA). Homologous recombination was then performed in BJ5183 E. Coli cells between viral DNA and the linearised rescue vector to incorporate the viral genome into the BAC vector.

An extra homology flank downstream of the adenovirus E1 region was included to enable simultaneous deletion of E1 in order to render the new vector immediately replication incompetent.

Phage lambda site specific recombination sites attR1 and attR2 were introduced at the Ad E1 locus as part of an Invitrogen Gateway ${ }^{\mathbb{R}}$ destination cassette to enable the efficient directional insertion of vaccine transgenes. A modified destination cassette was ligated into the AsiSI restriction site introduced at the E1 locus during isolation of the genomic clone.

The resulting $\triangle \mathrm{E} 1 \mathrm{Ad}-\mathrm{BAC}$ vector was screened by both PCR and restriction digest before replication incompetent clones were transfected into E1 complementing HEK293 cells, where the new vector demonstrated the ability to produce infectious virions capable of replication and cytopathic effect in HEK293 cells.

Example 2: Deletion of the Adenoviral E3 Region

The $\triangle \mathrm{E} 1 \mathrm{Ad}$-BAC vector genome produced in accordance with Example 1 was further modified using GalK recombi-
neering to delete the adenoviral E3 region and thus increase the insert capacity of the new vector by approximately 5 kb .

The E3 region was deleted by recombination between the vector genome and a PCR amplified GalK cassette, flanked by 50 bp regions of homology either side of the E3 gene. Recombination was performed in SW102 E. coli cells, which have been specifically engineered to lack the GalK gene which is required for the utilisation of galactose as the sole carbon source. Recombinant cells were selected using minimal media containing only galactose, in which only recombinants containing the GalK gene in place of the E3 locus were able to grow ${ }^{6}$.

Example 3: Modification of the E4 Region and Effects Thereof

i) Modification of E4 Region

The E 4 locus of the $\triangle \mathrm{E} 1 \Delta \mathrm{E} 3$ Ad-BAC vector genome produced in accordance with Example 2 was then modified. The E4 region was deleted by recombination in SW102 E. Coli cells between the vector genome and a PCR-amplified GalK cassette, flanked by 50 bp regions of homology either side of the E4 gene. Recombinant cells were selected using minimal media containing only galactose. The GalK gene was then replaced with the required E4 open reading frames from AdHu5 and AdY25 in a similar manner to provide the 5 constructs listed in FIG. 3C. Recombinant cells comprising the gene in place of the GalK gene were then selected using media comprising 2 -deoxygalactose (DOG) ${ }_{6}$.
ii) Effect of E4 Modification on Viral Yield

HEK293 cells were infected with the following viral vectors at a multiplicity of infention of 9 and incubated at $37^{\circ} \mathrm{C}$. for 48 hours before harvesting:
i) AdHu5 ("Ad5")
ii) AdY25 E4 wildtype ("Y25E4 wt")
iii) AdY25 E4 AdHu5 E4Orf6 ("Y25Ad5E4Orf")
iv) AdY25 E4 AdHu5 E4Orf4, 6, 6/7 ("AdChOX1")

Infectious titre of the harvested material was measured by quantifying GFP positive foci 48 hours post infection.

As can be seen in FIG. 3A, the infectious titre of the AdY25-based viral vector comprising the wildtype E4 locus was significantly lower than that of AdHu5. Modification of the viral vector to replace the wildtype E4 locus with the E4Orf6 gene from AdHu5 signficantly increased the infectious titre. Replacement of the wildtype E4 locus with the E4Orf4, E4Orf6 and E4Orf6/7 coding regions from AdHu5, and the E4Orf1, E4Orf2 and E4Orf3 coding regions from AdY25 (to create ChAdOX1) surprisingly further increased the infectious titre.

Iii) GFP Vs. Anti-Hexon Titre

In order to assess vaccine vector immunogenicity and efficacy it is essential to develop a reliable method of quantifying the infectious titer of the virus. Traditionally, plaque assays in HEK293 cells have been the method of choice, but these require a long incubation period and titers are often inconsistent. Furthermore the plaque assay is inherently insensitive, not all infectious virions will induce plaque formation. One method is the single cell infectivity assay which simply involves quantifying the number of virally infected cells. The first recombinant AdY25-derived viral vectors expressed green fluorescent protein (GFP), enabling viruses that had initiated recombinant transgene expression within a cell to be visualised directly by fluorescence microscopy. However, an alternative method of assessing cell infectivity must be used where the vaccine
antigen constructs do not contain a fluorescent marker gene, for example where the vaccine antigen constructs are for clinical use.

An anti-hexon immunostaining assay has now been developed that enables visualisation of infected cells in which the viral hexon protein is being expressed. This assay uses a polyclonal anti-hexon antibody so can be used to titer virtually any adenovirus vaccine vector and we have found the assay to be reliable and consistent for both AdHu5 and AdCh63 based vectors. It does of course rely on the assumption that the rate of hexon production relative to transgene expression is consistent between vectors. The titers of GFPexpressing AdY25-derived viral vectors were compared by GFP and anti-hexon based assays. Titers were assessed at 48 hours post infection for AdHu5, AdC63, AdY25 E4 wildtype, and constructs A-E as described in FIG. 3C, all expressing the TIPeGFP antigen.

TIP is essentially an epitope string consisting of a number of strong murine T cell epitopes including Pb 9 (a dominant CD8+ epitope from malarial antigen PbCSP) and P15 (a strong CD4+ epitope from M. tuberculosis antigen 85A). The TIP epitope string is fused to the 5^{\prime} end of eGFP which enables transgene expression to be visualised directly and simplifies vaccine titration.

FIG. 3B illustrates the ratio of GFP foci to anti-hexon titer. For Ad5- and AdC63-based vectors, GFP titers were approximately twice as sensitive as anti-hexon titers. However, for AdY25-based vectors, the sensitivity of the antihexon assay varied considerably with E4 modification. For the AdY25 E4 wildtype vector, anti-hexon titers were over 40 fold less sensitive than GFP titers after 48 hrs, suggesting that the rate of hexon production is considerably slower than for AdHu5 and AdCh63 vectors. This was to be expected, given the poor yield of AdY25 E4 wildtype vector. Surprisingly, however, the construct A ("Y25Ad5E4Orf6") was still 30 fold less sensitive by anti-hexon than by GFP. The best results were obtained with construct E ("ChAdOX1"), in which the wildtype E4 locus was replaced with the E4Orf4, E4Orf6 and E4Orf6/7 coding regions from AdHu5, and the E4Orf1, E4Orf2 and E4Orf3 coding regions from AdY25. iii) Hexon Expression

The ratio of marker gene to hexon titre for ChAdOX1 viral vectors expressing TIPeGFP was measured using GFP and mCherry fluorescent transgenes in order to control for the sensitivity of the fluorescent detection.

The results are provided in FIG. 3D. In both cases, the marker gene:hexon titre ratio was approximately twofold, and thus the particular marker gene used did not affect the resulting marker gene:hexon titre ratio. The marker gene: hexon titre ratio for the ChAdOX1 vector is the same as that for HAdV-5, indicating that the E4 modification to the ChAdOX1 vector has been optimised.

Example 4: Immunogenicity of AdY25-Based Vectors

Immunogenicity was assessed using the model antigen TIPeGFP in order to determine whether comparable immunogenicity to AdC63 and AdC68 could be obtained in mice using an AdY25-based vector.

Balb/c mice (4/group) were immunised intramuscularly with 10^{9} infectious units (ifu) of each of the following viral vectors, all expressing the TIPeGFP antigen:
i) AdCh63;
ii) $\Delta \mathrm{E} 1 \Delta \mathrm{E} 3$ AdCh68; and
iii) ChAdOX1.

After 14 days post-prime, spleen immunogenicity against a strong CD8+ epitope (Pb 9) was assessed by IFN- γ ELISpot

The IFN- γ spleen ELISpot responses are shown in FIG. 4. Responses elicited by ChAdOX1 were robust and comparable to those seen using AdCh63 and the AdCh68-based vector. These data support the continued development of AdY25-based vectors for clinical application.

Example 5: Effect of E4 Modification on Immunogenicity of AdY25-Based Vectors

The impact of two different E4 modifications on the immunogenicity of AdY25-based vectors was assessed using the following constructs:
(i) AdY25 E4 wildtype ("E4 wt")
(ii) AdY25 E4AdHu5Orf6 ("E4Orf6"); and
(iii) AdY25 E4AdHu5Orf4/6/7("E4Orf4/6/7").

Balb/c mice (4/group) were immunised intramuscularly with either 10^{6} ifu or 10^{8} ifu of each vector. Responses to Pb 9 and P 15 epitopes were assayed two weeks post immunisation. Titers calculated once again on GFP to remove the effect of hexon production rates on vaccine titer.

The effect of E4 modification on IFN- γ spleen ELISpot responses is shown in FIG. 5. The data indicate that E4 modification has no effect on vector immunogenicity. Therefore, such modifications can be used to enhance the rate of production of the viral vectors, without having a negative impact on the immunogenicity of the vectors.

Example 6: Prevalence of Vector-Neutralising Antibodies

The prevalence of vector neutralising antibodies in human sera from the UK and The Gambia against AdY25-based vectors and AdCh63-based vectors was assessed.

HEK293 cells were infected with Y25Ad5E4Orf6-SEAP or AdCh63-SEAP (SEAP-Secreted Placental Alkaline Phosphatase). Recombinant adenoviruses were incubated with five serial dilutions of serum in FBS-DMEM before infection. The final serum dilutions were 1:18, 1:72, 1:288, 1:1152, 1:4608; each serum sample was tested in duplicate. Supernatants were collected and assayed for SEAP concentration using CSPD (Tropix) according to the manufacturer's instructions. Luminescence intensity was measured using a Varioskan flash luminometer (Thermo Scientific). Neutralization titers were defined as the serum dilution required to reduce SEAP concentration by 50% compared to wells infected with virus alone. Neutralization titer was calculated by linear interpolation of adjacent values.

As shown in FIG. 6, the seroprevalence of neutralising antibodies against Y25Ad5E4Orf6 was surprisingly found to be much lower than that for AdCh63 in both the UK and The Gambia.

Example 7: Humoral Immunogenicity of AdY25-Based Vectors

$\mathrm{Balb} / \mathrm{c}$ mice (6/group) were immunised with 10^{8} infectious units of either of the following vectors, both expressing TIPeGFP:
i) $\triangle \mathrm{E} 1 \Delta \mathrm{E} 3 \mathrm{AdCh} 68$; or
ii) ChAdOX1.

After 56 days post prime, mice were boosted with $10^{6} \mathrm{pfu}$ MVA-TIPeGFP. Serum was collected 50 days post-prime and 10 days post-boost to compare pre- and post-boost
anti-GFP antibody responses. Responses were measured by endpoint ELISA. Statistical analyses were performed by one way ANOVA.

As shown in FIG. 7, humoral immunogenicity of the AdY25-based vector ChAdOX1 is superior to current chimpanzee adenovirus vector AdCh68, indicating an enhanced antibody response elicited by the AdY25-based vector in comparison to the AdCh68-based vector.

Example 8: Induction of Immune Response Against Mycobacterium tuberculosis

A transgene encoding the Mycobacterium tuberculosis protein Ag 85 A was inserted into the E1 locus of ChAdOX1 under control of the human cytomegalovirus immediate early promoter, using the BAC technology as described in Example 1. The nucleotide sequence of the transgene (SEQ ID NO. 42) encodes residues 1 to 323 of the antigen, encoded by a sequence optimised to human codon usage (nucleotides 103 to 1071), fused at the N -terminus to tPA (the signal peptide from human tissue plasminogen activator)(nucleotides 1 to 102) and at the C-terminus to a PK tag (nucleotides 1072 to 1104). The amino acid sequence of the Ag85A antigen is provided in SEQ ID NO. 43.

The BAC clone was transfected into HEK293 cells and the virus vector was amplified, purified and titred using the anti-hexon immunostaining assay described in Example 3.

The immunogenicity of the vector was assessed in Balb/c mice immunized with varying doses, expressed in infectious units, of the vaccine, administered intramuscularly. After 14 days cellular immune responses to Ag 85 A were determined by IFN- γ ELIspot assay using splenocytes stimulated with synthetic peptides corresponding to the known immunodominant CD8+ (p11; WYDQSGLSV (SEQ ID NO. 44)) and CD4 ${ }^{+}$T cell (p 15 ; TFLTSELPGWLQANRHVKPT (SEQ ID NO. 45)) $\mathrm{H}-2^{d}$ restricted epitopes in Ag 85 A .

The results are shown in FIGS. 8A and 8B. These results indicate that the ChAdOX1 vector is capable of inducing immune responses against Mycobacterium tuberculosis. The magnitude of these responses is similar to that induced by vectors based on other adenoviruses.

Example 9: Induction of Immune Response Against Influenza A

A transgene encoding the nucleoprotein (NP) and matrix protein 1 (M1) of influenza A virus was inserted into the E1

1. Buchbinder et al, Lancet, Vol 372, November 2008
2. Farina et al, J. Virol, December 2001, p11603-11613
3. Dudareva et al, Vaccine 27, 2009, 3501-3504
4. Roy et al, Hum. Gen. Ther., 2004, 15:519-530
5. Warming et al. Nuc. Acid. Res, 2005, Vol 33; 4
6. http://www.invitrogen.com/gateway
7. Havenga et al, J.G.V., 2006, 87, 2135-214
8. Warming, S. et al. Nucleic Acids Res, 2005 Feb. 24; 33(4): e36

Sequences
(Chimpanzee Adenovirus AdY25 genome)
CCATCATCAATAATATACCTCAAACTTTTTGTGCGCGTTAATATGCAAATGAGGCGTTTGAATTTGGGA
AGGGAGGAAGGTGATTGGCCGAGAGAAGGGCGACCGTTAGGGGCGGGGCGAGTGACGTTTTGATGACGT
GACCGCGAGGAGGAGCCAGTTTGCAAGTTCTCGTGGGAAAAGTGACGTCAAACGAGGTGTGGTTTGAAC
ACGGAAATACTCAATTTTCCCGCGCTCTCTGACAGGAAATGAGGTGTTTCTAGGCGGATGCAAGTGAAA
ACGGGCCATTTTCGCGCGAAAACTGAATGAGGAAGTGAAAATCTGAGTAATTTCGCGTTTATGACAGGG
AGGAGTATTTGCCGAGGGCCGAGTAGACTTTGACCGATTACGTGGGGGTTTCGATTACCGTGTTTTTCA
CCTAAATTTCCGCGTACGGTGTCAAAGTCCGGTGTTTTTACGTAGGTGTCAGCTGATCGCCAGGGTATT
TAAACCTGCGCTCTCCAGTCAAGAGGCCACTCTTGAGTGCCAGCGAGAAGAGTTTTCTCCTCCGCGCCG
CGAGTCAGATCTACACTTTGAAAGATGAGGCACCTGAGAGACCTGCCCGATGAGAAAATCATCATCGCT
TCCGGGAACGAGATTCTGGAACTGGTGGTAAATGCCATGATGGGCGACGACCCTCCGGAGCCCCCCACC
CCATTTGAGGCACCTTCGCTACACGATTTGTATGATCTGGAGGTGGATGTGCCCGAGGACGACCCCAAC
GAGGAGGCGGTAAATGATTTATTTAGCGATGCCGCGCTGCTAGCTGCCGAGGAGGCTTCGAGCCCTAGC
TCAGACAGCGACTCTTCACTGCATACCCCTAGACCCGGCAGAGGTGAGAAAAAGATCCCCGAGCTTAAA
GGGGAAGAGATGGACTTGCGCTGCTATGAGGAATGCTTGCCCCCGAGCGATGATGAGGACGAGCAGGCG
ATCCAGAACGCAGCGAGCCAGGGAATGCAAGCCGCCAGCGAGAGTTTTGCGCTGGACTGCCCGCCTCTG
CCCGGACACGGCTGTAAGTCTTGTGAATTTCATCGCTTGAATACTGGAGATAAAGCTGTGTTATGTGCA
CTTTGCTATATGAGAGCTTACAACCATTGTGTTTACAGTAAGTGTGATTAAGTTGAACTTTAGAGGGAG
GCAGAGAGCAGGGTGACTGGGCGATGACTGGTTTATTTATGTATATATGTTCTTTATATAGGTCCCGTC

-continued

Sequences
CCTGAGAATATTGTTAGACCAGTTCCTGTTAGAGCCACTGGGAGGAGAGCAGCTGTGGAATGTTTGGAT GACTTGCTACAGGCTGGGGATGAACCTTTGGACTTGTGTACCCGGAAACGCCCCAGGCACTAAGTGCCA CACATGTGTGTTTACTTGAGGTGATGTCAGTATTTATAGGGTGTGGAGTGCAATAAAAAATGTGTTGA.C TTTAAGTGCGTGGTTTATGACTCAGGGGTGGGGACTGTGGGTATATAAGCAGGTGCAGACCTGTGTGGT TAGCTCAGAGCGGCATGGAGATTTGGACGATCTTGGAAGATCTTCACAAGACTAGACAGCTGCTAGAGA ACGCCTCGAACGGAGTCTCTCACCTGTGGAGATTCTGCTTCGGTGGCGACCTAGCTAAGCTAGTCTATA GGGCCAAACAGGATTATAGCGAACAATTTGAGGTTATTTTGAGAGAGTGTCCGGGTCTTTTTGACGCTC TTAATTTGGGTCATCAGACTCACTTTAACCAGAGGATTGTAAGAGCCCTTGATTTTACTACTCCCGGCA GATCCACTGCGGCAGTAGCCTTTTTTGCTTTTCTTCTTGACAAATGGAGTCAAGAAACCCATTTCAGCA GGGATTACCAGCTGGATTTCTTAGCAGTAGCTTTGTGGAGAACATGGAAATCCCAGCGCCTGAATGCAA TCTCAGGCTACTTGCCGGTACAGCCACTAGACACTCTGAAGATCCTGAATCTCCAGGAGAGTCCCAGGG CACGCCAACGTCGCCGGCAGCAGCAGCGGCAGCAGGAGGAGGATCAAGAAGAGAACCCGAGAGCCGGCC TGGACCCTCCGGCGGAGGAGGAGTAGCTGACCTGTTTCCTGAACTGCGCCGGGTGCTGACTAGGTCTTC GAGTGGTCGGGAGAGGGGGATTAAGCGGGAGAGGCATGATGAGACTAATCACAGAACTGAACTGACTGT GGGTCTGATGAGCCGCAAGCGTCCAGAAACAGTGTGGTGGCATGAGGTGCAGTCGACTGGCACAGATGA GGTGTCAGTGATGCATGAGAGGTTTTCCCTAGAACAAGTCAAGACTTGTTGGTTAGAGCCTGAGGATGA TTGGGAGGTAGCCATCAGGAATTATGCCAAGCTGGCTCTGAGGCCAGACAAGAAGTACAAGATTACTAA GCTGATAAATATCAGAAATGCCTGCTACATCTCAGGGAATGGGGCTGAAGTGGAGATCTGTCTTCAGGA AAGGGTGGCTTTCAGATGCTGCATGATGAATATGTACCCGGGAGTGGTGGGCATGGATGGGGTCACCTT TATGAACATGAGGTTCAGGGGAGATGGGTATAATGGCACGGTCTTTATGGCCAATACCAAGCTGACAGT TCATGGCTGCTCCTTCTTTGGGTTTAATAACACCTGCATTGAGGCCTGGGGTCAGGTTGGTGTGAGGGG CTGTAGTTTTTCAGCCAACTGGATGGGGGTCGTGGGCAGGACCAAGAGTATGCTGTCCGTGAAGAAATG CTTGTTCGAGAGGTGCCACCTGGGGGTGATGAGCGAGGGCGAAGCCAGAATCCGCCACTGCGCCTCTAC CGAGACGGGCTGTTTTGTGCTGTGCAAGGGCAATGCTAAGATCAAGCATAATATGATCTGTGGAGCCTC GGACGAGCGCGGCTACCAGATGCTGACCTGCGCCGGTGGGAACAGCCATATGCTGGCCACCGTGCATGT GGCCTCCCATGCCCGCAAGCCCTGGCCCGAGTTCGAGCACAATGTCATGACCAGGTGCAATATGCATCT GGGGTCCCGCCGAGGCATGTTCATGCCCTATCAGTGCAACCTGAATTATGTGAAGGTGCTGCTGGAGCC CGATGCCATGTCCAGAGTGAGCCTGACGGGGGTGTTTGACATGAATGTGGAGGTGTGGAAGATTCTGAG ATATGATGAATCCAAGACCAGGTGCCGAGCCTGCGAGTGCGGAGGGAAGCATGCCAGGTTCCAGCCCGT GTGTGTGGAGGTGACGGAGGACCTGCGACCCGATCATTTGGTGTTGTCCTGCACCGGGACGGAGTTCGG TTCCAGCGGGGAAGAATCTGACTAGAGTGAGTAGTGTTCTGGGGCGGGGGAGGACCTGCATGAGGGCCA GAATGACTGAAATCTGTGCTTTTCTGTGTGTTGCAGCATCATGAGCGGAAGCGGCTCCTTTGAGGGAGG GGTATTCAGCCCTTATCTGACGGGGCGTCTCCCCTCCTGGGCGGGAGTGCGTCAGAATGTGATGGGATC CACGGTGGACGGCCGGCCCGTGCAGCCCGCGAACTCTTCAACCCTGACCTATGCAACCCTGAGCTCTTC GTCGGTGGACGCAGCTGCCGCCGCAGCTGCTGCATCCGCCGCCAGCGCCGTGCGCGGAATGGCCATGGG CGCCGGCTACTACGGCACTCTGGTGGCCAACTCGAGTTCCACCAATAATCCCGCCAGCCTGAACGAGGA GAAGCTGCTGCTGCTGATGGCCCAGCTTGAGGCCTTGACCCAGCGCCTGGGCGAGCTGACCCAGCAGGT GGCTCAGCTGCAGGAGCAGACGCGGGCCGCGGTTGCCACGGTGAAATCCAAATAAAAAATGAATCAATA AATAAACGGAGACGGTTGTTGATTTTAACACAGAGTCTGAATCTTTATTTGATTTTTCGCGCGCGGTAG GCCCTGGACCACCGGTCTCGATCATTGAGCACCCGGTGGATCTTTTCCAGGACCCGGTAGAGGTGGGCT TGGATGTTGAGGTACATGGGCATGAGCCCGTCCCGGGGGTGGAGGTAGCTCCATTGCAGGGCCTCGTGC TCGGGGGTGGTGTTGTAAATCACCCAGTCATAGCAGGGGCGCAGGGCGTGGTGTTGCACAATATCTTTG AGGAGGAGACTGATGGCCACGGGCAGCCCTTTGGTGTAGGTGTTTACAAATCTGTTGAGCTGGGAGGGA TGCATGCGGGGGGAGATGAGGTGCATCTTGGCCTGGATCTTGAGATTGGCGATGTTACCGCCCAGATCC CGCCTGGGGTTCATGTTGTGCAGGACCACCAGCACGGTGTATCCGGTGCACTTGGGGAATTTATCATGC AACTTGGAAGGGAAGGCGTGAAAGAATTTGGCGACGCCCTTGTGTCCGCCCAGGTTTTCCATGCACTCA TCCATGATGATGGCAATGGGCCCGTGGGCGGCGGCCTGGGCAAAGACGTTTCGGGGGTCGGACACATCA TAGTTGTGGTCCTGGGTGAGGTCATCATAGGCCATTTTAATGAATTTGGGGCGGAGGGTGCCGGACTGG GGGACAAAGGTACCCTCGATCCCGGGGGCGTAGTTCCCCTCACAGATCTGCATCTCCCAGGCTTTGAGC TCAGAGGGGGGGATCATGTCCACCTGCGGGGCGATAAAGAACACGGTTTCCGGGGCGGGGGAGATGAGC TGGGCCGAAAGCAAGTTCCGGAGCAGCTGGGACTTGCCGCAGCCGGTGGGGCCGTAAATGACCCCGATG ACCGGCTGCAGGTGGTAGTTGAGGGAGAGACAGCTGCCGTCCTCCCGGAGGAGGGGGGCCACCTCGTTC ATCATCTCGCGCACGTGCATGTTCTCGCGCACCAGTTCCGCCAGGAGGCGCTCTCCCCCCAGAGATAGG AGCTCCTGGAGCGAGGCGAAGTTTTTCAGCGGCTTGAGTCCGTCGGCCATGGGCATTTTGGAGAGGGTC TGTTGCAAGAGTTCCAAGCGGTCCCAGAGCTCGGTGATGTGCTCTACGGCATCTCGATCCAGCAGACCT CCTCGTTTCGCGGGTTGGGACGACTGCGGGAGTAGGGCACCAGACGATGGGCGTCCAGCGCAGCCAGGG TCCGGTCCTTCCAGGGCCGCAGCGTCCGCGTCAGGGTGGTCTCCGTCACGGTGAAGGGGTGCGCGCCGG GCTGGGCGCTTGCGAGGGTGCGCTTCAGGCTCATCCGGCTGGTCGAAAACCGCTCCCGATCGGCGCCCT GCGCGTCGGCCAGGTAGCAATTGACCATGAGTTCGTAGTTGAGCGCCTCGGCCGCGTGGCCTTTGGCGC GGAGCTTACCTTTGGAAGTCTGCCCGCAGGCGGGACAGAGGAGGGACTTGAGGGCGTAGAGCTTGGGGG CGAGGAAGACGGAATCGGGGGCGTAGGCGTCCGCGCCGCAGTGGGCGCAGACGGTCTCGCACTCCACGA GCCAGGTGAGGTCGGGCTGGTCGGGGTCAAAAACCAGTTTCCCGCCGTTCTTTTTGATGCGTTTCTTAC СTTTGGTCTCCATGAGCTCGTGTCCCCGCTGGGTGACAAAGAGGCTGTCCGTGTCCCCGTAGACCGACT TTATGGGCCGGTCCTCGAGCGGTGTGCCGCGGTCCTCCTCGTAGAGGAACCCCGCCCACTCCGAGACGA AAGCCCGGGTCCAGGCCAGCACGAAGGAGGCCACGTGGGACGGGTAGCGGTCGTTGTCCACCAGCGGGT CCACTTTTTCCAGGGTATGCAAACACATGTCCCCCTCGTCCACATCCAGGAAGGTGATTGGCTTGTAAG TGTAGGCCACGTGACCGGGGGTCCCGGCCGGGGGGGTATAAAAGGGGGCGGGCCCCTGCTCGTCCTCAC TGTCTTCCGGATCGCTGTCCAGGAGCGCCAGCTGTTGGGGTAGGTATTCCCTCTCGAAGGCGGGCATGA CCTCGGCACTCAGGTTGTCAGTTTCTAGAAACGAGGAGGATTTGATATTGACGGTGCCAGCGGAGATGC СТTTCAAGAGCCCCTCGTCCATCTGGTCAGAAAAGACGATTTTTTTGTTGTCGAGCTTGGTGGCGAAGG AGCCGTAGAGGGCGTTGGAAAGGAGCTTGGCGATGGAGCGCATGGTCTGGTTTTTTTCCTTGTCGGCGC GCTCCTTGGCCGCGATGTTGAGCTGCACGTACTCGCGCGCCACGCACTTCCATTCGGGGAAGACGGTGG TCATCTCGTCGGGCACGATTCTGACCTGCCAACCTCGATTATGCAGGGTGATGAGGTCCACACTGGTGG CCACCTCGCCGCGCAGGGGCTCGTTGGTCCAGCAGAGGCGGCCGCCCTTGCGCGAGCAGAAGGGGGGCA GAGGGTCCAGCATGACCTCGTCGGGGGGGTCGGCATCGATGGTGAAGATGCCGGGCAGGAGATCGGGGT CGAAGTAGCTGATGGAAGTGGCCAGATCGTCCAGGGAAGCTTGCCATTCGCGCACGGCCAGCGCGCGCT CGTAGGGACTGAGGGGCGTGCCCCAGGGCATGGGGTGGGTGAGCGCGGAGGCGTACATGCCGCAGATGT
-continued

Sequences
CGTAGACGTAGAGGGGCTCCTCGAGGATGCCGATGTAGGTGGGGTAGCAGCGCCCCCCGCGGATGCTGG CGCGCACGTAGTCATACAGCTCGTGCGAGGGCGCGAGGAGCCCCGGGCCCAGGTTGGTGCGACTGGGCT TTTCGGCGCGGTAGACGATCTGGCGAAAGATGGCATGCGAGTTGGAGGAGATGGTGGGCCTTTGGAAGA TGTTGAAGTGGGCGTGGGGGAGGCCGACCGAGTCGCGGATGAAGTGGGCGTAGGAGTCTTGCAGTTTGG CGACGAGCTCGGCGGTGACGAGGACGTCCAGAGCGCAGTAGTCGAGGGTCTCCTGGATGATGTCATACT TGAGCTGGCCCTTTTGTTTCCACAGCTCGCGGTTGAGAAGGAACTCTTCGCGGTCCTTCCAGTACTCTT CGAGGGGGAACCCGTCCTGATCTGCACGGTAAGAGCCTAGCATGTAGAACTGGTTGACGGCCTTGTAGG CGCAGCAGCCCTTCTCCACGGGGAGGGCGTAGGCCTGGGCGGCCTTGCGCAGGGAGGTGTGCGTGAGGG CGAAGGTGTCCCTGACCATGACCTTGAGGAACTGGTGCTTGAAATCGATATCGTCGCAGCCCCCCTGCT CCCAGAGCTGGAAGTCCGTGCGCTTCTTGTAGGCGGGGTTGGGCAAAGCGAAAGTAACATCGTTGAAAA GGATCTTGCCCGCGCGGGGCATAAAGTTGCGAGTGATGCGGAAAGGCTGGGGCACCTCGGCCCGGTTGT TGATGACCTGGGCGGCGAGCACGATCTCGTCGAAACCGTTGATGTTGTGGCCCACGATGTAGAGTTCCA CGAATCGCGGGCGGCCCTTGACGTGGGGCAGCTTCTTGAGCTCCTCGTAGGTGAGCTCGTCGGGGTCGC TGAGACCGTGCTGCTCGAGCGCCCAGTCGGCGAGATGGGGGTTGGCGCGGAGGAAGGAAGTCCAGAGAT CCACGGCCAGGGCGGTTTGCAGACGGTCCCGGTACTGACGGAACTGCTGCCCGACGGCCATTTTTTCGG GGGTGACGCAGTAGAAGGTGCGGGGGTCCCCGTGCCAGCGGTCCCATTTGAGCTGGAGGGCGAGATCGA GGGCGAGCTCGACGAGGCGGTCGTCCCCTGAGAGTTTCATGACCAGCATGAAGGGGACGAGCTGCTTGC CGAAGGACCCCATCCAGGTGTAGGTTTCCACATCGTAGGTGAGGAAGAGCCTTTCGGTGCGAGGATGCG AGCCGATGGGGAAGAACTGGATCTCCTGCCACCAATTGGAGGAATGGCTGTTGATGTGATGGAAGTAGA AАTGCCGACGGCGCGCCGAACACTCGTGCTTGTGTTTATACAAGCGGCCACAGTGCTCGCAACGCTGCA CGGGATGCACGTGCTGCACGAGCTGTACCTGAGTTCCTTTGACGAGGAATTTCAGTGGGAAGTGGAGTC GTGGCGCCTGCATCTCGTGCTGTACTACGTCGTGGTGGTCGGCCTGGCCCTCTTCTGCCTCGATGGTGG TCATGCTGACGAGCCCGCGCGGGAGGCAGGTCCAGACCTCGGCGCGAGCGGGTCGGAGAGCGAGGACGA GGGCGCGCAGGCCGGAGCTGTCCAGGGTCCTGAGACGCTGCGGAGTCAGGTCAGTGGGCAGCGGCGGCG CGCGGTTGACTTGCAGGAGTTTTTCCAGGGCGCGCGGGAGGTCCAGATGGTACTTGATCTCCACCGCGC CGTTGGTGGCGACGTCGATGGCTTGCAGGGTCCCGTGCCCCTGGGGTGTGACCACCGTCCCCCGTTTCT TCTTGGGCGGCTGGGGCGACGGGGGCGGTGCCTCTTCCATGGTTAGAAGCGGCGGCGAGGACGCGCGCC GGGCGGCAGAGGCGGCTCGGGGCCCGGAGGCAGGGGCGGCAGGGGCACGTCGGCGCCGCGCGCGGGTAG GTTCTGGTACTGCGCCCGGAGAAGACTGGCGTGAGCGACGACGCGACGGTTGACGTCCTGGATCTGACG ССТСTGGGTGAAGGCCACGGGACCCGTGAGTTTGAACCTGAAAGAGAGTTCGACAGAATCAATCTCGGT ATCGTTGACGGCGGCCTGCCGCAGGATCTCTTGCACGTCGCCCGAGTTGTCCTGGTAGGCGATCTCGGT САTGAACTGCTCGATCTCCTCCTCCTGAAGGTCTCCGCGACCGGCGCGCTCCACGGTGGCCGCGAGGTC GTTGGAGATGCGGCCCATGAGCTGCGAGAAGGCGTTCATGCCCGCCTCGTTCCAGACGCGGCTGTAGAC CACGACGCCCTCGGGATCGCGGGCGCGCATGACCACCTGGGCGAGGTTGAGCTCCACGTGGCGCGTGAA GACCGCGTAGTTGCAGAGGCGCTGGTAGAGGTAGTTGAGCGTGGTGGCGATGTGCTCGGTGACGAAGAA ATACATGATCCAGCGGCGGAGCGGCATCTCGCTGACGTCGCCCAGCGCCTCCAAGCGTTCCATGGCCTC GTAAAAGTCCACGGCGAAGTTGAAAAACTGGGAGTTGCGCGCCGAGACGGTCAACTCCTCCTCCAGAAG ACGGATGAGCTCGGCGATGGTGGCGCGCACCTCGCGCTCGAAGGCCCCCGGGAGTTCCTCCACTTCCTC СТСТТСТТССТССТССАСТААСАТСТСТТСТАСТТССТССТСАGGCGGTGGTGGTGGCGGGGGAGGGGG CCTGCGTCGCCGGCGGCGCACGGGCAGACGGTCGATGAAGCGCTCGATGGTCTCGCCGCGCCGGCGTCG CATGGTCTCGGTGACGGCGCGCCCGTCCTCGCGGGGCCGCAGCGTGAAGACGCCGCCGCGCATCTCCAG GTGGCCGGGGGGGTCCCCGTTGGGCAGGGAGAGGGCGCTGACGATGCATCTTATCAATTGCCCCGTAGG GACTCCGCGCAAGGACCTGAGCGTCTCGAGATCCACGGGATCTGAAAACCGTTGAACGAAGGCTTCGAG CCAGTCGCAGTCGCAAGGTAGGCTGAGCACGGTTTCTTCTGCCGGGTCATGTTGGGGAGCGGGGCGGGC GATGCTGCTGGTGATGAAGTTGAAATAGGCGGTTCTGAGACGGCGGATGGTGGCGAGGAGCACCAGGTC TTTGGGCCCGGCTTGCTGGATGCGCAGACGGTCGGCCATGCCCCAGGCGTGGTCCTGACACCTGGCCAG GTCCTTGTAGTAGTCCTGCATGAGCCGCTCCACGGGCACCTCCTCCTCGCCCGCGCGGCCGTGCATGCG CGTGAGCCCGAAGCCGCGCTGGGGCTGGACGAGCGCCAGGTCGGCGACGACGCGCTCGGCGAGGATGGC CTGCTGGATCTGGGTGAGGGTGGTCTGGAAGTCGTCAAAGTCGACGAAGCGGTGGTAGGCTCCGGTGTT GATGGTGTAGGAGCAGTTGGCCATGACGGACCAGTTGACGGTCTGGTGGCCCGGACGCACGAGCTCGTG GTACTTGAGGCGCGAGTAGGCGCGCGTGTCGAAGATGTAGTCGTTGCAGGTGCGCACCAGGTACTGGTA GCCGATGAGGAAGTGCGGCGGCGGCTGGCGGTAGAGCGGCCATCGCTCGGTGGCGGGGGCGCCGGGCGC GAGGTCCTCGAGCATGGTGCGGTGGTAGCCGTAGATGTACCTGGACATCCAGGTGATGCCGGCGGCGGT GGTGGAGGCGCGCGGGA.ACTCGCGGACGCGGTTCCAGATGTTGCGCAGCGGCAGGA.AGTAGTTCATGGT GGGCACGGTCTGGCCCGTGAGGCGCGCGCAGTCGTGGATGCTCTATACGGGCAAAAACGAAAGCGGTCA GCGGCTCGACTCCGTGGCCTGGAGGCTAAGCGAACGGGTTGGGCTGCGCGTGTACCCCGGTTCGAATCT CGAATCAGGCTGGAGCCGCAGCTAACGTGGTACTGGCACTCCCGTCTCGACCCAAGCCTGCACCAACCC TCCAGGATACGGAGGCGGGTCGTTTTGCAACTTTTTTTGGAGGCCGGAAATGAAACTAGTAAGCGCGGA AAGCGGCCGACCGCGATGGCTCGCTGCCGTAGTCTGGAGAAGAATCGCCAGGGTTGCGTTGCGGTGTGC CCCGGTTCGAGGCCGGCCGGATTCCGCGGCTAACGAGGGCGTGGCTGCCCCGTCGTTTCCAAGACCCCA TAGCCAGCCGACTTCTCCAGTTACGGAGCGAGCCCCTCTITTGTTTTGTTTGTTTTTGCCAGATGCATC CCGTACTGCGGCAGATGCGCCCCCACCACCCTCCACCGCAACAACAGCCCCCTCCTCCACAGCCGGCGC TTCTGCCCCCGCCCCAGCAGCAGCAGCAACTTCCAGCCACGACCGCCGCGGCCGCCGTGAGCGGGGCTG GACAGACTTCTCAGTATGATCACCTGGCCTTGGAAGAGGGCGAGGGGCTGGCGCGCCTGGGGGCGTCGT CGCCGGAGCGGCACCCGCGCGTGCAGATGAAAAGGGACGCTCGCGAGGCCTACGTGCCCAAGCAGAACC TGTTCAGAGACAGGAGCGGCGAGGAGCCCGAGGAGATGCGCGCGGCCCGGTTCCACGCGGGGCGGGAGC TGCGGCGCGGCCTGGACCGAAAGAGGGTGCTGAGGGACGAGGATTTCGAGGCGGACGAGCTGACGGGGA TCAGCCCCGCGCGCGCGCACGTGGCCGCGGCCAACCTGGTCACGGCGTACGAGCAGACCGTGAAGGAGG AGAGCAACTTCCAAAAATCCTTCAACAACCACGTGCGCACCCTGATCGCGCGCGAGGAGGTGACCCTGG GCCTGATGCACCTGTGGGACCTGCTGGAGGCCATCGTGCAGAACCCCACCAGCAAGCCGCTGACGGCGC AGCTGTTCCTGGTGGTGCAGCATAGTCGGGACAACGAGGCGTTCAGGGAGGCGCTGCTGAATATCACCG AGCCCGAGGGCCGCTGGCTCCTGGACCTGGTGAACATTCTGCAGAGCATCGTGGTGCAGGAGCGCGGGC TGCCGCTGTCCGAGAAGCTGGCGGCCATCAACTTCTCGGTGCTGAGTCTGGGCAAGTACTACGCTAGGA AGATCTACAAGACCCCGTACGTGCCCATAGACAAGGAGGTGAAGATCGACGGGTTTTACATGCGCATGA CCCTGAAAGTGCTGACCCTGAGCGACGATCTGGGGGTGTACCGCAACGACAGGATGCACCGCGCGGTGA GCGCCAGCAGGCGGCGCGAGCTGAGCGACCAGGAGCTGATGCACAGCCTGCAGCGGGCCCTGACCGGGG CCGGGACCGAGGGGGAGAGCTACTTTGACATGGGCGCGGACCTGCACTGGCAGCCCAGCCGCCGGGCCT
-continued

Sequences
TGGAGGCGGCAGGCGGTCCCCCCTACATAGAAGAGGTGGACGATGAGGTGGACGAGGAGGGCGAGTACC TGGAAGACTGATGGCGCGACCGTATTTTTGCTAGATGCAACAACAGCCACCTCCTGATCCCGCGATGCG GGCGGCGCTGCAGAGCCAGCCGTCCGGCATTAACTCCTCGGACGATTGGACCCAGGCCATGCAACGCAT CATGGCGCTGACGACCCGCAACCCCGAAGCCTTTAGACAGCAGCCCCAGGCCAACCGGCTCTCGGCCAT CCTGGAGGCCGTGGTGCCCTCGCGCTCCAACCCCACGCACGAGAAGGTCCTGGCCATCGTGAACGCGCT GGTGGAGAACAAGGCCATCCGCGGCGACGAGGCCGGCCTGGTGTACAACGCGCTGCTGGAGCGCGTGGC CCGCTACAACAGCACCAACGTGCAGACCAACCTGGACCGCATGGTGACCGACGTGCGCGAGGCCGTGGC CCAGCGCGAGCGGTTCCACCGCGAGTCCAACCTGGGATCCATGGTGGCGCTGAACGCCTTCCTCAGCAC CCAGCCCGCCAACGTGCCCCGGGGCCAGGAGGACTACACCAACTTCATCAGCGCCCTGCGCCTGATGGT GACCGAGGTGCCCCAGAGCGAGGTGTACCAGTCCGGGCCGGACTACTTCTTCCAGACCAGTCGCCAGGG CTTGCAGACCGTGAACCTGAGCCAGGCGTTCAAGAACTTGCAGGGCCTGTGGGGCGTGCAGGCCCCGGT CGGGGACCGCGCGACGGTGTCGAGCCTGCTGACGCCGAACTCGCGCCTGCTGCTGCTGCTGGTGGCCCC СTTCACGGACAGCGGCAGCATCAACCGCAACTCGTACCTGGGCTACCTGATTAACCTGTACCGCGAGGC CATCGGCCAGGCGCACGTGGACGAGCAGACCTACCAGGAGATCACCCACGTGAGCCGCGCCCTGGGCCA GGACGACCCGGGCAATCTGGAAGCCACCCTGAACTTTTTGCTGACCAACCGGTCGCAGAAGATCCCGCC CCAGTACACGCTCAGCGCCGAGGAGGAGCGCATCCTGCGATACGTGCAGCAGAGCGTGGGCCTGTTCCT GATGCAGGAGGGGGCCACCCCCAGCGCCGCGCTCGACATGACCGCGCGCAACATGGAGCCCAGCATGTA CGCCAGCAACCGCCCGTTCATCAATAAACTGATGGACTACTTGCATCGGGCGGCCGCCATGAACTCTGA СТАТTTCACCAACGCCATCCTGAATCCCCACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGA CATGCCCGACCCCAATGACGGGTTCCTGTGGGACGATGTGGACAGCAGCGTGTTCTCCCCCCGACCGGG TGCTAACGAGCGCCCCTTGTGGAAGAAGGAAGGCAGCGACCGACGCCCGTCCTCGGCGCTGTCCGGCCG CGAGGGTGCTGCCGCGGCGGTGCCCGAGGCCGCCAGTCCTTTCCCGAGCTTGCCCTTCTCGCTGAACAG TATTCGCAGCAGCGAGCTGGGCAGGATCACGCGCCCGCGCTTGCTGGGCGAGGAGGAGTACTTGAATGA CTCGCTGTTGAGACCCGAGCGGGAGAAGAACTTCCCCAATAACGGGATAGAGAGCCTGGTGGACAAGAT GAGCCGCTGGAAGACGTATGCGCAGGAGCACAGGGACGATCCGTCGCAGGGGGCCACGAGCCGGGGCAG CGCCGCCCGTAAACGCCGGTGGCACGACAGGCAGCGGGGACTGATGTGGGACGATGAGGATTCCGCCGA CGACAGCAGCGTGTTGGACTTGGGTGGGAGTGGTAACCCGTTCGCTCACCTGCGCCCCCGCATCGGGCG CATGATGTAAGAGAAACCGAAAATAAATGATACTCACCAAGGCCATGGCGACCAGCGTGCGTTCGTTTC TTCTCTGTTGTTGTATCTAGTATGATGAGGCGTGCGTACCCGGAGGGTCCTCCTCCCTCGTACGAGAGC GTGATGCAGCAGGCGATGGCGGCGGCGGCGGCGATGCAGCCCCCGCTGGAGGCTCCTTACGTGCCCCCG CGGTACCTGGCGCCTACGGAGGGGCGGAACAGCATTCGTTACTCGGAGCTGGCACCCTTGTACGATACC ACCCGGTTGTACCTGGTGGACAACAAGTCGGCGGACATCGCCTCGCTGAACTACCAGAACGACCACAGC AACTTCCTGACCACCGTGGTGCAGAACAATGACTTCACCCCCACGGAGGCCAGCACCCAGACCATCAAC TTTGACGAGCGCTCGCGGTGGGGCGGTCAGCTGAAAACCATCATGCACACCAACATGCCCAACGTGAAC GAGTTCATGTACAGCAACAAGTTCAAGGCGCGGGTGATGGTCTCCCGCAAGACCCCCAACGGGGTGACA GTGACAGATGGTAGTCAGGATATCTTGGAGTATGAATGGGTGGAGTTTGAGCTGCCCGAAGGCAACTTC TCGGTGACCATGACCATCGACCTGATGAACAACGCCATCATCGACAATTACTTGGCGGTGGGGCGGCAG AACGGGGTCCTGGAGAGCGATATCGGCGTGAAGTTCGACACTAGGAACTTCAGGCTGGGCTGGGACCCC GTGACCGAGCTGGTCATGCCCGGGGTGTACACCAACGAGGCCTTCCACCCCGATATTGTCTTGCTGCCC GGCTGCGGGGTGGACTTCACCGAGAGCCGCCTCAGCAACCTGCTGGGCATTCGCAAGAGGCAGCCCTTC CAGGAGGGCTTCCAGATCATGTACGAGGATCTGGAGGGGGGCAACATCCCCGCGCTCCTGGATGTCGAC GCCTATGAGAAAAGCAAGGAGGAGAGCGCCGCCGCGGCGACTGCAGCTGTAGCCACCGCCTCTACCGAG GTCAGGGGCGATAATTTTGCCAGCCCTGCAGCAGTGGCAGCGGCCGAGGCGGCTGAAACCGAAAGTAAG ATAGTCATTCAGCCGGTGGAGAAGGATAGCAAGGACAGGAGCTACAACGTGCTGCCGGACAAGATAAAC ACCGCCTACCGCAGCTGGTACCTGGCCTACAACTATGGCGACCCCGAGAAGGGCGTGCGCTCCTGGACG CTGCTCACCACCTCGGACGTCACCTGCGGCGTGGAGCAAGTCTACTGGTCGCTGCCCGACATGATGCAA GACCCGGTCACCTTCCGCTCCACGCGTCAAGTTAGCAACTACCCGGTGGTGGGCGCCGAGCTCCTGCCC GTСТАСТССААGAGCTTCTTCAACGAGCAGGCCGTCTACTCGCAGCAGCTGCGCGCCTTCACCTCGCTC ACGCACGTCTTCAACCGCTTCCCCGAGAACCAGATCCTCGTCCGCCCGCCCGCGCCCACCATTACCACC GTCAGTGAAAACGTTCCTGCTCTCACAGATCACGGGACCCTGCCGCTGCGCAGCAGTATCCGGGGAGTC CAGCGCGTGACCGTTACTGACGCCAGACGCCGCACCTGCCCCTACGTCTACAAGGCCCTGGGCATAGTC GCGCCGCGCGTCCTCTCGAGCCGCACCTTCTAAAAAATGTCCATTCTCATCTCGCCCAGTAATAACACC GGTTGGGGCCTGCGCGCGCCCAGCAAGATGTACGGAGGCGCTCGCCAACGCTCCACGCAACACCCCGTG CGCGTGCGCGGGCACTTCCGCGCTCCCTGGGGCGCCCTCAAGGGCCGCGTGCGGTCGCGCACCACCGTC GACGACGTGATCGACCAGGTGGTGGCCGACGCGCGCAACTACACCCCCGCCGCCGCGCCCGTCTCCACC GTGGACGCCGTCATCGACAGCGTGGTGGCCGACGCGCGCCGGTACGCCCGCGCCAAGAGCCGGCGGCGG CGCATCGCCCGGCGGCACCGGAGCACCCCCGCCATGCGCGCGGCGCGAGCCTTGCTGCGCAGGGCCAGG CGCACGGGACGCAGGGCCATGCTCAGGGCGGCCAGACGCGCGGCTTCAGGCGCCAGCGCCGGCAGGACC CGGAGACGCGCGGCCACGGCGGCGGCAGCGGCCATCGCCAGCATGTCCCGCCCGCGGCGAGGGAACGTG TACTGGGTGCGCGACGCCGCCACCGGTGTGCGCGTGCCCGTGCGCACCCGCCCCCCTCGCACTTGAAGA TGTTCACTTCGCGATGTTGATGTGTCCCAGCGGCGAGGAGGATGTCCAAGCGCAAATTCAAGGAAGAGA TGCTCCAGGTCATCGCGCCTGAGATCTACGGCCCCGCGGTGGTGAAGGAGGAAAGAAAGCCCCGCAAAA TCAAGCGGGTCAAAAAGGACAAAAAGGAAGAAGATGACGATCTGGTGGAGTTTGTGCGCGAGTTCGCCC CCCGGCGGCGCGTGCAGTGGCGCGGGCGGAAAGTGCACCCGGTGCTGAGACCCGGCACCACCGTGGTCT TCACGCCCGGCGAGCGCTCCGGCAGCGCTTCCAAGCGCTCCTACGACGAGGTGTACGGGGACGAGGACA TCCTCGAGCAGGCGGCCGAGCGCCTGGGCGAGTTTGCTTACGGCAAGCGCAGCCGCCCCGCCCTGAAGG AAGAGGCGGTGTCCATCCCGCTGGACCACGGCAACCCCACGCCGAGCCTCAAGCCCGTGACCCTGCAGC AGGTGCTGCCGAGCGCAGCGCCGCGCCGGGGGTTCAAGCGCGAGGGCGAGGATCTGTACCCCACCATGC AGCTGATGGTGCCCAAGCGCCAGAAGCTGGAAGACGTGCTGGAGACCATGAAGGTGGACCCGGACGTGC AGCCCGAGGTCAAGGTGCGGCCCATCAAGCAGGTGGCCCCGGGCCTGGGCGTGCAGACCGTGGACATCA AGATCCCCACGGAGCCCATGGAAACGCAGACCGAGCCCATGATCAAGCCCAGCACCAGCACCATGGAGG TGCAGACGGATCCCTGGATGCCATCGGCTCCTAGCCGAAGACCCCGGCGCAAGTACGGCGCGGCCAGCC TGCTGATGCCCAACTACGCGCTGCATCCTTCCATCATCCCCACGCCGGGCTACCGCGGCACGCGCTTCT ACCGCGGTCATACAACCAGCCGCCGCCGCAAGACCACCACCCGCCGCCGCCGTCGCCGCACAGCCGCTG CATCTACCCCTGCCGCCCTGGTGCGGAGAGTGTACCGCCGCGGCCGCGCGCCTCTGACCCTACCGCGCG CGCGCTACCACCCGAGCATCGCCATTTAAACTTTCGCCTGCTTTGCAGATGGCCCTCACATGCCGCCTC CGCGTTCCCATTACGGGCTACCGAGGAAGAAAACCGCGCCGTAGAAGGCTGGCGGGGAACGGGATGCGT

Sequences

CGCCACCACCATCGGCGGCGGCGCGCCATCAGCAAGCGGTTGGGGGGAGGCTTCCTGCCCGCGCTGATC CCCATCATCGCCGCGGCGATCGGGGCGATCCCCGGCATTGCTTCCGTGGCGGTGCAGGCCTCTCAGCGC CACTGAGACACTTGGAAAACATCTTGTAATAAACCAATGGACTCTGACGCTCCTGGTCCTGTGATGTGT TTTCGTAGACAGATGGAAGACATCAATTTTTCGTCCCTGGCTCCGCGACACGGCACGCGGCCGTTCATG GGCACCTGGAGCGACATCGGCACCAGCCAACTGAACGGGGGCGCCTTCAATTGGAGCAGTCTCTGGAGC GGGCTTAAGAATTTCGGGTCCACGCTTAAAACCTATGGCAGCAAGGCGTGGAACAGCACCACAGGGCAG GCGCTGAGGGATAAGCTGAAAGAGCAGAACTTCCAGCAGAAGGTGGTCGATGGGCTCGCCTCGGGCATC AACGGGGTGGTGGACCTGGCCAACCAGGCCGTGCAGCGGCAGATCAACAGCCGCCTGGACCCGGTGCCG CCCGCCGGCTCCGTGGAGATGCCGCAGGTGGAGGAGGAGCTGCCTCCCCTGGACAAGCGGGGCGAGAAG CGACCCCGCCCCGACGCGGAGGAGACGCTGCTGACGCACACGGACGAGCCGCCCCCGTACGAGGAGGCG GTGAAACTGGGTCTGCCCACCACGCGGCCCATCGCGCCCCTGGCCACCGGGGTGCTGAAACCCGAAAGT AATAAGCCCGCGACCCTGGACTTGCCTCCTCCCGCTTCCCGCCCCTCTACAGTGGCTAAGCCCCTGCCG CCGGTGGCCGTGGCCCGCGCGCGACCCGGGGGCTCCGCCCGCCCTCATGCGAACTGGCAGAGCACTCTG AACAGCATCGTGGGTCTGGGAGTGCAGAGTGTGAAGCGCCGCCGCTGCTATTAAACCTACCGTAGCGCT TAACTTGCTTGTCTGTGTGTGTATGTATTATGTCGCCGCTGTCCGCCAGAAGGAGGAGTGAAGAGGCGC GTCGCCGAGTTGCAAGATGGCCACCCCATCGATGCTGCCCCAGTGGGCGTACATGCACATCGCCGGACA GGACGCTTCGGAGTACCTGAGTCCGGGTCTGGTGCAGTTCGCCCGCGCCACAGACACCTACTTCAGTCT GGGGAACAAGTTTAGGAACCCCACGGTGGCGCCCACGCACGATGTGACCACCGACCGCAGCCAGCGGCT GACGCTGCGCTTCGTGCCCGTGGACCGCGAGGACAACACCTACTCGTACAAAGTGCGCTACACGCTGGC CGTGGGCGACAACCGCGTGCTGGACATGGCCAGCACCTACTTTGACATCCGCGGCGTGCTGGATCGGGG СССТАGCTTCAAACCCTACTCCGGCACCGCCTACAACAGCCTGGCTCCCAAGGGAGCGCCCAATTCCAG CCAGTGGGAGCAAAAAAAGGCAGGCAATGGTGACACTATGGAAACACACACATTTGGTGTGGCCCCAAT GGGCGGTGAGAATATTACAATCGACGGATTACAAATTGGAACTGACGCTACAGCTGATCAGGATAAACC AATTTATGCTGACAAAACATTCCAGCCTGAACCTCAAGTAGGAGAAGAAAATTGGCAAGAAACTGAAAG СTTTTATGGCGGTAGGGCTCTTAAAAAAGACACAAGCATGAAACCTTGCTATGGCTCCTATGCTAGACC CACCAATGTAAAGGGAGGTCAAGCTAAACTTAAAGTTGGAGCTGATGGAGTTCCTACCAAAGAATTTGA CATAGACCTGGCTTTCTTTGATACTCCCGGTGGCACAGTGAATGGACAAGATGAGTATAAAGCAGACAT TGTCATGTATACCGAAAACACGTATCTGGAAACTCCAGACACGCATGTGGTATACAAACCAGGCAAGGA TGATGCAAGTTCTGAAATTAACCTGGTTCAGCAGTCCATGCCCAATAGACCCAACTATATTGGGTTCAG AGACAACTTTATTGGGCTCATGTATTACAACAGTACTGGCAATATGGGGGTGCTGGCTGGTCAGGCCTC ACAGCTGAATGCTGTGGTCGACTTGCAAGACAGAAACACCGAGCTGTCATACCAGCTCTTGCTTGACTC TTTGGGTGACAGAACCCGGTATTTCAGTATGTGGAATCAGGCGGTGGACAGTTATGATCCTGATGTGCG CATTATTGAAAACCATGGTGTGGAAGACGAACTTCCCAACTATTGCTTCCCCCTGGATGGGTCTGGCAC TAATGCCGCTTACCAAGGTGTGAAAGTAAAAAATGGTAACGATGGTGATGTTGAGAGCGAATGGGAAAA TGATGATACTGTCGCAGCTCGAAATCAATTATGCAAGGGCAACATTTTTGCCATGGAAATTAACCTCCA AGCCAACCTGTGGAGAAGTTTCCTCTACTCGAACGTGGCCCTGTACCTGCCCGACTCTTACAAGTACAC GCCAGCCAACATCACCCTGCCCACCAACACCAACACTTATGATTACATGAACGGGAGAGTGGTGCCTCC CTCGCTGGTGGACGCCTACATCAACATCGGGGCGCGCTGGTCGCTGGACCCCATGGACAACGTCAATCC СТTСААССАССАССGСААСGCGGGCCTGCGCTACCGCTCCATGCTCCTGGGCAACGGGCGCTACGTGCC СТTCCACATCCAGGTGCCCCAGAAATTTTTCGCCATCAAGAGCCTCCTGCTCCTGCCCGGGTCCTACAC CTACGAGTGGAACTTCCGCAAGGACGTCAACATGATCCTGCAGAGCTCCCTCGGCAACGACCTGCGCAC GGACGGGGCCTCCATCTCCTTCACCAGCATCAACCTCTACGCCACCTTCTTCCCCATGGCGCACAACAC GGCCTCCACGCTCGAGGCCATGCTGCGCAACGACACCAACGACCAGTCCTTCAACGACTACCTCTCGGC GGCCAACATGCTCTACCCCATCCCGGCCAACGCCACCAACGTGCCCATCTCCATCCCCTCGCGCAACTG GGCCGCCTTCCGCGGCTGGTCCTTCACGCGCCTCAAGACCAAGGAGACGCCCTCGCTGGGCTCCGGGTT CGACCCCTACTTCGTCTACTCGGGCTCCATCCCCTACCTCGACGGCACCTTCTACCTCAACCACACCTT САAGAAGGTCTCCATCACCTTCGACTCCTCCGTCAGCTGGCCCGGCAACGACCGGCTCCTGACGCCCAA CGAGTTCGAA.ATCAAGCGCACCGTCGACGGCGAGGGATACAACGTGGCCCAGTGCAACATGACCAAGGA CTGGTTCCTGGTCCAGATGCTGGCCCACTACAACATCGGCTACCAGGGCTTCTACGTGCCCGAGGGCTA CAAGGACCGCATGTACTCCTTCTTCCGCAACTTCCAGCCCATGAGCCGCCAGGTGGTGGACGAGGTCAA СTACAAGGACTACCAGGCCGTCACCCTGGCCTACCAGCACAACAACTCGGGCTTCGTCGGCTACCTCGC GCCCACCATGCGCCAGGGCCAGCCCTACCCCGCCAACTACCCGTACCCGCTCATCGGCAAGAGCGCCGT CACCAGCGTCACCCAGAAAAAGTTCCTCTGCGACAGGGTCATGTGGCGCATCCCCTTCTCCAGCAACTT CATGTCCATGGGCGCGCTCACCGACCTCGGCCAGAACATGCTCTATGCCAACTCCGCCCACGCGCTAGA CATGAATTTCGAAGTCGACCCCATGGATGAGTCCACCCTTCTCTATGTTGTCTTCGAAGTCTTCGACGT CGTCCGAGTGCACCAGCCCCACCGCGGCGTCATCGAGGCCGTCTACCTGCGCACCCCCTTCTCGGCCGG TAACGCCACCACCTAAATTGCTACTTGCATGATGGCTGAGCCCACAGGCTCCGGCGAGCAGGAGCTCAG GGCCATCATCCGCGACCTGGGCTGCGGGCCCTACTTCCTGGGCACCTTCGATAAGCGCTTCCCGGGATT CATGGCCCCGCACAAGCTGGCCTGCGCCATCGTCAACACGGCCGGCCGCGAGACCGGGGGCGAGCACTG GCTGGCCTTCGCCTGGAACCCGCGCTCGAACACCTGCTACCTCTTCGACCCCTTCGGGTTCTCGGACGA GCGCCTCAAGCAGATCTACCAGTTCGAGTACGAGGGCCTGCTGCGCCGTAGCGCCCTGGCCACCGAGGA CCGCTGCGTCACCCTGGAAAAGTCCACCCAGACCGTGCAGGGTCCGCGCTCGGCCGCCTGCGGGCTCTT CTGCTGCATGTTCCTGCACGCCTTCGTGCACTGGCCCGACCGCCCCATGGACAAGAACCCCACCATGAA CTTGCTGACGGGGGTGCCCAACGGCATGCTCCAGTCGCCCCAGGTGGAACCCACCCTGCGCCGCAACCA GGAGGCGCTCTACCGCTTCCTCAACTCCCACTCCGCCTACTTTCGCTCCCACCGCGCGCGCATCGAGAA GGCCACCGCCTTCGACCGCATGAACAATCAAGACATGTAAACCGTGTGTGTATGTTTAAAATATCTTTT AATAAACAGCACTTTAATGTTACACATGCATCTGAGATGATTTTATTTTAGAAATCGAAAGGGTTCTGC CGGGTCTCGGCATGGCCCGCGGGCAGGGACACGTTGCGGAACTGGTACTTGGCCAGCCACTTGAACTCG GGGATCAGCAGTTTGGGCAGCGGGGTGTCGGGGAAGGAGTCGGTCCACAGCTTCCGCGTCAGCTGCAGG GCGCCCAGCAGGTCGGGCGCGGAGATCTTGAAATCGCAGTTGGGACCCGCGTTCTGCGCGCGAGAGTTG CGGTACACGGGGTTGCAGCACTGGAACACCATCAGGGCCGGGTGCTTCACGCTCGCCAGCACCGCCGCG TCGGTGATGCTCTCCACGTCGAGGTCCTCGGCGTTGGCCATCCCGAAGGGGGTCATCTTGCAGGTCTGC CTTCCCATGGTGGGCACGCACCCGGGCTTGTGGTTGCAATCGCAGTGCAGGGGGATCAGCATCATCTGG GCCTGGTCGGCGTTCATCCCCGGGTACATGGCCTTCATGAAAGCCTCCAATTGCCTGAACGCCTGCTGG GCCTTGGCTCCCTCGGTGAAGAAGACCCCGCAGGACTTGCTAGAGAACTGGTTGGTGGCACAGCCGGCA TCGTGCACGCAGCAGCGCGCGTCGTTGTTGGCCAGCTGCACCACGCTGCGCCCCCAGCGGTTCTGGGTG ATCTTGGCCCGGTCGGGGTTCTCCTTCAGCGCGCGCTGCCCGTTCTCGCTCGCCACATCCATCTCGATC

ATGTGCTCCTTCTGGATCATGGTGGTCCCGTGCAGGCACCGCAGTTTGCCCTCGGCCTCGGTGCACCCG TGCAGCCACAGCGCGCACCCGGTGCACTCCCAGTTCTTGTGGGCGATCTGGGAATGCGCGTGCACGAAC CCTTGCAGGAAGCGGCCCATCATGGTCGTCAGGGTCTTGTTGCTAGTGAAGGTCAACGGGATGCCGCGG TGCTCCTCGTTGATGTACAGGTGGCAGATGCGGCGGTACACCTCGCCCTGCTCGGGCATCAGTTGGAAG TTGGCTTTCAGGTCGGTCTCCACGCGGTAGCGGTCCATCAGCATAGTCATGATTTCCATGCCCTTCTCC CAGGCCGAGACGATGGGCAGGCTCATAGGGTTCTTCACCATCATCTTAGCACTAGCAGCCGCGGCCAGG GGGTCGCTCTCATCCAGGGTCTCAAAGCTCCGCTTGCCGTCCTTCTCGGTGATCCGCACCGGGGGGTAG CTGAAGCCCACGGCCGCCAGCTCCTCCTCGGCCTGTCTTTCGTCCTCGCTGTCCTGGCTGACGTCCTGC ATGACCACATGCTTGGTCTTGCGGGGTTTCTTCTTGGGCGGCAGTGGCGGCGGAGATGCTTGTGGCGAG GGGGAGCGCGAGTTCTCGCTCACCACTACTATCTCTTCCTCTTCTTGGTCCGAGGCCACGCGGCGGTAG GTATGTCTCTTCGGGGGCAGAGGCGGAGGCGACGGGCTCTCGCCGCCGCGACTTGGCGGATGGCTGGCA GAGCCCCTTCCGCGTTCGGGGGTGCGCTCCCGGCGGCGCTCTGACTGACTTCCTCCGCGGCCGGCCATT GTGTTCTCCTAGGGAGGAACAACAAGCATGGAGACTCAGCCATCGCCAACCTCGCCATCTGCCCCCACC GCCGGCGACGAGAAGCAGCAGCAGCAGAATGAAAGCTTAACCGCCCCGCCGCCCAGCCCCGCCTCCGAC GCAGCCGCGGTCCCAGACATGCAAGAGATGGAGGAATCCATCGAGATTGACCTGGGCTATGTGACGCCC GCGGAGCATGAGGAGGAGCTGGCAGTGCGCTTTCAATCGTCAAGCCAGGAAGATAA.AGAACAGCCAGAG CAGGAAGCAGAGAACGAGCAGAGTCAGGCTGGGCTCGAGCATGGCGACTACCTCCACCTGAGCGGGGAG GAGGACGCGCTCATCAAGCATCTGGCCCGGCAGGCCACCATCGTCAAGGACGCGCTGCTCGACCGCACC GAGGTGCCCCTCAGCGTGGAGGAGCTCAGCCGCGCCTACGAGCTCAACCTCTTCTCGCCGCGCGTGCCC CCCAAGCGCCAGCCCAACGGCACCTGCGAGCCCAACCCCCGCCTCAACTTCTACCCGGTCTTCGCGGTG CCCGAGGCCCTGGCCACCTACCACATCTTTTTCAAGAACCAAAAGATCCCCGTCTCCTGCCGCGCCAAC CGCACCCGCGCCGACGCCCTCTTCAACCTGGGTCCCGGCGCCCGCCTACCTGATATCGCCTCCTTGGAA GAGGTTCCCAAGATCTTCGAGGGTCTGGGCAGCGACGAGACTCGGGCCGCGAACGCTCTGCAAGGAGAA GGAGGAGGAGAGCATGAGCACCACAGCGCCCTGGTCGAGT TGGAAGGCGACAACGCGCGGCTGGCGGTG CTCAAACGCACGGTCGAGCTGACCCATTTCGCCTACCCGGCTCTGAACCTGCCCCCGAAAGTCATGAGC GCGGTCATGGACCAGGTGCTCATCAAGCGCGCGTCGCCCATCTCCGAGGACGAGGGCATGCAAGACTCC GAGGAGGGCAAGCCCGTGGTCAGCGACGAGCAGCTGGCCCGGTGGCTGGGTCCTAATGCTACCCCTCAA AGTTTGGAAGAGCGGCGCAAGCTCATGATGGCCGTGGTCCTGGTGACCGTGGAGCTGGAGTGCCTGCGC CGCTTCTTCGCCGACGCGGAGACCCTGCGCAAGGTCGAGGAGAACCTGCACTACCTCTTCAGGCACGGG TTCGTGCGCCAGGCCTGCAAGATCTCCA_ACGTGGAGCTGACCAACCTGGTCTCCTACATGGGCATCTTG CACGAGAACCGCCTGGGGCAGAACGTGCTGCACACCACCCTGCGCGGGGAGGCCCGCCGCGACTACATC CGCGACTGCGTCTACCTCTACCTCTGCCACACCTGGCAGACGGGCATGGGCGTGTGGCAGCAGTGTCTG GAGGAGCAGAACCTGAAAGAGCTCTGCAAGCTCCTGCAAAAGAACCTCAAGGGTCTGTGGACCGGGTTC GACGAGCGGACCACCGCCTCGGACCTGGCCGACCTCATCTTCCCCGAGCGCCTCAGGCTGACGCTGCGC AACGGCCTGCCCGACTTTATGAGCCAAAGCATGTTGCAAAACTTTCGCTCTTTCATCCTCGAACGCTCC GGAATCCTGCCCGCCACCTGCTCCGCGCTGCCCTCGGACTTCGTGCCGCTGACCTTCCGCGAGTGCCCC CCGCCGCTGTGGAGCCACTGCTACCTGCTGCGCCTGGCCAACTACCTGGCCTACCACTCGGACGTGATC GAGGACGTCAGCGGCGAGGGCCTGCTCGAGTGCCACTGCCGCTGCAACCTCTGCACGCCGCACCGCTCC CTGGCCTGCAACCCCCAGCTGCTGAGCGAGACCCAGATCATCGGCACCTTCGAGTTGCAAGGGCCCAGC GAGGGCGAGGGAGCCAAGGGGGGTCTGAAACTCACCCCGGGGCTGTGGACCTCGGCCTACTTGCGCAAG TTCGTGCCCGAGGATTACCATCCCTTCGAGATCAGGTTCTACGAGGACCAATCCCAGCCGCCCAAGGCC GAGCTGTCGGCCTGCGTCATCACCCAGGGGGCGATCCTGGCCCAATTGCAAGCCATCCAGAAATCCCGC CAAGAATTCTTGCTGAAAAAGGGCCGCGGGGTCTACCTCGACCCCCAGACCGGTGAGGAGCTCAACCCC GGCTTCCCCCAGGATGCCCCGAGGAAACAAGAAGCTGAAAGTGGAGCTGCCGCCCGTGGAGGATTTGGA GGAAGACTGGGAGAACAGCAGTCAGGCAGAGGAGATGGAGGAAGACTGGGACAGCACTCAGGCAGAGGA GGACAGCCTGCAAGACAGTCTGGAGGAAGACGAGGAGGAGGCAGAGGAGGAGGTGGAAGAAGCAGCCGC CGCCAGACCGTCGTCCTCGGCGGGGGAGAAAGCAAGCAGCACGGATACCATCTCCGCTCCGGGTCGGGG TCCCGCTCGGCCCCACAGTAGATGGGACGAGACCGGGCGATTCCCGAACCCCACCACCCAGACCGGTAA GAAGGAGCGGCAGGGATACAAGTCCTGGCGGGGGCACAAAAACGCCATCGTCTCCTGCTTGCAGGCCTG CGGGGGCAACATCTCCTTCACCCGGCGCTACCTGCTCTTCCACCGCGGGGTGAACTTCCCCCGCAACAT СTTGCATTACTACCGTCACCTCCACAGCCCCTACTACTTCCAAGAAGAGGCAGCAGCAGCAGAAAAAGA CCAGAAAACCAGCTAGAAAATCCACAGCGGCGGCAGCGGCAGGTGGACTGAGGATCGCGGCGAACGAGC CGGCGCAGACCCGGGAGCTGAGGAACCGGATCTTTCCCACCCTCTATGCCATCTTCCAGCAGAGTCGGG GGCAGGAGCAGGAACTGAAAGTCAAGAACCGTTCTCTGCGCTCGCTCACCCGCAGTTGTCTGTATCACA AGAGCGAAGACCAACTTCAGCGCACTCTCGAGGACGCCGAGGCTCTCTTCAACAAGTACTGCGCGCTCA CTCTTAAAGAGTAGCCCGCGCCCGCCCAGTCGCAGAAAAAGGCGGGAATTACGTCACCTGTGCCCTTCG CCCTAGCCGCCTCCACCCAGCACCGCCATGAGCAAAGAGATTCCCACGCCTTACATGTGGAGCTACCAG CCCCAGATGGGCCTGGCCGCCGGCGCCGCCCAGGACTACTCCACCCGCATGAATTGGCTCAGCGCCGGG CCCGCGATGATCTCACGGGTGAATGACATCCGCGCCCACCGAAACCAGATACTCCTAGAACAGTCAGCG СTCACCGCCACGCCCCGCAATCACCTCAATCCGCGTAATTGGCCCGCCGCCCTGGTGTACCAGGAAATT CCCCAGCCCACGACCGTACTACTTCCGCGAGACGCCCAGGCCGAAGTCCAGCTGACTAACTCAGGTGTC CAGCTGGCGGGCGGCGCCACCCTGTGTCGTCACCGCCCCGCTCAGGGTATAAAGCGGCTGGTGATCCGG GGCAGAGGCACACAGCTCAACGACGAGGTGGTGAGCTCTTCGCTGGGTCTGCGACCTGACGGAGTCTTC CAACTCGCCGGATCGGGGAGATCTTCCTTCACGCCTCGTCAGGCGGTCCTGACTTTGGAGAGTTCGTCC TCGCAGCCCCGCTCGGGCGGCATCGGCACTCTCCAGTTCGTGGAGGAGTTCACTCCCTCGGTCTACTTC AАССССTTCTCCGGCTCCCCCGGCCACTACCCGGACGAGTTCATCCCGAACTTTGACGCCATCAGCGAG TCGGTGGACGGCTACGATTGAATGTCCCATGGTGGCGCGGCTGACCTAGCTCGGCTTCGACACCTGGAC CACTGCCGCCGCTTTCGCTGCTTCGCTCGGGACCTCGCCGAGTTCACCTACTTTGAGCTGCCCGAGGAG CATCCTCAGGGCCCGGCCCACGGAGTGCGGATCGTCGTCGAAGGGGGCCTAGACTCCCACCTGCTTCGG АТСТTCAGCCAGCGCCCGATCCTGGTCGAGCGCCAACAGGGCAACACCCTCCTGACCCTCTACTGCATC TGCGACCACCCCGGCCTGCATGAAAGTCTTTGTTGTCTGCTGTGTACTGAGTATAATAAAAGCTGAGAT CAGCGACTACTCCGGACTCAACTGTGGTGTTTCTGCATCCATCAATCGGTCTCTGACCTTCACCGGGAA CGAGACCGAGCTCCAGGTCCAGTGTAAGCCCCACAAGAAGTACCTCACCTGGCTGTACCAGGGCTCCCC GATCGCCGTTGTTAACCACTGCGACGACGACGGAGTCCTGCTGAACGGCCCCGCCAACCTTACTTTTTC CACCCGCAGAAGCAAGCTACTGCTCTTCCGACCCTTCCTCCCCGGCACCTATCAGTGCATCTCGGGACC СTGCCATCACACCTTCCACCTGATCCCGAATACCACCTCTTCCCCAGCACCGCTCCCCACTAACAACCA AACTAACCACCACCAACGCTACCGACGCGACCTCGTTTCTGAATCTAATACCACCCACACCGGAGGTGA
-continued

Sequences
GCTCCGAGGTCGCAAACCCTCTGGGATTTATTACGGCCCCTGGGAGGTGGTGGGGTTAATAGCTTTAGG СTTAGTGGCGGGTGGGCTTTTGGCTCTCTGCTACCTATACCTCCCTTGCTTTTCCTACTTAGTGGTGCT TTGTTGCTGGTTTAAGAAATGGGGAAGATCACCCTAGTGTGCGGTGTGCTGGTGACGGTGGTGCTTTCG ATTCTGGGAGGGGGAAGCGCGGCTGTAGTGACGGAGAAGAAGGCCGATCCCTGCTTGACTTTCAACCCC GATAAATGCCGGCTGAGTTTTCAGCCCGATGGCAATCGGTGCGCGGTGTTGATCAAGTGCGGATGGGAA TGCGAGAGCGTGTTGGTCCAGTATAAAAACAAGACCTGGAACAATACTCTCGCGTCCACATGGCAGCCC GGGGACCCCGAGTGGTACACCGTCTCTGTCCCTGGTGCTGACGGCTCCCTCCGCACGGTGAACAACACT TTCATTTTTGAGCACATGTGCGAGACCGCCATGTTCATGAGCAAGCAGTACGGTATGTGGCCCCCACGT AAAGAGAATATCGTGGTCTTCTCCATCGCTTACAGCGCGTGCACGGTGCTAATCACCGCGATCGTGTGC CTGAGCATTCACATGCTCATCGCTATTCGCCCCAGAAATAATGCCGAGAAAGAGAAACAGCCATAACAC АСТТТТСАСАТАССТTTTTCAGACCATGGCCTCTGTTACAATCCTTATTTATTTTTTGGGACTTGTGGG CACTAGCAGCACTTTTCAGCATATAAACAAAACTGTTTATGCTGGTTCAAATTCTGTGTTAGCTGGACA TCAGTCATACCAGAAAGTTTCATGGTACTGGTATGATAAAAATCAAACACCCGTTACACTCTGCAAGGG TCCACAACAGCCCGTAAACCGTAGTGGGATTTTTTTTAGCTGTAATCATAATAATATCACACTACTTTC AАТTACAAAGCACTATGCTGGAACTTACTATGGAACCAATTTCAATATCAAACATGACACTTACTATAG TGTCAGAGTATTGGATCCAACTACCCCTAGAACAACTACAAAGCCCACCACAACTAAGAAGCCCACTAC AССТААGAAGCCTACCACGCCCAAAACCACTAAGACAACTACTAAGACCACTACCACAGAGCCAACCAC AACCAGCACCCACACTTGCTATAACTACACACACACACACACаCTGAGCTGACCTCACAGGCAACTACT GAAAATGGTTTTGCCCTGTTACAAAAGGGGGAAAACAGTAGCAGCAGTCCTCTGCCTACCACCCCCAGT GAGGAAATACCTAAATCCATGGTTGGCATTATCGCTGCTGTAGTGGTGTGTATGCTGATTATCATCTTG TGCATGATGTACTATGCCTGCTACTACAGAAAACACAGGCTGAACAACAAGCTGGACCCCCTACTGAAT GTTGATTTTTAATTTTTTAGAACCATGAAGATCCTAAGCCTTTTTTGTTTTTCTATAATTATTACCTCT GCTATTTGTAACTCAGTGGATAAGGACGTTACTGTCACCACTGGCTCTAATTATACACTGAAAGGACCT CCCTCAGGTATGCTTTCGTGGTATTGCTATTTTGGAACTGATGTTTCACAAACTGAATTGTGTAATTTT CAAAAAGGCAAAACCCAAAATCCTAAAATTCATAACTATCAATGCAATGGTACTGATTTAGTACTGTTC AATATCACGAAAACATATGCTGGAAGTTATTACTGCCCGGGAGATAATGTTGACAATATGATTTTTTAC GAATTACAAGTAGTTGATCCCACTACTCCAGCACCACCCACCACAACTACCAAGGCACATAGCACAGAC ACACAGGAAACCACTCCAGAGGCAGAAGTAGCAGAGTTAGCAAAGCAGATTCATGAAGATTCCTTTGTT GCCAATACCCCCACACACCCCGGACCGCAATGTCCAGGGCCATTAGTCAGCGGCATTGTCGGTGTGCTT TGCGGGTTAGCAGTTATAATCATCTGCATGTTCATTTTTGCTTGCTGCTACAGAAGGCTTCACCGACAA AAATCAGACCCACTGCTGAACCTCTATGTTTAATTTTTGATTTTCCAGAGCCATGAAGGCACTTAGCAC TTTAGTTTTTTTGACCTTGATTGGCATTGTTTTTAATAGTAAAATTACCAGGGTTAGCTTTCTCAAACA TGTTAATGTTACTGAAGGAAATAATATCACACTAGTAGGTGTAGAAGGTGCTCAAAACACCACCTGGAC AAAATACCATCTCGGGTGGAAAGATATTTGCACCTGGAATGTCACTTATTTTTGCATAGGAGTTAATCT TACCATTGTTAATGCTAATCAATCTCAGAATGGATTAATTAAAGGGCAGAGCGTGAGTGTTACCAGTGA TGGGTACTATACCCAGCATAATTTCAACTACAACATTACTGTTATACCACTGCCAACACCTAGCCCACC TAGCACTACTCAGACCACACAAACAACTCACACTACACAGAGCTCCACAACTACCATGCAGACCACTCA GACAACCACATACACTACTTCCCCTCAGCCCACCACCACTACAGCAGAGGCGAGTAGCTCACCCACCAT CAAAGTGGCATTTTTAATGCTGGCCCCATCTAGCAGTCCCACTGCTAGTACCAATGAGCAGACTACTGA АТTTTTGTCCACTATTCAGAGCAGCACCACAGCTACCTCGAGTGCCTTCTCTAGCACCGCCAATCTCAC СТСGСТTTССТСТАТGССААТСАGTAATGСТАСТАССТСССССGСТССТСТТСССАСТССТСТGAAGСА ATCCGAGTCCAGCACGCAGCTGCAGATCACCCTGCTCATTGTGATCGGGGTGGTCATCCTGGCAGTGCT GCTCTACTTTATCTTCTGCCGTCGCATCCCCAACGCAAAGCCGGCCTACAAGCCCATTGTTATCGGGAC GCCGGAGCCGCTTCAGGTGGAGGGAGGTCTAAGGAATCTTCTCTTCTCTTTTACAGTATGGTGATTTGA ACTATGATTCCTAGACATTTCATTATCACTTCTCTAATCTGTGTGCTCCAAGTCTGTGCCACCCTCGCT CTCGTGGCTAACGCGAGTCCAGACTGCATTGGAGCGTTCGCCTCCTACGTGCTCTTTGCCTTCATCACC TGCATCTGCTGCTGTAGCATAGTCTGCCTGCTTATCACCTTCTTCCAGTTCGTTGACTGGGTCTTTGTG CGCATCGCCTACCTGCGCCACCACCCCCAGTACCGCGACCAGAGAGTGGCGCAACTGTTGAGACTCATC TGATGATAAGCATGCGGGCTCTGCTACTACTTCTCGCGCTTCTGCTAGCTCCCCTCGCCGCCCCCCTAT СССТСАAATCCCCCACCCAGTCCCCTGAAGAGGTTCGAAAATGTAAATTCCAAGAACCCTGGAAATTCC TTTCATGCTACAAACTCAAATCAGAAATGCACCCCAGCTGGATCATGATCGTTGGAATCGTGAACATCC TTGCCTGTACCCTCTTCTCСTTTGTGATTTACCCCCGCTTTGACTTTGGGTGGAACGCACCCGAGGCGC TCTGGCTCCCGCCTGATCCCGACACACCACCACAGCAGCAGCAGCAAAATCAGGCACAGGCACACGCAC САССАСАGССТАGGCCACAATACATGCCCATCTTAAACTATGAGGCCGAGGCACAGCGAGCCATGCTTC CTGCTATTAGTTACTTCAATCTAACCGGCGGAGATGACTGACCCCATGGCCAACAACACCGTCAACGAC CTCCTGGACATGGACGGCCGCGCCTCGGAGCAGCGACTCGCCCAACTCCGCATCCGCCAGCAGCAGGAG AGAGCCGTCAAGGAGCTGCAGGATGCGGTGGCCATCCACCAGTGCAAGAGAGGCATCTTCTGCCTGGTG AAGCAGGCCAAGATCTCCTTCGAGGTCACGTCCACCGACCATCGCCTCTCCTACGAGCTCCTGCAGCAG CGCCAGAAGTTCACCTGCCTGGTCGGAGTCAACCCCATCGTCATCACCCAGCAGTCTGGCGATACCAAG GGTTGCATCCACTGCTCCTGCGACTCCCCCGAGTGCGTTCACACCCTGATCAAGACCCTCTGCGGCCTC CGCGACCTCCTCCCCATGAACTAATCAACTAACCCCCTACCCCTTTACCCTCCAGTAAAAATAAAGATT AAAAATGATTGAATTGATCAATAAAGAATCACTTACTTGAAATCTGAAACCAGGTCTCTGTCCATGTTT TСTGTCAGCAGCACTTCACTCCCCTCTTCCCAACTCTGGTACTGCAGGCCCCGGCGGGCTGCAAACTTC CTCCACACTCTGAAGGGGATGTCAAATTCCTCCTGTCCCTCAATCTTCATTTTTATCTTCTATCAGATG TCCAAAAAGCGCGCGCGGGTGGATGATGGCTTCGACCCCGTGTACCCCTACGATGCAGACAACGCACCG AСTGTGCCCTTCATCAACCCTCCCTTCGTCTCTTCAGATGGATTCCAAGAAAAGCCCCTGGGGGTGTTG TCCCTGCGACTGGCCGACCCCGTCACCACCAAGAATGGGGCTGTCACCCTCAAGCTGGGGGAGGGGGTG GACCTCGACGACTCGGGAAAACTCATCTCCAAAAATGCCACCAAGGCCACTGCCCCTCTCAGTATTTCC AACGGCACCATTTCCCTTAACATGGCTGCCCCTTTTTACAACAACAATGGAACGTTAAGTCTCAATGTT TCTACACCATTAGCAGTATTTCCCACTTTTAACACTTTAGGTATCAGTCTTGGAAACGGTCTTCAAACT TCTAATAAGTTGCTGACTGTACAGTTAACTCATCCTCTTACATTCAGCTCAAATAGCATCACAGTAAAA ACAGACAAAGGACTCTATATTAATTCTAGTGGAAACAGAGGGCTTGAGGCTAACATAAGCCTAAAAAGA GGACTGATTTTTGATGGTAATGCTATTGCAACATACCTTGGAAGTGGTTTAGACTATGGATCCTATGAT AGCGATGGGAAAACAAGACCCATCATCACCAAAATTGGAGCAGGTTTGAATTTTGATGCTAATAATGCC ATGGCTGTGAAGCTAGGCACAGGTTTAAGTTTTGACTCTGCCGGTGCCTTAACAGCTGGAAACAAAGAG GATGACAAGCTAACACTTTGGACTACACCTGACCCAAGCCCTAATTGTCAATTACTTTCAGACAGAGAT GCCAAATTTACCCTATGTCTTACAAAATGCGGTAGTCAAATACTAGGCACTGTTGCAGTAGCTGCTGTT
-continued

Sequences
ACTGTAGGTTCAGCACTAAATCCAATTAATGACACAGTAAAAAGCGCCATAGTATTCCTTAGATTTGAC TCTGACGGTGTGCTCATGTCAAACTCATCAATGGTAGGTGATTACTGGAACTTTAGGGAAGGACAGACC ACCCAAAGTGTGGCCTATACAAATGCTGTGGGATTCATGCCCAATCTAGGTGCATATCCTAAAACCCAA AGCAAAACACCAAAAAATAGTATAGTAAGTCAGGTATATTTAAATGGAGAAACTACTATGCCAATGACA CTGACAATAACTTTCAATGGCACTGATGAAAAAGACACAACACCTGTGAGCACTTACTCCATGACTTTT ACATGGCAGTGGACTGGAGACTATAAGGACAAGAATATTACCTTTGCTACCAACTCCTTTACTTTCTCC TACATGGCCCAAGAATAAACCCTGCATGCCAACCCCATTGTTCCCACCACTATGGAAAACTCTGAAGCA GAAAAAAATAAAGTTCAAGTGTTTTATTGATTCAACAGTTTTCACAGAATTCGAGTAGTTATTTTCCCT ССТСССТСССААСТСАТGGAATACACCACCCTCTCCCCACGCACAGCCTTAAACATCTGAATGCCATTG GTAATGGACATGGTTTTGGTCTCCACATTCCACACAGTTTCAGAGCGAGCCAGTCTCGGGTCGGTCAGG GAGATGAAACCCTCCGGGCACTCCTGCATCTGCACCTCAAAGTTCAGTAGCTGAGGGCTGTCCTCGGTG GTCGGGATCACAGTTATCTGGAAGAAGAGCGGTGAGAGTCATAATCCGCGAACGGGATCGGGCGGTTGT GGCGCATCAGGCCCCGCAGCAGTCGCTGTCTGCGCCGCTCCGTCAAGCTGCTGCTCAAGGGGTCTGGGT CCAGGGACTCCCTGCGCATGATGCCGATGGCCCTGAGCATCAGTCGCCTGGTGCGGCGGGCGCAGCAGC GGATGCGGATCTCACTCAGGTCGGAGCAGTACGTGCAGCACAGCACTACCAAGTTGTTCAACAGTCCAT AGTTCAACGTGCTCCAGCCAAAACTCATCTGTGGAACTATGCTGCCCACATGTCCATCGTACCAGATCC TGATGTAAATCAGGTGGCGCCCCCTCCAGAACACACTGCCCATGTACATGATCTCCTTGGGCATGTGCA GGTTCACCACCTCCCGGTACCACATCACCCGCTGGTTGAACATGCAGCCCTGGATAATCCTGCGGAACC AGATGGCCAGCACCGCCCCGCCCGCCATGCAGCGCAGGGACCCCGGGTCCTGGCAATGGCAGTGGAGCA CCCACCGCTCACGGCCGTGGATTAACTGGGAGCTGAACAAGTCTATGTTGGCACAGCACAGGCACACGC TCATGCATGTCTTCAGCACTCTCAGTTCCTCGGGGGTCAGGACCATGTCCCAGGGCACGGGGAACTCTT GCAGGACAGTGAACCCGGCAGAACAGGGCAGCCCTCGCACACAACTTACATTGTGCATGGACAGGGTAT CGCAATCAGGCAGCACCGGATGATCCTCCACCAGAGAAGCGCGGGTCTCGGTCTCCTCACAGCGAGGTA AGGGGGCCGGCGGTTGGTACGGATGATGGCGGGATGACGCTAATCGTGTTCTGGATCGTGTCATGATGG AGCTGTTTCCTGACATTTTCGTACTTCACGAAGCAGAACCTGGTACGGGCACTGCACACCGCTCGCCGG CGACGGTCTCGGCGCTTCGAGCGCTCGGTGTTGAAGTTATAGAACAGCCACTCCCTCAGAGCGTGCAGT ATCTCCTGAGCCTCTTGGGTGATGAAAATCCCATCCGCTCTGATGGCTCTGATCACATCGGCCACGGTG GAATGGGCCAGACCCAGCCAGATGATGCAATTTTGTTGGGTTTCGGTGACGGAGGGAGAGGGAAGAACA GGAAGAACCATGATTAACTTTATTCCAAACGGTCTCGGAGCACTTCAAAATGCAGGTCCCGGAGGTGGC AССТСТСGCCCCCACTGTGETGGTGGAAAATAACAGCCAGGTCAAAGGTGACACGGTTCTCGAGATGTT CCACGGTGGCTTCCAGCAAAGCCTCCACGCGCACATCCAGAAACAAGAGGACAGCGAAAGCGGGAGCGT TTTCTAATTCCTCAATCATCATATTACACTCCTGCACCATCCCCAGATAATTTTCATTTTTCCAGCCTT GAATGATTCGTATTAGTTCCTGAGGTAAATCCAAGCCAGCCATGATAAAAAGCTCGCGCAGAGCGCCCT CCACCGGCATTCTTAAGCACACCCTCATAATTCCAAGAGATTCTGCTCCTGGTTCACCTGCAGCAGATT AACAATGGGAATATCAAAATCTCTGCCGCGATCCCTAAGCTCCTCCCTCAACAATAACTGTATGTAATC TTTCATATCATCTCCGAAATTTTTAGCCATAGGGCCGCCAGGAATAAGAGCAGGGCAAGCCACATTACA GATAAAGCGAAGTCCTCCCCAGTGAGCATTGCCAAATGTAAGATTGAAATAAGCATGCTGGCTAGACCC TGTGATATCTTCCAGATAACTGGACAGAAAATCAGGCAAGCAATTTTTAAGAAAATCAACAAAAGAAAA GTCGTCCAGGTGCAGGTTTAGAGCCTCAGGAACAACGATGGAATAAGTGCAAGGAGTGCGTTCCAGCAT GGTTAGTGTTTTTTTGGTGATCTGTAGAACAAAAAATAAACATGCAATATTAAACCATGCTAGCCTGGC GAACAGGTGGGTAAATCACTCTTTCCAGCACCAGGCAGGCTACGGGGTCTCCGGCGCGACCCTCGTAGA AGCTGTCGCCATGATTGAAAAGCATCACCGAGAGACCTTCCCGGTGGCCGGCATGGATGATTCGAGAAG AAGCATACACTCCGGGA.ACATTGGCATCCGTGAGTGAAAAAAAGCGACCTATAAAGCCTCGGGGCACTA CAATGCTCAATCTCAATTCCAGCAAAGCCACCCCATGCGGATGGAGCACAAAATTGGCAGGTGCGTAAA AААТGTAATTACTCCCCTCCTGCACAGGCAGCAAAGCCCCCGCTCCCTCCAGAAACACATACAAAGCCT CAGCGTCCATAGCTTACCGAGCACGGCAGGCGCAAGAGTCAGAGAAAAGGCTGAGCTCTAACCTGACTG СССGСТССТGTGCTCAATATATAGCCCTAACCTACACTGACGTAAAGGCCAAAGTCTAAAAATACCCGC СААААТGACACACACGCCCAGCACACGCCCAGAAACCGGTGACACACTCAAAAAAATACGTGCGCTTCC TCAAACGCCCAAACCGGCGTCATTTCCGGGTTCCCACGCTACGTCACCGCTCAGCGACTTTCAAATTCC GTCGACCGTTAAAAACGTCACTCGCCCCGCCCCTAACGGTCGCCCTTCTCTCGGCCAATCACCTTCCTC ССТTCCCAAATTCAAACGCCTCATTTGCATATTAACGCGCACAAAAAGTTTGAGGTATATATTTGAATG ATG
(AdY25 Hexon protein (L3))
SEQ ID NO. 2
MATPSMLPQNAYMHIAGQDASEYLSPGLVQFARATDTYFSLGNKFRNPTVAPTHDVTTDRSQRLTLRFV PVDREDNTYSYKVRYTLAVGDNRVLDMASTYFDIRGVLDRGPSFKPYSGTAYNSLAPKGAPNSSQWEQK KAGNGDTMETHTFGVAPMGGENITIDGLQIGTDATADQDKPIYADKTFQPEPQVGEENWQETESFYGGR ALKKDTSMKPCYGSYARPTNVKGGQAKLKVGADGVPTKEFDIDLAFFDTPGGTVNGQDEYKADIVMYTE NTYLETPDTHVVYKPGKDDASSEINLVQQSMPNRPNYIGFRDNFIGLMYYNSTGNMGVLAGQASQLNAV VDLQDRNTELSYQLLLDSLGDRTRYFSMWNQAVDSYDPDVRII ENHGVEDELPNYCFPLDGSGTNAAYQ GVKVKNGNDGDVESEWENDDTVAARNQLCKGNIFAMEINLQANLWRSFLYSNVALYLPDSYKYTPANIT LPTNTNTYDYMNGRVVPPSLVDAYINIGARWSLDPMDNVNPFNHHRNAGLRYRSMLLGNGRYVPFHIQV PQKFFAIKSLLLLPGSYTYEWNFRKDVNMI LQSSLGNDLRTDGAS ISFTSINLYATFFPMAHNTASTLE AMLRNDINDQSFNDYLSAANMLYPI PANATNVPISI PSRNWAAFRGWSFTRLKTKETPSLGSGFDPYFV YSGSIPYLDGTFYLNHTFKKVSITFDSSVSWPGNDRLLTPNEFEI KRTVDGEGYNVAQCNMTKDWFLVQ MLAHYNIGYQGFYVPEGYKDRMYSFFRNFQPMSRQVVDEVNYKDYQAVTLAYQHNNSGFVGYLAPTMRQ GQPYPANYPYPLIGKSAVTSVTQKKFLCDRVMWRIPFSSNFMSMGALTDLGQNMLYANSAHALDMNFEV DPMDESTLLYVVFEVFDVVRVHQPHRGVIEAVYLRTPFSAGNATT
(AdY25 Penton protein (L2))
SEQ ID NO. 3
MMRRAYPEGPPPSYESVMQQAMAAAAAMQPPLEAPYVPPRYLAPTEGRNSIRYSELAPLYDTTRLYLVD NKSADIASLNYQNDHSNFLTTVVQNNDFTPTEASTQTINFDERSRWGGQLKTIMHTNMPNVNEFMYSNK FKARVMVSRKTPNGVTVTDGSQDILEYEWVEFELPEGNFSVTMTIDLMNNAIIDNYLAVGRQNGVLESD IGVKFDTRNFRLGWDPVTELVMPGVYTNEAFHPDIVLLPGCGVDFTESRLSNLLGIRKRQPFQEGFQIM YEDLEGGNIPALLDVDAYEKSKEESAAAATAAVATASTEVRGDNFASPAAVAAAEAAETESKIVIQPVE
-continued

Sequences
KDSKDRSYNVLPDKINTAYRSWYLAYNYGDPEKGVRSWTLLTTSDVTCGVEQVYWSLPDMMQDPVTFRS TRQVSNYPVVGAELLPVYSKSFFNEQAVYSQQLRAFTSLTHVFNRFPENQILVRPPAPTITTVSENVPA LTDHGTLPLRSSIRGVQRVTVTDARRRTCPYVYKALGIVAPRVLSSRTF
(AdY25 Fibre Protein (L5))
SEQ ID NO. 4
MSKKRARVDDGFDPVYPYDADNAPTVPFINPPFVSSDGFQEKPLGVLSLRLADPVTTKNGAVTLKLGEG VDLDDSGKLISKNATKATAPLSISNGTISLNMAAPFYNNNGTLSLNVSTPLAVFPTFNTLGISLGNGLQ TSNKLLTVQLTHPLTFSSNSI TVKTDKGLY INSSGNRGLEANI SLKRGLIFDGNAIATYLGSGLDYGSY DSDGKTRPIITKIGAGLNFDANNAMAVKLGTGLSFDSAGALTAGNKEDDKLTLWTTPDPSPNCQLLSDR DAKFTLCLTKCGSQILGTVAVAAVTVGSALNPINDTVKSAIVFLRFDSDGVLMSNSSMVGDYWNFREGQ TTQSVAYTNAVGFMPNLGAYPKTQSKTPKNSIVSQVYLNGETTMPMTLTITFNGTDEKDTTPVSTYSMT FTWQWTGDYKDKNI TFATNSFTESYMAOE
(AdY25 E1A)
SEQ ID NO. 5
MRHLRDLPDEKIIIASGNEILELVVNAMMGDDPPEPPTPFEAPSLHDLYDLEVDVPEDDPNEEAVNDLF SDAALLAAEEASSPSSDSDSSLHTPRPGRGEKKIPELKGEEMDLRCYEECLPPSDDEDEQAIQNAASOG MQAASESFALDCPPLPGHGCKSCEFHRLNTGDKAVLCALCYMRAYNHCVYSPVSDADDETPTTESTSSP PEIGTSPPENIVRPVPVRATGRRAAVECLDDLLQAGDEPLDLCTRKRPRH
(AdY25 E1B 19 KDa)
SEQ ID NO. 6 MEIWTILEDLHKTRQLLENASNGVSHLWRFCFGGDLAKLVYRAKQDYSEQFEVILRECPGLFDALNLGH QTHFNQRIVRALDFTTPGRSTAAVAFFAFLLDKWSQETHF SRDYQLDFLAVALWRTWKSQRLNAISGYL PVQPLDTLKILNLQESPRARQRRRQQQRQQEEDQEENPRAGLDPPAEEE
(AdY25 E1B 55 kDa
SEQ ID NO. 7
MESRNPFOQGLPAGFLSSSFVENMEIPAPECNLRLLAGTATRHSEDPESPGESQGTPTSPAAAAAAGGG SRREPESRPGPSGGGGVADLFPELRRVLTRSSSGRERGIKRERHDETNHRTELTVGLMSRKRPETVWWH EVQSTGTDEVSVMHERFSLEQVKTCWLEPEDDWEVAIRNYAKLALRPDKKYKI TKLINIRNACYISGNG AEVEICLQERVAFRCCMMINMYPGVVGMDGVTFMNMRFRGDGYNGTVFMANTKLTVHGCSFFGFNNTCIE AWGQVGVRGCSFSANWMGVVGRTKSMLSVKKCLFERCHLGVMSEGEARIRHCASTETGCFVLCKGNAKI KHNMICGA.SDERGYQMLTCAGGNSHMLATVHVASHARKPNPEFEHNVMTRCNMHLGSRRGMFMPYQCNL NYVKVLLEPDAMSRVSLTGVFDMNVEVWKILRYDESKTRCRACECGGKHARFQPVCVEVTEDLRPDHLV LSCTGTEFGSSGEESD
(AdY25 pIX)
SEQ ID NO. 8
MSGSGSFEGGVFSPYLTGRLPSWAGVRQNVMGSTVDGRPVQPANSSTLTYATLSSSSVDAAAAAAAASA ASAVRGMAMGAGYYGTLVANSSSTNNPASLNEEKLLLLMAQLEALTQRLGELTQQVAQLQEQTRAAVAT vKSK
(AdY25 IVa2 (E2))
SEQ ID NO. 9
METKGRRRSGAVFDQPDEPEAHPRKRPARRAPLHRDGDHPDADAAALEGPDPGCAGRPSSGALLPQSSQ PAKRGGLLDRDAVEHITELWDRLELLQQTLSKMPMADGLKPLKNFASLQELLSLGGLLPQSSQERLLAE LVRENMHVREMMNEVAPLLREDGSCLSLNYHLQPVIGVIYGPTGCGKSQLLRNLLSAQLISPAPETVFF IAPQVDMIPPSELKANEMQICEGNYAPGIEGTFVPQSGTLRPKFI KMAYDDLTQDHNYDVSDPRNVFAQ AAAHGPIAIIMDECMENLGGHKGVAKFFHAFPSKLHDKFPKCIGYTVLVVLHNMNPARDLGGNI ANLKI QAKMBLISPRMHPSQLNRFVNTYTKGLPVAISLLLKDIVQHHALRPCYDWVIYNTTPEHEALQWSYLHP RDGLMPMYLNIQAHLYRVLEKIHRVLNDRDRWSRAYRARKIK
(AdY25 PolYmerase (E2))
SEQ ID NO. 10
MALVQTHGSRGLHPEASDPGRQPSRRRSRQSSPGAVPEPTRARRRRAPAAPASGPRAASAARRASSPPL LTMEEAPPPSPQPPKKKRGTVVTPQGHGTLQAIDVATNGAVEI KYHLDLPRALEKLLQVNRAPPLPTDL TPQRLRILDSSGLRALVLALRPARAEVWTCLPRGLVSMTTIEAEEGQADITHDVVQHEMQAPRLHFPLK FLVKGTQVQLVQHVHPVQRCEHCGRINKHKHECSARRRHFYFHHINSHSSNWWQEIQFFPIGSHPRTER LFLTYDVETYTWMGSFGKQLVPFMLVMKLSGDDRLVELALDLALQLKWDRWHGDPRTFYCVTPEKMAVG QQFRQYRDRLQTALAVDLWTSFLRANPHLADWALEQHGLSDPDELTYEELKKLPHVKGRPRFVELYIVG HNINGFDEIVLAAQVINNRAEVPQPFRITRNFMPRAGKILFNDVTFALPNPAYKKRTDFQLWEQGGCGG IDFKHQFLKVMVRDTFALTHTSLRKAAQAYALPVEKGCCAYKAVNQFYMLGSYRADQDGFPLEEYWKDR EEFLLNRELWKQKGQLKYDIIQETLDYCALDVLVTAELVAKLQDSYAHFIRDSVGLPHAHFNIFQRPTI SSNSHAIFRQIVYRAEKPSRTNLGPGLLAPSHELYDYVRASIRGGRCYPTYIGILEEPLYVYDICGMYA SALTHPMPWGTPLSPYERALAVREWQASLDDLATSISYFDPDLLPGIFTIDADPPDEVMLDPLPPFCSR KGGRLCWTNEPLRGEVATSVDLITLHNRGWQVRIVPDEMTTVFPEWKCVAREYVQLNIAAKERADKEKN QTMRSIAKLLSNALYGSFATKLDNKKIVFSDQMDEGLLKGISAGTVNIKSSSFLETDNLSAEVMPAFER EYLPQQLALLDSDPEDSEDEQGPAPFYTPPAGTPGHVAYTYKPITFLDVDEGDMCLHTLEKVDPLVDND RYPSHVASFVLAWTRAFVSEWAGFLYEEDRGTPLEDRPIKSVYGDTDSLFVTQRGHELMETKGKKRIKK NGGKLVFDPDQPDLTWLVECETVCAHCGADAYAPDSVFLAPKLYALKSLLCPACGQTSKGKLRAKGHAA EALNYELMVNCYLADAQGADRERFSTSRMSLKRTLASAQPGAHPFTVTETTLTRTLRPWKDRTLAALDA HRLVPYSRSRPNPRNEEVCWIEMP

```
(AdY25 pTP (E2))
```

SEQ ID NO. 11
MALSIHDCARLTGQTVPTMNYFLPLRNIWNRVREFPRASTTAAGI TWMSRYIYGYHRTMLEDLAPGA.PA TERWPLYRQPPPHFLIGYQYLVRTCNDYIFDTRAYSRLKYHELVRPGHQTVNWSVMANCSYTINTGAYH RFVDFDDFQTTLTQIQQAILAERVVADLALVQPQRGFGLTRMHGRAGEEEVPVERLMQDYYKDLARCOD HAWGMADRLRIQQAGPKDLVLLATIRRLRTAYFNFITSSIARPAPQHDPAEETVLSLPCDCDWLEAFVQ RFSDPVDLETLRSLRGVPTGQLIRCIVSALSLPNGDPPGHLEMRGGVFTLRPREDGRAVTETMRRRRGE TIERFIDRLPVRRRRRRPPPPPPPPPEEEVEEWILVEEEEEEEVEELPGAFEREVRATIAELIRLLEEE LTVSARNSQFFNFAVDFYEAMERLEALGDVSEMPLRRWIMYFFVTEHIATTLNYLYQRLCNYAVFTRHV ELNLAQVVMRARDPEGVVVYSRVWNEAGMNAFSQLMGRISNDLAATVERAGRGDLQEEEIEQFMTEIAY QDNSGDVQEI LRQAAVNDTEIDSVELSFRFKLTGPVAFTQRRQIQDVNRRVVAHASLLRAQYQNLPARG ADVPLPPLPPGPEPPLPPGARPRRRF
(AdY25 52/55 kDa (L1))
SEQ ID NO. 12
MHPVLRQMRPHHPPPQQQPPPPQPALLPPPQQQQQLPATTAAAAVSGAGQTSQYDRLALEEGEGLARLG ASSPERHPRVQMKRDAREAYVPKQNLFRDRSGEEPEEMRAARFHAGRELRRGLDRKRVLRDEDFEADEL TGISPARAHVAAANLVTAYEQTVKEESNFQKS FNNHVRTLIAREEVTLGLMHLWDLLEAIVQNPTSKPL TAQLFLVVQHSRDNEAFREALLNITEPEGRWLLDLVNILQSIVVQERGLPLSEKLAAINFSVLSLGKYY ARKIYKTPYVPIDKEVKIDGFYMRMTLKVLTLSDDLGVYYNDRIMBRAVSASRRRELSDQELMHSLQRAL TGAGTEGESYFDMGADLHWQPSRRALEAAGGPPYIEEVDDEVDEEGEYLED

```
(AdY25 IIIa (L1))
```

SEQ ID NO. 13
MQQQPPPDPAMRAALQSQPSGINSSDDWTQAMQRIMALTTRNPEAFRQQPQANRLSAILEAVVPSRSNP THEKVLAIVNALVENKAIRGDEAGLVYNALLERVARYNSTNVQTNLDRMVTDVREAVAQRERFHRESNL GSMVALNAFLSTQPANVPRGQEDYTNFISALRLMVTEVPQSEVYQSGPDYFFQTSRQGLQTVNLSQAFK NLQGLWGVQAPVGDRATVSSLLTPNSRLLLLLVAPFTDSGSINRNSYLGYLINLYREAIGQAHVDEQTY QEITHVSRALGQDDPGNLEATLNFLLTNRSQKIPPQYTLSAEEERILRYVQQSVGLFLMQEGATPSAAL DMTARNMEPSMYASNRPFINKLMDYLHRAAAMNSDYFTNAILNPHWLPPPGFYTGEYDMPDPNDGFLWD DVDSSVFSPRPGANERPLWICKEGSDRRPSSALSGREGAAAAVPEAASPFPSLPFSLNSIRSSELGRIT RPRLLGEEEYLNDSLLRPEREKNFPNNGIESLVDKMSRWKTYAQEHRDDPSQGATSRGSAARKRRWEDR QRGLMINDDEDSADDSSVLDLGGSGNPFAHLRPRIGRMM

```
(AdY25 VII)
```

SEQ ID NO. 14
MSILISPSNNTGWGLRAPSKMYGGARQRSTQHPVRVRGHFRAPWGALKGRVRSRTTVDDVIDQVVADAR NYTPAAAPVSTVDAVIDSVVADARRYARAKSRRRRIARRHRSTPAMRAARALLRRARRTGRRAMLRAAR RAASGA.SAGRTRRRAATAAAAAIASMSRPRRGNVYWVRDAATGVRVPVRTRPPRT

(AdY25 V)

SEQ ID NO. 15
MSKRKFKEEMLQVIAPEIYGPAVVKEERKPRKIKRVKKDKKEEDDDLVEFVREFAPRRRVQWRGRKVIT PVLRPGTTVVFTPGERSGSASKRSYDEVYGDEDILEQAAERLGEFAYGKRSRPALKEEAVSIPLDHGINP TPSLKPVTLQQVLPSAAPRRGFKREGEDLYPTMQLMVPKRQKLEDVLETMKVDPDVQPEVKVRPIKQVA PGLGVQTVDIKIPTEPMETQTEPMI KPSTSTMEVQTDPWMPSAPSRRPRRKYGAASLLMPNYALHPSII PTPGYRGTRFYRGHTTSRRRKTTTRRRRRRTAAASTPAALVRRVYRRGRAPLTLPRARYHPSIAI

```
(AdY25 Mu)
```

SEQ ID NO. 16
MALTCRLRVPITGYRGRKPRRRRLAGNGMRRHEHRRRRAISKRLGGGFLPALIPIIAAAIGAIPGIASV AVQASQRH
(AdY25 VI)
SEQ ID NO. 17
MEDINFSSLAPRHGTRPFMGTWSDIGTSQLNGGAFNWSSLWSGLKNEGSTLKTYGSKAWNSTTGQALRD KLKEQNFQQKVVDGLASGINGVVDLANQAVQRQINSRLDPVPPAGSVEMPQVEEELPPLDKRGEKRPRP DAEETLLTHTDEPPPYEEAVKLGLPTTRPIAPLATGVLKPESNKPATLDLPPPASRPSTVAKPLPPVAV ARARPGGSARPHANWOSTLNSIVGLGVQSVKRRRCY
(AdY25 Endoprotease)
SEQ ID NO. 18 MAEPTGSGEQELRAIIRDLGCGPYFLGTEDKRFPGFMAPHKLACAIVNTAGRETGGEHWLAFAWNPRSN TCYLFDPFGFSDERLKQIYQFEYEGLLRRSALATEDRCVTLEKSTQTVQGPRSAACGLFCCMFLHAFVH WPDRPMDKNPTMNLLTGVPNGMLQSPQVEPTLRRNQEALYRFLNSHSAYFRSHRARIEKATAFDRMNNVQ DM
(AdY25 DNA Binding Protein)
SEQ ID NO. 19
MAGRGGSQSERRRERTPERGRGSASHPPSRGGESPSPPPLPPKRHTYRRVASDQEEEEIVVVSENSRSP SPQASPPPLPPICKICPRICTKHVVMQDVSQDSEDERQAEEELAAVGESYPPVRITEKDGKRSFETLDE SDPLAAAASAKMMVKNPMSLPIVSAWEKGMEIMTMLMDRYRVETDLKANFQLMPEQGEVYRRICHLYIN EEHRGI PLTFTSNKTLTIMMGRFLQGFVHAHSQIAHKNWECTGCALWLHGCTEAEGKLRCLHGTTMIOK EHMI EMDVASENGQRALKENPDRAKITQNRWGRSVVQLANNDARCCVHDAGCATNQESSKSCGVFFTEG
-continued
Sequences

AKAQQAFRQLEAFMKAMYPGMNADQAQMMLIPLHCDCNHKPGCVPTMGRQTCKMTPFGMANAEDLDVES ITDAAVLASVKITPALMVFQCCNPVYRNSRAQNAGPNCDFKISAPDLLGALQLTRKLWTDSFPDTPLPK LLIPEFKWLAKYQFRNVSLPAGHAETRQNPFDF
(AdY25 100 kDa (L4))
SEQ ID NO. 20
METQPSPTSPSAPTAGDEKQQQQNESLTAPPPSPASDAAAVPDMOEMEESIEIDLGYVTPAEHEEELAV REQSSSQEDI CEQPEQEAENEQSQAGLEHGDYLHLSGEEDALI KHLARQATIVKDALLDRTEVPLSVEE LSRAYELNLFSPRVPPKRQPNGTCEPNPRLNEYPVFAVPEALATYHI FFKNQKIPVSCRANRTRADALF NLGPGARLPDIASLEEVPKIFEGLGSDETRAANALQGEGGGEHEHHSALVELEGDNARLAVLKRTVELT HFAYPALNLPPKVMSAVMDQVLIKRASPISEDEGMQDSEEGKPVVSDEQLARWLGPNATPQSLEERRKL MMAVVLVTVELECLARFFADAETLRKVEENLHYLFRHGEVRQACKISNVELTNLVSYMGILHENRLGQN VLHTTLRGEARRDYIRDCVYLYLCHTWQTGMGVWQQCLEEQNLKELCKLLQKNLKGLWTGFDERTTASD LADLIFPERLRLTLRNGLPDFMSQSMLQNFRSFILERSGILPATCSALPSDEVPLTFRECPPPLWSHCY LLRLANYLAYHSDVIEDVSGEGLLECHCRCNLCTPITRSLACNPOLLSETQIIGTFELQGPSEGEGAKG GLKLTPGLWTSAYLRKFVPEDYHPFEIRFYEDQSQPPKAELSACVITQGAILAQLQAIQKSRQEFLLKK GRGVYLDPQTGEELNPGFPQDAPRKQEAESGAAARGGEGGRLGEQQSGRGDGGRLGQHSGRGGQPARQS GGRRGGGRGGGGRSSRRQTVVLGGGESKQHGYHLRSGSGSRSAPQ

```
(AdY25 22 kDa )
```

SEQ ID NO. 21
MPRGNKKLKVELPPVEDLEEDWENSSQAEEMEEDWDSTQAEEDSLQDSLEEDEEEAEEEVEEAAAARPS SSAGEKASSTDTISAPGRGPARPHSRWDETGRFPNPTTOTGKKEROGYKSWRGHKNAIVSCLQACGGNI SFTRRYLLEHRGVNFPRNILHYYRHLHSPYYFQEEAAAAEKDQKTS
(AdY25 33 kDa (L4))
SEQ ID NO. 22
MPRGNKKLKVELPPVEDLEEDWENSSQAEEMEEDWDSTQAEEDSLQDSLEEDEEEAEEEVEEAAAARPS SSAGEKASSTDTISAPGRGPARPHSRWDETGRFPNPTTQTAPTTSKKRQQQQICKTRKPARKSTAAAAA GGLRIAANEPAQTRELRNRIEPTLYAIFQQSRGQEQELKVKNRSLRSLTRSCLYHKSEDQLQRTLEDAE ALFNKYCALTLKE
(AdY25 pVIII (L4))
SEQ ID NO. 23
MSKEIPTPYMWSYQPQMGLAAGAAQDYSTRMNWLSAGPAMISRVNDIRAHRNQILLEQSALTATPRNHL NPRNWPAALVYQEI PQPTTVLLPRDAQAEVQLTNSGVQLAGGATLCRHRPAQGI KRLVIRGRGTQLNDE VVSSSLGLRPDGVFQLAGSGRSSFTPRQAVLTLESSSSQPRSGGIGTLQFVEEFTPSVYFNPFSGSPGH YPDEFIPNFDAISESVDGYD

```
(AdY25 E3 12.5 kDa\()\)
```

SEQ ID NO. 24
MSHGGAADLARLRELDHCRRFRCFARDLAEFTYFELPEEHPQGPAHGVRIVVEGGLDSHLLRIFSQRPI LVERQQGNTLLTLYCICDHPGLHESLCCLLCTEYNKS

```
(AdY25 E3 CRIaI)
```

SEQ ID NO. 25
MKVFVVCCVLSIIKAEISDYSGLNCGVSASINRSLTFTGNETELQVQCKPRECKYLTWLYQGSPIAVVN HCDDDGVLLNGPANLIFSTRRSKLLLFRPFLPGTYQCISGPCHHTFHLIPNTTSSPAPLPTNNQTNHHQ RYRRDLVSESNTTHTGGELRGRI CPSGIYYGPWEVVGLIALGLVAGGLLALCYLYLPCFSYLVVLCCWF KKWGRSP
(AdY25 E3 gp19 kDa)
SEQ ID NO. 26
MGKI TLVCGVLVTVVLS ILGGGSAAVVTEKKADPCLTFNPDKCRLSFQPDGNRCAVLIKCGWECESVLV QYKNKTWNNTLASTWQPGDPEWYTVSVPGADGSLRTVNNTFIFEHMCETAMFMSKQYGMWPPRKENIVV FSIAYSACTVLITAIVCLSIHMLIAIRPRNNAEKEKQP
(AdY25 E3 22.3 kDa)
SEQ ID NO. 27
MICILSLFCFSIIITSAICNSVDICDVTVTTGSNYTLKGPPSGMLSWYCYFGTDVSQTELCNFQKGKTQ NPKIHNYQCNGTDLVLFNITKTYAGSYYCPGDNVDNMI FYELQVVDPTTPAPPTTTTKAHSTDTQETTP EAEVAELAKQII IEDSFVANTPTHPGPQCPGPLVSGIVGVLCGLAVIIICMFIFACCYRRLHRQKSDPL LNLYV
(AdY25 E3 31 kDa)
SEQ ID NO. 28
MKALSTLVFLTLIGIVFNSKITRVSFLKHVNVTEGNNITLVGVEGAQNTTWTKYHLGWKDICTWNVTYF CIGVNLTIVNANQSQNGLI KGQSVSVTSDGYYTQHNFNYNITVIPLPTPSPPSTTQTTQTTHTTQSSIT TMQTTQTTTYTTSPQPITTTAEASSSPTIKVAFLMLAPSSSPTASTNEQTTEFLSTIQSSTTATSSAFS STANLTSLSSMPISNATTSPAPLPTPLKQSESSTQLQITLLIVIGVVILAVLLYFIFCRRIPNAKPAYK PIVIGTPEPLQVEGGLRNLLFSFTVW
(AdY25 E3 10.4 kDa$)$
SEQ ID NO. 29
MIPRHFIITSLICVLQVCATLALVANASPDCIGAFASYVLFAFITCICCCSIVCLLITFFQFVDWVFVR IAYLRHHPQYRDQRVAQLLRLI

	Sequences
(AdY25 E3 15.2 kDa)	

MRALLLLLLALLLAPLAAPLSLKSPTOSPEEVRKCKFOEPWKFLSCYKLKSEMHPSWTMTVGIVNILACT LFSFVIYPRFDFGWNAPEALWLPPDPDTPPQQQQQNQAQAHAPPQPRPQYMPILNYEAEAQRAMLPAIS YFNLTGGDD
(AdY25 E3 14.7 kDa$)$
SEQ ID NO. 31
MTDPMANJTVNDLLDMDGRASEQRLAQLRIRQQQERAVKELQDAVAIHQCKRGIFCLVKQAKISFEVIS TDHRLSYELLQQRQKFTCLVGVNPIVITQQSGDTKGCIHCSCDSPECVHTLIKTLCGLRDLLPMN
(AdY25 E4 Orf 6/7)
SEQ ID NO. 32
MSGNSS IMIRSRTRLASSRHHPYQPPAPLPRCEETETRASLVEDHPVLPDCDTLSMHNITVIPTTEDSP QLLNFEVQMQECPEGFISLTDPRLARSETVWNVETKTMSI INGIQMFKAVRGERVVYSMSWEGGGKITT RIL
(AdY25 E4 Orf 6)
SEQ ID NO. 33
MSGNSSIMTRSRTRLASSRHHPYQPPAPLPRCEETETRASLVEDHPVLPDCDTLSMHNVSCVRGLPCSA GFTVLQEFPVPWDMVLTPEELRVLKTCMSVCLCCANIDLFSSQLIHGRERWVLHCHCQDPGSLRCMAGG AVLAIWFRRIIQGCMFNQRVMWYREVVNLHMPKEIMYMGSVFWRGRHLIYIRIWYDGHVGSIVPQMSFG WSTLNYGLLNNLVVLCCTYCSDLSEIRIRCCARRTRRLMLRAIGIMRRESLDPDPLSSSLTERRRQRLL RGLMRHNRPIPFADYDSHRSSSR
(AdY25 E4 Orf 4)
SEQ ID NO. 34
MVLPVLPSPSVTETQQNCI IWLGLAHS TVADVIRAIRADGIFI TQEAQEILHALREWLFYNFNTERSKR RDRRRRAVCSARTRFCFVKYENVRKQLHFIDTIQNTISVIPPSSVPTAGPLTSL

```
(AdY25 E4 Orf 3)
```

SEQ ID NO. 35
MRVCLRMPVEGALRELFIMAGLDLPQELIRIIQGWKNENYLGMVQECNMMIEELENAPAFAVLLFLDVR VEALLEATVEHLENRVTFDLAVI FHOHSGGERCHLRDLHF EVLRDRLE
(AdY25 E4 Orf 2)
SEQ ID NO. 36
MLERTPCTYSIVVPEALNLHLDDFSFVDFLKNCLPDFLSSYLEDITGSSQHAYFNLIFGNAHWGGLRFI CNVACPALIPGGPMAKNFGDDMKDYIQLLLREELRDRGRDFDIPIVNLLQVNQEQNLLEL
(AdY25 E4 Orf 1)
SEQ ID NO. 37
MDAEALYVFLEGAGALLPVQEGSNYIFYAPANFVLHPHGVALLELRLSIVVPRGFIGRFFSLTDANVPG VYASSRIIHAGHREGLSVMLFNHGDSFYEGRAGDPVACLVLERVIYPPVRQASMV
(ChAdoX1 vector sequence excluding BAC sequence)
SEQ ID NO. 38
TTAATCGCGTTTAAACCCATCATCAATAATATACCTCAAACTTTTTGTGCGCGTTAATATGCAAATGAG GCGTTTGAATTTGGGAAGGGAGGAAGGTGATTGGCCGAGAGAAGGGCGACCGTTAGGGGCGGGGCGAGT GACGTTTTGATGACGTGACCGCGAGGAGGAGCCAGTTTGCAAGTTCTCGTGGGAAAAGTGACGTCAAAC GAGGTGTGGTTTGAACACGGAAATACTCAATTTTCCCGCGCTCTCTGACAGGAAATGAGGTGTTTCTAG GCGGATGCAAGTGAAAACGGGCCATTTTCGCGCGAAAACTGAATGAGGAAGTGAAAATCTGAGTAATTT CGCGTTTATGACAGGGAGGAGTATTTGCCGAGGGCCGAGTAGACTTTGACCGATTACGTGGGGGTTTCG ATTACCGTGTTTTTCACCTAAATTTCCGCGTACGGTGTCAAAGTCCGGTGTTTTTACGTAGGTGTCAGC TGATCGCCAGGGTATTTAAACCTGCGCTCTCCAGTCAAGAGGCCACTCTTGAGTGCCAGCGAGAAGAGT TTTCTCCTCCGCGCGCGAGTCAGATCTACACTTTGAAAGGCGATCGCTAGCGACATCGATCACAAGTTT GTACAAAAAAGCTGAACGAGAAACGTAAAATGATATAAATATCAATATATTAAATTAGATTTTGCATaA AAAACAGACTACATAATACTGTAAAACACAACATATCCAGTCACTATGGCGGCCGCCGATTTATTCAAC AAAGCCACGTTGTGTCTCAAAATCTCTGATGTTACATTGCACAAGATAAAAATATATCATCATGAACAA TAAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGAAACGTCTT GCTCGAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGTGATAATG TCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAAC ATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAATTTA TGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCC CCGGGAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGG CAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTC GTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGAGCGTA ATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAGCTTTTGCCATTCTCACCGGATTCAGTCG TCACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATG TTGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTT CTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGT TTCATTTGATGCTCGATGAGTTTTTCTAATCAGAATTGGTTAATTGGTTGTAACACTGGCACGCGTGGA TCCGGCTTACTAAAAGCCAGATAACAGTATGCGTATTTGCGCGCTGATTTTTGCGGTATAAGAATATAT ACTGATATGTATACCCGAAGTATGTCAAAAAGAGGTATGCTATGAAGCAGCGTATTACAGTGACAGTTG ACAGCGACAGCTATCAGTTGCTCAAGGCATATATGATGTCAATATCTCCGGTCTGGTAAGCACAACCAT GCAGAATGAAGCCCGTCGTCTGCGTGCCGAACGCTGGAAAGCGGAAAATCAGGAAGGGATGGCTGAGGT CGCCCGGTTTATTGAAATGAACGGCTCTTTTGCTGACGAGAACAGGGGCTGGTGAAATGCAGTTTAAGG
-continued

Sequences
TTTACACCTATAAAAGAGAGAGCCGTTATCGTCTGTTTGTGGATGTACAGAGTGATATTATTGACACGC CCGGGCGACGGATGGTGATCCCCCTGGCCAGTGCACGTCTGCTGTCAGATAAAGTCTCCCGTGAACTTT ACCCGGTGGTGCATATCGGGGATGAAAGCTGGCGCATGATGACCACCGATATGGCCAGTGTGCCGGTCT CCGTTATCGGGGAAGAAGTGGCTGATCTCAGCCACCGCGAAAATGACATCAAAAACGCCATTAACCTGA TGTTCTGGGGAATATAAATGTCAGGCTCCCTTATACACAGCCAGTCTGCAGGTCGACCATAGTGACTGG ATATGTTGTGTTTTACAGTATTATGTAGTCTGTTTTTTATGCAAAATCTAATTTAATATATTGATATTT АТАТСАТTTTACGTTTCTCGTTCAGCTTTCTTGTACAAAGTGGTGATCGATTCGACAGATCGCGATCGC AGTGAGTAGTGTTCTGGGGCGGGGGAGGACCTGCATGAGGGCCAGAATGACTGAAATCTGTGCTTTTCT GTGTGTTGCAGCATCATGAGCGGAAGCGGCTCCTTTGAGGGAGGGGTATTCAGCCCTTATCTGACGGGG CGTCTCCCCTCCTGGGCGGGAGTGCGTCAGAATGTGATGGGATCCACGGTGGACGGCCGGCCCGTGCAG СССGCGAACTCTTCAACCCTGACCTATGCAACCCTGAGCTCTTCGTCGGTGGACGCAGCTGCCGCCGCA GCTGCTGCATCCGCCGCCAGCGCCGTGCGCGGAATGGCCATGGGCGCCGGCTACTACGGCACTCTGGTG GCCAACTCGAGTTCCACCAATAATCCCGCCAGCCTGAACGAGGAGAAGCTGCTGCTGCTGATGGCCCAG СTTGAGGCCTTGACCCAGCGCCTGGGCGAGCTGACCCAGCAGGTGGCTCAGCTGCAGGAGCAGACGCGG GCCGCGGTTGCCACGGTGAДATCCAAATAAAAAATGAATCAATAAATAAACGGAGACGGTTGTTGATTT TAACACAGAGTCTGAATCTTTATTTGATTTTTCGCGCGCGGTAGGCCCTGGACCACCGGTCTCGATCAT TGAGCACCCGGTGGATCTTTTCCAGGACCCGGTAGAGGTGGGCTTGGATGTTGAGGTACATGGGCATGA GCCCGTCCCGGGGGTGGAGGTAGCTCCATTGCAGGGCCTCGTGCTCGGGGGTGGTGTTGTAAATCACCC AGTCATAGCAGGGGCGCAGGGCGTGGTGTTGCACAATATCTTTGAGGAGGAGACTGATGGCCACGGGCA GCCCTTTGGTGTAGGTGTTTACAAATCTGTTGAGCTGGGAGGGATGCATGCGGGGGGAGATGAGGTGCA TCTTGGCCTGGATCTTGAGATTGGCGATGTTACCGCCCAGATCCCGCCTGGGGTTCATGTTGTGCAGGA CCACCAGCACGGTGTATCCGGTGCACTTGGGGAATTTATCATGCAACTTGGAAGGGAGGCGTGAAAGA ATTTGGCGACGCCCTTGTGTCCGCCCAGGTTTTCCATGCACTCATCCATGATGATGGCAATGGGCCCGT GGGCGGCGGCCTGGGCAAAGACGTTTCGGGGGTCGGACACATCATAGTTGTGGTCCTGGGTGAGGTCAT CATAGGCCATTTTAATGAATTTGGGGCGGAGGGTGCCGGACTGGGGGACAAAGGTACCCTCGATCCCGG GGGCGTAGTTCCCCTCACAGATCTGCATCTCCCAGGCTTTGAGCTCAGAGGGGGGGATCATGTCCACCT GCGGGGCGATAAAGAACACGGTTTCCGGGGCGGGGGAGATGAGCTGGGCCGAAAGCAAGTTCCGGAGCA GCTGGGACTTGCCGCAGCCGGTGGGGCCGTAAATGACCCCGATGACCGGCTGCAGGTGGTAGTTGAGGG AGAGACAGCTGCCGTCCTCCCGGAGGAGGGGGGCCACCTCGTTCATCATCTCGCGCACGTGCATGTTCT CGCGCACCAGTTCCGCCAGGAGGCGCTCTCCCCCCAGAGATAGGAGCTCCTGGAGCGAGGCGAAGTTTT TCAGCGGCTTGAGTCCGTCGGCCATGGGCATTTTGGAGAGGGTCTGTTGCAAGAGTTCCAAGCGGTCCC AGAGCTCGGTGATGTGCTCTACGGCATCTCGATCCAGCAGACCTCCTCGTTTCGCGGGTTGGGACGACT GCGGGAGTAGGGCACCAGACGATGGGCGTCCAGCGCAGCCAGGGTCCGGTCCTTCCAGGGCCGCAGCGT CCGCGTCAGGGTGGTCTCCGTCACGGTGAAGGGGTGCGCGCCGGGCTGGGCGCTTGCGAGGGTGCGCTT CAGGCTCATCCGGCTGGTCGAAAACCGCTCCCGATCGGCGCCCTGCGCGTCGGCCAGGTAGCAATTGAC CATGAGTTCGTAGTTGAGCGCCTCGGCCGCGTGGCCTTTGGCGCGGAGCTTACCTTTGGAAGTCTGCCC GCAGGCGGGACAGAGGAGGGACTTGAGGGCGTAGAGCTTGGGGGCGAGGAAGACGGAATCGGGGGCGTA GGCGTCCGCGCCGCAGTGGGCGCAGACGGTCTCGCACTCCACGAGCCAGGTGAGGTCGGGCTGGTCGGG GTCAAAAACCAGTTTCCCGCCGTTCTTTTTGATGCGTTTCTTACCTTTGGTCTCCATGAGCTCGTGTCC CCGCTGGGTGACAAAGAGGCTGTCCGTGTCCCCGTAGACCGACTTTATGGGCCGGTCCTCGAGCGGTGT GCCGCGGTCCTCCTCGTAGAGGAACCCCGCCCACTCCGAGACGAAAGCCCGGGTCCAGGCCAGCACGAA GGAGGCCACGTGGGACGGGTAGCGGTCGTTGTCCACCAGCGGGTCCACTTTTTCCAGGGTATGCAAACA CATGTCCCCCTCGTCCACATCCAGGAAGGTGATTGGCTTGTAAGTGTAGGCCACGTGACCGGGGGTCCC GGCCGGGGGGGTATAAAAGGGGGCGGGCCCCTGCTCGTCCTCACTGTCTTCCGGATCGCTGTCCAGGAG CGCCAGCTGTTGGGGTAGGTATTCCCTCTCGAAGGCGGGCATGACCTCGGCACTCAGGTTGTCAGTTTC TAGAAACGAGGAGGATTTGATATTGACGGTGCCAGCGGAGATGCCTTTCAAGAGCCCCTCGTCCATCTG GTCAGAAAAGACGAtTTTTTTGTTGTCGAGCTTGGTGGCGAAGGAGCCGTAGAGGGCGTTGGAAAGGAG CTTGGCGATGGAGCGCATGGTCTGGTTTTTTLCCTEGTCGGCGCGCTCCTTGGCCGCGATGTTGAGCTG CACGTACTCGCGCGCCACGCACTTCCATTCGGGGAAGACGGTGGTCATCTCGTCGGGCACGATTCTGAC CTGCCAACCTCGATTATGCAGGGTGATGAGGTCCACACTGGTGGCCACCTCGCCGCGCAGGGGCTCGTT GGTCCAGCAGAGGCGGCCGCCCTTGCGCGAGCAGAAGGGGGGCAGAGGGTCCAGCATGACCTCGTCGGG GGGGTCGGCATCGATGGTGAAGATGCCGGGCAGGAGATCGGGGTCGAAGTAGCTGATGGAAGTGGCCAG ATCGTCCAGGGAAGCTTGCCATTCGCGCACGGCCAGCGCGCGCTCGTAGGGACTGAGGGGCGTGCCCCA GGGCATGGGGTGGGTGAGCGCGGAGGCGTACATGCCGCAGATGTCGTAGACGTAGAGGGGCTCCTCGAG GATGCCGATGTAGGTGGGGTAGCAGCGCCCCCCGCGGATGCTGGCGCGCACGTAGTCATACAGCTCGTG CGAGGGCGCGAGGAGCCCCGGGCCCAGGTTGGTGCGACTGGGCTTTTCGGCGCGGTAGACGATCTGGCG AAAGATGGCATGCGAGTTGGAGGAGATGGTGGGCCTTTGGAAGATGTTGAAGTGGGCGTGGGGGAGGCC GACCGAGTCGCGGATGAAGTGGGCGTAGGAGTCTTGCAGTTTGGCGACGAGCTCGGCGGTGACGAGGAC GTCCAGAGCGCAGTAGTCGAGGGTCTCCTGGATGATGTCATACTTGAGCTGGCCCTTTTGTTTCCACAG CTCGCGGTTGAGAAGGAACTCTTCGCGGTCCTTCCAGTACTCTTCGAGGGGGAACCCGTCCTGATCTGC ACGGTAAGAGCCTAGCATGTAGAACTGGTTGACGGCCTTGTAGGCGCAGCAGCCCTTCTCCACGGGGAG GGCGTAGGCCTGGGCGGCCTTGCGCAGGGAGGTGTGCGTGAGGGCGAAGGTGTCCCTGACCATGACCTT GAGGAACTGGTGCTTGA.ATCGATATCGTCGCAGCCCCCCTGCTCCCAGAGCTGGA.AGTCCGTGCGCTT CTTGTAGGCGGGGTTGGGCAAAGCGAAAGTAACATCGTTGAAAAGGATCTTGCCCGCGCGGGGCATAAA GTTGCGAGTGATGCGGAAAGGCTGGGGCACCTCGGCCCGGTTGTTGATGACCTGGGCGGCGAGCACGAT CTCGTCGAAACCGTTGATGTTGTGGCCCACGATGTAGAGTTCCACGAATCGCGGGCGGCCCTTGACGTG GGGCAGCTTCTTGAGCTCCTCGTAGGTGAGCTCGTCGGGGTCGCTGAGACCGTGCTGCTCGAGCGCCCA GTCGGCGAGATGGGGGTTGGCGCGGAGGAAGGAAGTCCAGAGATCCACGGCCAGGGCGGTTTGCAGACG GTCCCGGTACTGACGGAACTGCTGCCCGACGGCCATTTTTTCGGGGGTGACGCAGTAGAAGGTGCGGGG GTCCCCGTGCCAGCGGTCCCATTTGAGCTGGAGGGCGAGATCGAGGGCGAGCTCGACGAGGCGGTCGTC CCCTGAGAGTTTCATGACCAGCATGAAGGGGACGAGCTGCTTGCCGAAGGACCCCATCCAGGTGTAGGT TTCCACATCGTAGGTGAGGAAGAGCCTTTCGGTGCGAGGATGCGAGCCGATGGGGAAGAACTGGATCTC CTGCCACCAATTGGAGGAATGGCTGTTGATGTGATGGAAGTAGAAATGCCGACGGCGCGCCGAACACTC GTGCTTGTGTTTATACAAGCGGCCACAGTGCTCGCAACGCTGCACGGGATGCACGTGCTGCACGAGCTG TACCTGAGTTCCTTTGACGAGGAATTTCAGTGGGAAGTGGAGTCGTGGCGCCTGCATCTCGTGCTGTAC TACGTCGTGGTGGTCGGCCTGGCCCTCTTCTGCCTCGATGGTGGTCATGCTGACGAGCCCGCGCGGGAG GCAGGTCCAGACCTCGGCGCGAGCGGGTCGGAGAGCGAGGACGAGGGCGCGCAGGCCGGAGCTGTCCAG
-continued

Sequences
GGTCCTGAGACGCTGCGGAGTCAGGTCAGTGGGGCAGCGGCGGCGCGCGGTTGACTTGCAGGAGTTTTTC CAGGGCGCGCGGGAGGTCCAGATGGTACTTGATCTCCACCGCGCCGTTGGTGGCGACGTCGATGGCTTG CAGGGTCCCGTGCCCCTGGGGTGTGACCACCGTCCCCCGTTTCTTCTTGGGCGGCTGGGGCGACGGGGG CGGTGCCTCTTCCATGGTTAGAAGCGGCGGCGAGGACGCGCGCCGGGCGGCAGAGGCGGCTCGGGGCCC GGAGGCAGGGGCGGCAGGGGCACGTCGGCGCCGCGCGCGGGTAGGTTCTGGTACTGCGCCCGGAGAAGA CTGGCGTGAGCGACGACGCGACGGTTGACGTCCTGGATCTGACGCCTCTGGGTGAAGGCCACGGGACCC GTGAGTTTGAACCTGAAAGAGAGTTCGACAGAATCAATCTCGGTATCGTTGACGGCGGCCTGCCGCAGG ATCTCTTGCACGTCGCCCGAGTTGTCCTGGTAGGCGATCTCGGTCATGAACTGCTCGATCTCCTCCTCC TGAAGGTCTCCGCGACCGGCGCGCTCCACGGTGGCCGCGAGGTCGTTGGAGATGCGGCCCATGAGCTGC GAGAAGGCGTTCATGCCCGCCTCGTTCCAGACGCGGCTGTAGACCACGACGCCCTCGGGATCGCGGGCG CGCATGACCACCTGGGCGAGGTTGAGCTCCACGTGGCGCGTGAAGACCGCGTAGTTGCAGAGGCGCTGG TAGAGGTAGTTGAGCGTGGTGGCGATGTGCTCGGTGACGAAGAAATACATGATCCAGCGGCGGAGCGGC ATCTCGCTGACGTCGCCCAGCGCCTCCAAGCGTTCCATGGCCTCGTAAAAGTCCACGGCGAAGTTGAAA AACTGGGAGTTGCGCGCCGAGACGGTCAACTCCTCCTCCAGAAGACGGATGAGCTCGGCGATGGTGGCG CGCACCTCGCGCTCGAAGGCCCCCGGGAGTTCCTCCACTTCCTCCTCTTCTTCCTCCTCCACTAACATC TСТТСТАСТTССТССТСАGGCGGTGGTGGTGGCGGGGGAGGGGGCCTGCGTCGCCGGCGGCGCACGGGC AGACGGTCGATGAAGCGCTCGATGGTCTCGCCGCGCCGGCGTCGCATGGTCTCGGTGACGGCGCGCCCG TCCTCGCGGGGCCGCAGCGTGAAGACGCCGCCGCGCATCTCCAGGTGGCCGGGGGGGTCCCCGTTGGGC AGGGAGAGGGCGCTGACGATGCATCTTATCAATTGCCCCGTAGGGACTCCGCGCAAGGACCTGAGCGTC TCGAGATCCACGGGATCTGAAAACCGTTGAACGAAGGCTTCGAGCCAGTCGCAGTCGCAAGGTAGGCTG AGCACGGTTTCTTCTGCCGGGTCATGTTGGGGAGCGGGGCGGGCGATGCTGCTGGTGATGAAGTTGAAA TAGGCGGTTCTGAGACGGCGGATGGTGGCGAGGAGCACCAGGTCTTTGGGCCCGGCTTGCTGGATGCGC AGACGGTCGGCCATGCCCCAGGCGTGGTCCTGACACCTGGCCAGGTCCTTGTAGTAGTCCTGCATGAGC CGCTCCACGGGCACCTCCTCCTCGCCCGCGCGGCCGTGCATGCGCGTGAGCCCGAAGCCGCGCTGGGGC TGGACGAGCGCCAGGTCGGCGACGACGCGCTCGGCGAGGATGGCCTGCTGGATCTGGGTGAGGGTGGTC TGGAAGTCGTCAAAGTCGACGAAGCGGTGGTAGGCTCCGGTGTTGATGGTGTAGGAGCAGTTGGCCATG ACGGACCAGTTGACGGTCTGGTGGCCCGGACGCACGAGCTCGTGGTACTTGAGGCGCGAGTAGGCGCGC GTGTCGAAGATGTAGTCGTTGCAGGTGCGCACCAGGTACTGGTAGCCGATGAGGAAGTGCGGCGGCGGC TGGCGGTAGAGCGGCCATCGCTCGGTGGCGGGGGCGCCGGGCGCGAGGTCCTCGAGCATGGTGCGGTGG TAGCCGTAGATGTACCTGGACATCCAGGTGATGCCGGCGGCGGTGGTGGAGGCGCGCGGGAACTCGCGG ACGCGGTTCCAGATGTTGCGCAGCGGCAGGAAGTAGTTCATGGTGGGCACGGTCTGGCCCGTGAGGCGC GCGCAGTCGTGGATGCTCTATACGGGCAAAAACGAAAGCGGTCAGCGGCTCGACTCCGTGGCCTGGAGG CTAAGCGAACGGGTTGGGCTGCGCGTGTACCCCGGTTCGAATCTCGAATCAGGCTGGAGCCGCAGCTAA CGTGGTACTGGCACTCCCGTCTCGACCCAAGCCTGCACCAACCCTCCAGGATACGGAGGCGGGTCGTTT TGCAACTTTTTTtGGAGGCCGGAAATGAAACTAGTAAGCGCGGAAAGCGGCCGACCGCGATGGCTCGCT GCCGTAGTCTGGAGAAGAATCGCCAGGGTTGCGTTGCGGTGTGCCCCGGTTCGAGGCCGGCCGGATTCC GCGGCTAACGAGGGCGTGGCTGCCCCGTCGTTTCCAAGACCCCATAGCCAGCCGACTTCTCCAGTTACG GAGCGAGCCCCTCTTTTGTTTTGTTTGTTTTTGCCAGATGCATCCCGTACTGCGGCAGATGCGCCCCCA ССАСССТССАССGCAACAACAGCCCCCTCCTCCACAGCCGGCGCTTCTGCCCCCGCCCCAGCAGCAGCA GCAACTTCCAGCCACGACCGCCGCGGCCGCCGTGAGCGGGGCTGGACAGACTTCTCAGTATGATCACCT GGCCTTGGAAGAGGGCGAGGGGCTGGCGCGCCTGGGGGCGTCGTCGCCGGAGCGGCACCCGCGCGTGCA GATGAAAAGGGACGCTCGCGAGGCCTACGTGCCCAAGCAGAACCTGTTCAGAGACAGGAGCGGCGAGGA GCCCGAGGAGATGCGCGCGGCCCGGTTCCACGCGGGGCGGGAGCTGCGGCGCGGCCTGGACCGAAAGAG GGTGCTGAGGGACGAGGAT TTCGAGGCGGACGAGCTGACGGGGATCAGCCCCGCGCGCGCGCACGTGGC CGCGGCCAACCTGGTCACGGCGTACGAGCAGACCGTGAAGGAGGAGAGCAACTTCCAAAAATCCTTCAA CAACCACGTGCGCACCCTGATCGCGCGCGAGGAGGTGACCCTGGGCCTGATGCACCTGTGGGACCTGCT GGAGGCCATCGTGCAGAACCCCACCAGCAAGCCGCTGACGGCGCAGCTGTTCCTGGTGGTGCAGCATAG TCGGGACAACGAGGCGTTCAGGGAGGCGCTGCTGAATATCACCGAGCCCGAGGGCCGCTGGCTCCTGGA CCTGGTGAACATTCTGCAGAGCATCGTGGTGCAGGAGCGCGGGCTGCCGCTGTCCGAGAAGCTGGCGGC САTCAACTTCTCGGTGCTGAGTCTGGGCAAGTACTACGCTAGGAAGATCTACAAGACCCCGTACGTGCC CATAGACAAGGAGGTGAAGATCGACGGGTTTTACATGCGCATGACCCTGAAAGTGCTGACCCTGAGCGA CGATCTGGGGGTGTACCGCAACGACAGGATGCACCGCGCGGTGAGCGCCAGCAGGCGGCGCGAGCTGAG CGACCAGGAGCTGATGCACAGCCTGCAGCGGGCCCTGACCGGGGCCGGGACCGAGGGGGAGAGCTACTT TGACATGGGCGCGGACCTGCACTGGCAGCCCAGCCGCCGGGCCTTGGAGGCGGCAGGCGGTCCCCCCTA CATAGAAGAGGTGGACGATGAGGTGGACGAGGAGGGCGAGTACCTGGAAGACTGATGGCGCGACCGTAT TTTTGCTAGATGCAACAACAGCCACCTCCTGATCCCGCGATGCGGGCGGCGCTGCAGAGCCAGCCGTCC GGCATTAACTCCTCGGACGATTGGACCCAGGCCATGCAACGCATCATGGCGCTGACGACCCGCAACCCC GAAGCCTTTAGACAGCAGCCCCAGGCCAACCGGCTCTCGGCCATCCTGGAGGCCGTGGTGCCCTCGCGC TCCAACCCCACGCACGAGAAGGTCCTGGCCATCGTGAACGCGCTGGTGGAGAACAAGGCCATCCGCGGC GACGAGGCCGGCCTGGTGTACAACGCGCTGCTGGAGCGCGTGGCCCGCTACAACAGCACCAACGTGCAG ACCAACCTGGACCGCATGGTGACCGACGTGCGCGAGGCCGTGGCCCAGCGCGAGCGGTTCCACCGCGAG TCCAACCTGGGATCCATGGTGGCGCTGAACGCCTTCCTCAGCACCCAGCCCGCCAACGTGCCCCGGGGC CAGGAGGACTACACCAACTTCATCAGCGCCCTGCGCCTGATGGTGACCGAGGTGCCCCAGAGCGAGGTG TACCAGTCCGGGCCGGACTACTTCTTCCAGACCAGTCGCCAGGGCTTGCAGACCGTGAACCTGAGCCAG GCGTTCAAGAACTTGCAGGGCCTGTGGGGCGTGCAGGCCCCGGTCGGGGACCGCGCGACGGTGTCGAGC CTGCTGACGCCGAACTCGCGCCTGCTGCTGCTGCTGGTGGCCCCCTTCACGGACAGCGGCAGCATCAAC CGCAACTCGTACCTGGGCTACCTGATTAACCTGTACCGCGAGGCCATCGGCCAGGCGCACGTGGACGAG CAGACCTACCAGGAGATCACCCACGTGAGCCGCGCCCTGGGCCAGGACGACCCGGGCAATCTGGAAGCC ACCCTGAACTTTTTGCTGACCAACCGGTCGCAGAAGATCCCGCCCCAGTACACGCTCAGCGCCGAGGAG GAGCGCATCCTGCGATACGTGCAGCAGAGCGTGGGCCTGTTCCTGATGCAGGAGGGGGCCACCCCCAGC GCCGCGCTCGACATGACCGCGCGCAACATGGAGCCCAGCATGTACGCCAGCAACCGCCCGTTCATCAAT AAACTGATGGACTACTTGCATCGGGCGGCCGCCATGAACTCTGACTATTTCACCAACGCCATCCTGAAT CCCCACTGGCTCCCGCCGCCGGGGTTCTACACGGGCGAGTACGACATGCCCGACCCCAATGACGGGTTC CTGTGGGACGATGTGGACAGCAGCGTGTTCTCCCCCCGACCGGGTGCTAACGAGCGCCCCTTGTGGAAG AAGGAAGGCAGCGACCGACGCCCGTCCTCGGCGCTGTCCGGCCGCGAGGGTGCTGCCGCGGCGGTGCCC GAGGCCGCCAGTCCTTTCCCGAGCTTGCCCTTCTCGCTGAACAGTATTCGCAGCAGCGAGCTGGGCAGG ATCACGCGCCCGCGCTTGCTGGGCGAGGAGGAGTACTTGAATGACTCGCTGTTGAGACCCGAGCGGGAG

Sequences

AAGAACTTCCCCAATAACGGGATAGAGAGCCTGGTGGACAAGATGAGCCGCTGGAAGACGTATGCGCAG GAGCACAGGGACGATCCGTCGCAGGGGGCCACGAGCCGGGGCAGCGCCGCCCGTAAACGCCGGTGGCAC GACAGGCAGCGGGGACTGATGTGGGACGATGAGGATTCCGCCGACGACAGCAGCGTGTTGGACTTGGGT GGGAGTGGTAACCCGTTCGCTCACCTGCGCCCCCGCATCGGGCGCATGATGTAAGAGAAACCGAAAATA AATGATACTCACCAAGGCCATGGCGACCAGCGTGCGTTCGTTTCTTCTCTGTTGTTGTATCTAGTATGA TGAGGCGTGCGTACCCGGAGGGTCCTCCTCCCTCGTACGAGAGCGTGATGCAGCAGGCGATGGCGGCGG CGGCGGCGATGCAGCCCCCGCTGGAGGCTCCTTACGTGCCCCCGCGGTACCTGGCGCCTACGGAGGGGC GGAACAGCATTCGTTACTCGGAGCTGGCACCCTTGTACGATACCACCCGGTTGTACCTGGTGGACAACA AGTCGGCGGACATCGCCTCGCTGAACTACCAGAACGACCACAGCAACTTCCTGACCACCGTGGTGCAGA ACAATGACTTCACCCCCACGGAGGCCAGCACCCAGACCATCAACTTTGACGAGCGCTCGCGGTGGGGCG GTCAGCTGAAAACCATCATGCACACCAACATGCCCAACGTGAACGAGTTCATGTACAGCAACAAGTTCA AGGCGCGGGTGATGGTCTCCCGCAAGACCCCCAACGGGGTGACAGTGACAGATGGTAGTCAGGATATCT TGGAGTATGAATGGGTGGAGTTTGAGCTGCCCGAAGGCAACTTCTCGGTGACCATGACCATCGACCTGA TGAACAACGCCATCATCGACAATTACTTGGCGGTGGGGCGGCAGAACGGGGTCCTGGAGAGCGATATCG GCGTGAAGTTCGACACTAGGAACTTCAGGCTGGGCTGGGACCCCGTGACCGAGCTGGTCATGCCCGGGG TGTACACCAACGAGGCCTTCCACCCCGATATTGTCTTGCTGCCCGGCTGCGGGGTGGACTTCACCGAGA GCCGCCTCAGCAACCTGCTGGGCATTCGCAAGAGGCAGCCCTTCCAGGAGGGCTTCCAGATCATGTACG AGGATCTGGAGGGGGGCAACATCCCCGCGCTCCTGGATGTCGACGCCTATGAGAAAAGCAAGGAGGAGA GCGCCGCCGCGGCGACTGCAGCTGTAGCCACCGCCTCTACCGAGGTCAGGGGCGATAATTTTGCCAGCC CTGCAGCAGTGGCAGCGGCCGAGGCGGCTGAAACCGAAAGTAAGATAGTCATTCAGCCGGTGGAGAAGG ATAGCAAGGACAGGAGCTACAACGTGCTGCCGGACAAGATAAACACCGCCTACCGCAGCTGGTACCTGG ССTACAACTATGGCGACCCCGAGAAGGGCGTGCGCTCCTGGACGCTGCTCACCACCTCGGACGTCACCT GCGGCGTGGAGCAAGTCTACTGGTCGCTGCCCGACATGATGCAAGACCCGGTCACCTTCCGCTCCACGC GTCAAGTTAGCAACTACCCGGTGGTGGGCGCCGAGCTCCTGCCCGTCTACTCCAAGAGCTTCTTCAACG AGCAGGCCGTCTACTCGCAGCAGCTGCGCGCCTTCACCTCGCTCACGCACGTCTTCAACCGCTTCCCCG AGAACCAGATCCTCGTCCGCCCGCCCGCGCCCACCATTACCACCGTCAGTGAAAACGTTCCTGCTCTCA CAGATCACGGGACCCTGCCGCTGCGCAGCAGTATCCGGGGAGTCCAGCGCGTGACCGTTACTGACGCCA GACGCCGCACCTGCCCCTACGTCTACAAGGCCCTGGGCATAGTCGCGCCGCGCGTCCTCTCGAGCCGCA ССТТСТААААААТGTCCATTCTCATCTCGCCCAGTAATAACACCGGTTGGGGCCTGCGCGCGCCCAGCA AGATGTACGGAGGCGCTCGCCAACGCTCCACGCAACACCCCGTGCGCGTGCGCGGGCACTTCCGCGCTC CCTGGGGCGCCCTCAAGGGCCGCGTGCGGTCGCGCACCACCGTCGACGACGTGATCGACCAGGTGGTGG CCGACGCGCGCAACTACACCCCCGCCGCCGCGCCCGTCTCCACCGTGGACGCCGTCATCGACAGCGTGG TGGCCGACGCGCGCCGGTACGCCCGCGCCAAGAGCCGGCGGCGGCGCATCGCCCGGCGGCACCGGAGCA CCCCCGCCATGCGCGCGGCGCGAGCCTTGCTGCGCAGGGCCAGGCGCACGGGACGCAGGGCCATGCTCA GGGCGGCCAGACGCGCGGCTTCAGGCGCCAGCGCCGGCAGGACCCGGAGACGCGCGGCCACGGCGGCGG CAGCGGCCATCGCCAGCATGTCCCGCCCGCGGCGAGGGAACGTGTACTGGGTGCGCGACGCCGCCACCG GTGTGCGCGTGCCCGTGCGCACCCGCCCCCCTCGCACTTGAAGATGTTCACTTCGCGATGTTGATGTGT CCCAGCGGCGAGGAGGATGTCCAAGCGCAAATTCAAGGAAGAGATGCTCCAGGTCATCGCGCCTGAGAT CTACGGCCCCGCGGTGGTGAAGGAGGA.AGAAAGCCCCGCAAAATCAAGCGGGTCAAAAAGGACAAAAA GGAAGAAGATGACGATCTGGTGGAGTTTGTGCGCGAGTTCGCCCCCcGGCGGCGCGTGCAGTGGCGCGG GCGGAAAGTGCACCCGGTGCTGAGACCCGGCACCACCGTGGTCTTCACGCCCGGCGAGCGCTCCGGCAG CGCTTCCAAGCGCTCCTACGACGAGGTGTACGGGGACGAGGACATCCTCGAGCAGGCGGCCGAGCGCCT GGGCGAGTTTGCTTACGGCAAGCGCAGCCGCCCCGCCCTGAAGGAAGAGGCGGTGTCCATCCCGCTGGA CCACGGCAACCCCACGCCGAGCCTCAAGCCCGTGACCCTGCAGCAGGTGCTGCCGAGCGCAGCGCCGCG CCGGGGGTTCAAGCGCGAGGGCGAGGATCTGTACCCCACCATGCAGCTGATGGTGCCCAAGCGCCAGAA GCTGGAAGACGTGCTGGAGACCATGAAGGTGGACCCGGACGTGCAGCCCGAGGTCAAGGTGCGGCCCAT CAAGCAGGTGGCCCCGGGCCTGGGCGTGCAGACCGTGGACATCAAGATCCCCACGGAGCCCATGGAAAC GCAGACCGAGCCCATGATCAAGCCCAGCACCAGCACCATGGAGGTGCAGACGGATCCCTGGATGCCATC GGCTCCTAGCCGAAGACCCCGGCGCAAGTACGGCGCGGCCAGCCTGCTGATGCCCAACTACGCGCTGCA TCCTTCCATCATCCCCACGCCGGGCTACCGCGGCACGCGCTTCTACCGCGGTCATACAACCAGCCGCCG CCGCAAGACCACCACCCGCCGCCGCCGTCGCCGCACAGCCGCTGCATCTACCCCTGCCGCCCTGGTGCG GAGAGTGTACCGCCGCGGCCGCGCGCCTCTGACCCTACCGCGCGCGCGCTACCACCCGAGCATCGCCAT TTAAACTTTCGCCTGCTTTGCAGATGGCCCTCACATGCCGCCTCCGCGTTCCCATTACGGGCTACCGAG GAAGAAAACCGCGCCGTAGAAGGCTGGCGGGGAACGGGATGCGTCGCCACCACCATCGGCGGCGGCGCG CCATCAGCAAGCGGTTGGGGGgAGGCTTCCTGCCCGCGCTGATCCCCATCATCGCCGCGGCGATCGGGG CGATCCCCGGCATTGCTTCCGTGGCGGTGCAGGCCTCTCAGCGCCACTGAGACACTTGGAAAACATCTT GTAATAAACCAATGGACTCTGACGCTCCTGGTCCTGTGATGTGTTTTCGTAGACAGATGGAAGACATCA ATTTTTTCGTCCCTGGCTCCGCGACACGGCACGCGGCCGTTCATGGGCACCTGGAGCGACATCGGCACCA GCCAACTGAACGGGGGCGCCTTCAATTGGAGCAGTCTCTGGAGCGGGCTTAAGAATTTCGGGTCCACGC TTAAAACCTATGGCAGCAAGGCGTGGAACAGCACCACAGGGCAGGCGCTGAGGGATAAGCTGAAAGAGC AGAACTTCCAGCAGAAGGTGGTCGATGGGCTCGCCTCGGGCATCAACGGGGTGGTGGACCTGGCCAACC AGGCCGTGCAGCGGCAGAT CAACAGCCGCCTGGACCCGGTGCCGCCCGCCGGCTCCGTGGAGATGCCGC AGGTGGAGGAGGAGCTGCCTCCCCTGGACAAGCGGGGCGAGAAGCGACCCCGCCCCGACGCGGAGGAGA CGCTGCTGACGCACACGGACGAGCCGCCCCCGTACGAGGAGGCGGTGAAACTGGGTCTGCCCACCACGC GGCCCATCGCGCCCCTGGCCACCGGGGTGCTGAAACCCGAAAGTAATAAGCCCGCGACCCTGGACTTGC CTCCTCCCGCTTCCCGCCCCTCTACAGTGGCTAAGCCCCTGCCGCCGGTGGCCGTGGCCCGCGCGCGAC CCGGGGGCTCCGCCCGCCCTCATGCGAACTGGCAGAGCACTCTGAACAGCATCGTGGGTCTGGGAGTGC AGAGTGTGAAGCGCCGCCGCTGCTATTAAACCTACCGTAGCGCTTAACTTGCTTGTCTGTGTGTGTATG TATTATGTCGCCGCTGTCCGCCAGAAGGAGGAGTGAAGAGGCGCGTCGCCGAGTTGCAAGATGGCCACC CCATCGATGCTGCCCCAGTGGGCGTACATGCACATCGCCGGACAGGACGCTTCGGAGTACCTGAGTCCG GGTCTGGTGCAGTTCGCCCGCGCCACAGACACCTACTTCAGTCTGGGGAACAAGTTTAGGAACCCCACG GTGGCGCCCACGCACGATGTGACCACCGACCGCAGCCAGCGGCTGACGCTGCGCTTCGTGCCCGTGGAC CGCGAGGACAACACCTACTCGTACAAAGTGCGCTACACGCTGGCCGTGGGCGACAACCGCGTGCTGGAC ATGGCCAGCACCTACTTTGACATCCGCGGCGTGCTGGATCGGGGCCCTAGCTTCAAACCCTACTCCGGC ACCGCCTACAACAGCCTGGCTCCCAAGGGAGCGCCCAATTCCAGCCAGTGGGAGCaAAAAAAGGCAGGC AATGGTGACACTATGGAAACACACACATTTGGTGTGGCCCCAATGGGCGGTGAGAATATTACAATCGAC GGATTACAAATTGGAACTGACGCTACAGCTGATCAGGATAAACCAATTTATGCTGACAAAACATTCCAG

Sequences
CCTGAACCTCAAGTAGGAGAAGAAAATTGGCAAGAAACTGAAAGCTTTTATGGCGGTAGGGCTCTTAAA AAAGACACAAGCATGAAACCTTGCTATGGCTCCTATGCTAGACCCACCAATGTAAAGGGAGGTCAAGCT AAACTTAA.AGTTGGAGCTGATGGAGTTCCTACCAAAGAATTTGACATAGACCTGGCTTTCTTTGATACT CCCGGTGGCACAGTGAATGGACAAGATGAGTATAAAGCAGACATTGTCATGTATACCGAAAACACGTAT CTGGAAACTCCAGACACGCATGTGGTATACAAACCAGGCAAGGATGATGCAAGTTCTGAAATTAACCTG GTTCAGCAGTCCATGCCCAATAGACCCAACTATATTGGGTTCAGAGACAACTTTATTGGGCTCATGTAT TACAACAGTACTGGCAATATGGGGGTGCTGGCTGGTCAGGCCTCACAGCTGAATGCTGTGGTCGACTTG CAAGACAGAAACACCGAGCTGTCATACCAGCTCTTGCTTGACTCTTTGGGTGACAGAACCCGGTATTTC AGTATGTGGAATCAGGCGGTGGACAGTTATGATCCTGATGTGCGCATTATTGAAAACCATGGTGTGGAA GACGAACTTCCCAACTATTGCTTCCCCCTGGATGGGTCTGGCACTAATGCCGCTTACCAAGGTGTGAAA GTAAAAAATGGTAACGATGGTGATGTTGAGAGCGAATGGGAAAATGATGATACTGTCGCAGCTCGAAAT CAATTATGCAAGGGCAACATTTTTGCCATGGAAATTAACCTCCAAGCCAACCTGTGGAGAAGTTTCCTC TACTCGAACGTGGCCCTGTACCTGCCCGACTCTTACAAGTACACGCCAGCCAACATCACCCTGCCCACC AACACCAACACTTATGATTACATGAACGGGAGAGTGGTGCCTCCCTCGCTGGTGGACGCCTACATCAAC ATCGGGGCGCGCTGGTCGCTGGACCCCATGGACAACGTCAATCCCTTCAACCACCACCGCAACGCGGGC СTGCGCTACCGCTCCATGCTCCTGGGCAACGGGCGCTACGTGCCCTTCCACATCCAGGTGCCCCAGAAA TTTTTCGCCATCAAGAGCCTCCTGCTCCTGCCCGGGTCCTACACCTACGAGTGGAACTTCCGCAAGGAC GTCAACATGATCCTGCAGAGCTCCCTCGGCAACGACCTGCGCACGGACGGGGCCTCCATCTCCTTCACC AGCATCAACCTCTACGCCACCTTCTTCCCCATGGCGCACAACACGGCCTCCACGCTCGAGGCCATGCTG CGCAACGACACCAACGACCAGTCCTTCAACGACTACCTCTCGGCGGCCAACATGCTCTACCCCATCCCG GCCAACGCCACCAACGTGCCCATCTCCATCCCCTCGCGCAACTGGGCCGCCTTCCGCGGCTGGTCCTTC ACGCGCCTCAAGACCAAGGAGACGCCCTCGCTGGGCTCCGGGTTCGACCCCTACTTCGTCTACTCGGGC TССАТССССТАССТСGАСGGСАССТTСТАССТСААССАСАССТТСААGААGGTСТССАТСАССТТСGАС TCCTCCGTCAGCTGGCCCGGCAACGACCGGCTCCTGACGCCCAACGAGTTCGAAATCAAGCGCACCGTC GACGGCGAGGGATACAACGTGGCCCAGTGCAACATGACCAAGGACTGGTTCCTGGTCCAGATGCTGGCC CACTACAACATCGGCTACCAGGGCTTCTACGTGCCCGAGGGCTACAAGGACCGCATGTACTCCTTCTTC CGCAACTTCCAGCCCATGAGCCGCCAGGTGGTGGACGAGGTCAACTACAAGGACTACCAGGCCGTCACC СTGGCCTACCAGCACAACAACTCGGGCTTCGTCGGCTACCTCGCGCCCACCATGCGCCAGGGCCAGCCC TACCCCGCCAACTACCCGTACCCGCTCATCGGCAAGAGCGCCGTCACCAGCGTCACCCAGAAAAAGTTC СTCTGCGACAGGGTCATGTGGCGCATCCCCTTCTCCAGCAACTTCATGTCCATGGGCGCGCTCACCGAC CTCGGCCAGAACATGCTCTATGCCAACTCCGCCCACGCGCTAGACATGAATTTCGAAGTCGACCCCATG GATGAGTCCACCCTTCTCTATGTTGTCTTCGAAGTCTTCGACGTCGTCCGAGTGCACCAGCCCCACCGC GGCGTCATCGAGGCCGTCTACCTGCGCACCCCCTTCTCGGCCGGTAACGCCACCACCTAAATTGCTACT TGCATGATGGCTGAGCCCACAGGCTCCGGCGAGCAGGAGCTCAGGGCCATCATCCGCGACCTGGGCTGC GGGCCCTACTTCCTGGGCACCTTCGATAAGCGCTTCCCGGGATTCATGGCCCCGCACAAGCTGGCCTGC GCCATCGTCAACACGGCCGGCCGCGAGACCGGGGGCGAGCACTGGCTGGCCTTCGCCTGGAACCCGCGC TCGAACACCTGCTACCTCTTCGACCCCTTCGGGTTCTCGGACGAGCGCCTCAAGCAGATCTACCAGTTC GAGTACGAGGGCCTGCTGCGCCGTAGCGCCCTGGCCACCGAGGACCGCTGCGTCACCCTGGAAAAGTCC ACCCAGACCGTGCAGGGTCCGCGCTCGGCCGCCTGCGGGCTCTTCTGCTGCATGTTCCTGCACGCCTTC GTGCACTGGCCCGACCGCCCCATGGACAAGAACCCCACCATGAACTTGCTGACGGGGGTGCCCAACGGC ATGCTCCAGTCGCCCCAGGTGGAACCCACCCTGCGCCGCAACCAGGAGGCGCTCTACCGCTTCCTCAAA TCCCACTCCGCCTACTTTCGCTCCCACCGCGCGCGCATCGAGAAGGCCACCGCCTTCGACCGCATGAAC AATCAAGACATGTAAACCGTGTGTGTATGTTTAAAATATCTTTTAATAAACAGCACTTTAATGTTACAC ATGCATCTGAGATGATTTTATTTTAGAAATCGAAAGGGTTCTGCCGGGTCTCGGCATGGCCCGCGGGCA GGGACACGTTGCGGAACTGGTACTTGGCCAGCCACTTGAACTCGGGGATCAGCAGTTTGGGCAGCGGGG TGTCGGGGAAGGAGTCGGTCCACAGCTTCCGCGTCAGCTGCAGGGCGCCCAGCAGGTCGGGCGCGGAGA TCTTGAAATCGCAGTTGGGACCCGCGTTCTGCGCGCGAGAGTTGCGGTACACGGGGTTGCAGCACTGGA ACACCATCAGGGCCGGGTGCTTCACGCTCGCCAGCACCGCCGCGTCGGTGATGCTCTCCACGTCGAGGT CCTCGGCGTTGGCCATCCCGAAGGGGGTCATCTTGCAGGTCTGCCTTCCCATGGTGGGCACGCACCCGG GCTTGTGGTTGCAATCGCAGTGCAGGGGGATCAGCATCATCTGGGCCTGGTCGGCGTTCATCCCCGGGT ACATGGCCTTCATGAAAGCCTCCAATTGCCTGAACGCCTGCTGGGCCTTGGCTCCCTCGGTGAAGAAGA CCCCGCAGGACTTGCTAGAGAACTGGTTGGTGGCACAGCCGGCATCGTGCACGCAGCAGCGCGCGTCGT TGTTGGCCAGCTGCACCACGCTGCGCCCCCAGCGGTTCTGGGTGATCTTGGCCCGGTCGGGGTTCTCCT TCAGCGCGCGCTGCCCGTTCTCGCTCGCCACATCCATCTCGATCATGTGCTCCTTCTGGATCATGGTGG TCCCGTGCAGGCACCGCAGTTTGCCCTCGGCCTCGGTGCACCCGTGCAGCCACAGCGCGCACCCGGTGC ACTCCCAGTTCTTGTGGGCGATCTGGGAATGCGCGTGCACGAACCCTTGCAGGAAGCGGCCCATCATGG TCGTCAGGGTCTTGTTGCTAGTGAAGGTCAACGGGATGCCGCGGTGCTCCTCGTTGATGTACAGGTGGC AGATGCGGCGGTACACCTCGCCCTGCTCGGGCATCAGTTGGAAGTTGGCTTTCAGGTCGGTCTCCACGC GGTAGCGGTCCATCAGCATAGTCATGATTTCCATGCCCTTCTCCCAGGCCGAGACGATGGGCAGGCTCA TAGGGTTCTTCACCATCATCTTAGCACTAGCAGCCGCGGCCAGGGGGTCGCTCTCATCCAGGGTCTCAA AGCTCCGCTTGCCGTCCTTCTCGGTGATCCGCACCGGGGGGTAGCTGAAGCCCACGGCCGCCAGCTCCT CCTCGGCCTGTCTTTCGTCCTCGCTGTCCTGGCTGACGTCCTGCATGACCACATGCTTGGTCTTGCGGG GTTTCTTCTTGGGCGGCAGTGGCGGCGGAGATGCTTGTGGCGAGGGGGAGCGCGAGTTCTCGCTCACCA СТАСТАТСТСТТССТСТTСTTGGTCCGAGGCCACGCGGCGGTAGGTATGTCTCTTCGGGGGCAGAGGCG GAGGCGACGGGCTCTCGCCGCCGCGACTTGGCGGATGGCTGGCAGAGCCCCTTCCGCGTTCGGGGGTGC GCTCCCGGCGGCGCTCTGACTGACTTCCTCCGCGGCCGGCCATTGTGTTCTCCTAGGGAGGAACAACAA GCATGGAGACTCAGCCATCGCCAACCTCGCCATCTGCCCCCACCGCCGGCGACGAGAAGCAGCAGCAGC AGAATGAAAGCTTAACCGCCCCGCCGCCCAGCCCCGCCTCCGACGCAGCCGCGGTCCCAGACATGCAAG AGATGGAGGAATCCATCGAGATTGACCTGGGCTATGTGACGCCCGCGGAGCATGAGGAGGAGCTGGCAG TGCGCTTTCAATCGTCAAGCCAGGAAGATAAAGAACAGCCAGAGCAGGAAGCAGAGAACGAGCAGAGTC AGGCTGGGCTCGAGCATGGCGACTACCTCCACCTGAGCGGGGAGGAGGACGCGCTCATCAAGCATCTGG CCCGGCAGGCCACCATCGTCAAGGACGCGCTGCTCGACCGCACCGAGGTGCCCCTCAGCGTGGAGGAGC TCAGCCGCGCCTACGAGCTCAACCTCTTCTCGCCGCGCGTGcCCCCCAAGCGCCAGCCCAACGGCACCT GCGAGCCCAACCCCCGCCTCAACTTCTACCCGGTCTTCGCGGTGCCCGAGGCCCTGGCCACCTACCACA TCTTTTTCAAGAACCAAAAGATCCCCGTCTCCTGCCGCGCCAACCGCACCCGCGCCGACGCCCTCTTCA ACCTGGGTCCCGGCGCCCGCCTACCTGATATCGCCTCCTTGGAAGAGGTTCCCAAGATCTTCGAGGGTC TGGGCAGCGACGAGACTCGGGCCGCGAACGCTCTGCAAGGAGAAGGAGGAGGAGAGCATGAGCACCACA
-continued

Sequences
GCGCCCTGGTCGAGTTGGAAGGCGACAACGCGCGGCTGGCGGTGCTCAAACGCACGGTCGAGCTGACCC АTTTCGCCTACCCGGCTCTGAACCTGCCCCCGAAAGTCATGAGCGCGGTCATGGACCAGGTGCTCATCA AGCGCGCGTCGCCCATCTCCGAGGACGAGGGCATGCAAGACTCCGAGGAGGGCAAGCCCGTGGTCAGCG ACGAGCAGCTGGCCCGGTGGCTGGGTCCTAATGCTACCCCTCAAAGTTTGGAAGAGCGGCGCAAGCTCA TGATGGCCGTGGTCCTGGTGACCGTGGAGCTGGAGTGCCTGCGCCGCTTCTTCGCCGACGCGGAGACCC TGCGCAAGGTCGAGGAGAACCTGCACTACCTCTTCAGGCACGGGTTCGTGCGCCAGGCCTGCAAGATCT CCAACGTGGAGCTGACCAACCTGGTCTCCTACATGGGCATCTTGCACGAGAACCGCCTGGGGCAGAACG TGCTGCACACCACCCTGCGCGGGGAGGCCCGCCGCGACTACATCCGCGACTGCGTCTACCTCTACCTCT GCCACACCTGGCAGACGGGCATGGGCGTGTGGCAGCAGTGTCTGGAGGAGCAGAACCTGAAAGAGCTCT GCAAGCTCCTGCAAAAGAACCTCAAGGGTCTGTGGACCGGGTTCGACGAGCGGACCACCGCCTCGGACC TGGCCGACCTCATCTTCCCCGAGCGCCTCAGGCTGACGCTGCGCAACGGCCTGCCCGACTTTATGAGCC AAAGCATGTTGCAAAACTTTCGCTCTTTCATCCTCGAACGCTCCGGAATCCTGCCCGCCACCTGCTCCG СGCTGCCCTCGGACTTCGTGCCGCTGACCTTCCGCGAGTGCCCCCCGCCGCTGTGGAGCCACTGCTACC TGCTGCGCCTGGCCAACTACCTGGCCTACCACTCGGACGTGATCGAGGACGTCAGCGGCGAGGGCCTGC TCGAGTGCCACTGCCGCTGCAACCTCTGCACGCCGCACCGCTCCCTGGCCTGCAACCCCCAGCTGCTGA GCGAGACCCAGATCATCGGCACCTTCGAGTTGCAAGGGCCCAGCGAGGGCGAGGGAGCCAAGGGGGGTC TGAAACTCACCCCGGGGCTGTGGACCTCGGCCTACTTGCGCAAGTTCGTGCCCGAGGATTACCATCCCT TCGAGATCAGGTTCTACGAGGACCAATCCCAGCCGCCCAAGGCCGAGCTGTCGGCCTGCGTCATCACCC AGGGGGCGATCCTGGCCCAATTGCAAGCCATCCAGAAATCCCGCCAAGAATTCTTGCTGAAAAAGGGCC GCGGGGTCTACCTCGACCCCCAGACCGGTGAGGAGCTCAACCCCGGCTTCCCCCAGGATGCCCCGAGGA AACAAGAAGCTGAAAGTGGAGCTGCCGCCCGTGGAGGATTTGGAGGAAGACTGGGAGAACAGCAGTCAG GCAGAGGAGATGGAGGAAGACTGGGACAGCACTCAGGCAGAGGAGGACAGCCTGCAAGACAGTCTGGAG GAAGACGAGGAGGAGGCAGAGGAGGAGGTGGAAGAAGCAGCCGCCGCCAGACCGTCGTCCTCGGCGGGG GAGAAAGCAAGCAGCACGGATACCATCTCCGCTCCGGGTCGGGGTCCCGCTCGGCCCCACAGTAGATGG GACGAGACCGGGCGATTCCCGAACCCCACCACCCAGACCGGTAAGAAGGAGCGGCAGGGATACAAGTCC TGGCGGGGGCACAAAAACGCCATCGTCTCCTGCTTGCAGGCCTGCGGGGGCAACATCTCCTTCACCCGG CGCTACCTGCTCTTCCACCGCGGGGTGAACTTCCCCCGCAACATCTTGCATTACTACCGTCACCTCCAC AGCCCCTACTACTTCCAAGAAGAGGCAGCAGCAGCAGaAAAAGACCAGAAAACCAGCTAGAAAATCCAC AGCGGCGGCAGCGGCAGGTGGACTGAGGATCGCGGCGAACGAGCCGGCGCAGACCCGGGAGCTGAGGAA CCGGATCTTTCCCACCCTCTATGCCATCTTCCAGCAGAGTCGGGGGCAGGAGCAGGAACTGAAAGTCAA GAACCGTTCTCTGCGCTCGCTCACCCGCAGTTGTCTGTATCACAAGAGCGAAGACCAACTTCAGCGCAC TCTCGAGGACGCCGAGGCTCTCTTCAACAAGTACTGCGCGCTCACTCTTAAAGAGTAGCCCGCGCCCGC CCAGTCGCAGAAAAAGGCGGGAATTACGTCACCTGTGCCCTTCGCCCTAGCCGCCTCCACCCAGCACCG CCATGAGCAAAGAGATTCCCACGCCTTACATGTGGAGCTACCAGCCCCAGATGGGCCTGGCCGCCGGCG CCGCCCAGGACTACTCCACCCGCATGAATTGGCTCAGCGCCGGGCCCGCGATGATCTCACGGGTGAATG ACATCCGCGCCCACCGAAACCAGATACTCCTAGAACAGTCAGCGCTCACCGCCACGCCCCGCAATCACC TCAATCCGCGTAATTGGCCCGCCGCCCTGGTGTACCAGGAAATTCCCCAGCCCACGACCGTACTACTTC CGCGAGACGCCCAGGCCGAAGTCCAGCTGACTAACTCAGGTGTCCAGCTGGCGGGCGGCGCCACCCTGT GTCGTCACCGCCCCGCTCAGGGTATAAAGCGGCTGGTGATCCGGGGCAGAGGCACACAGCTCAACGACG AGGTGGTGAGCTCTTCGCTGGGTCTGCGACCTGACGGAGTCTTCCAACTCGCCGGATCGGGGAGATCTT ССТTCACGCCTCGTCAGGCGGTCCTGACTTTGGAGAGTTCGTCCTCGCAGCCCCGCTCGGGCGGCATCG GCACTCTCCAGTTCGTGGAGGAGTTCACTCCCTCGGTCTACTTCAACCCCTTCTCCGGCTCCCCCGGCC ACTACCCGGACGAGTTCATCCCGAACTTTGACGCCATCAGCGAGTCGGTGGACGGCTACGATTGATTAA TTAATCAACTAACCCCTTACCCCTTTACCCTCCAGTAAAAATAAAGATTAAAAATGATTGAATTGATCA ATAAAGAATCACTTACTTGAAATCTGAAACCAGGTCTCTGTCCATGTTTTCTGTCAGCAGCACTTCACT ССССТСTTCCCAACTCTGGTACTGCAGGCCCCGGCGGGCTGCAAACTTCCTCCACACTCTGAAGGGGAT GTСАААТТССТССТGTCССТСААТСТТСАТTTTTATCTTCTATCAGATGTCCAAAAAGCGCGCGCGGGT GGATGATGGCTTCGACCCCGTGTACCCCTACGATGCAGACAACGCACCGACTGTGCCCTTCATCAACCC TCCCTTCGTCTCTTCAGATGGATTCCAAGAAAAGCCCCTGGGGGTGTTGTCCCTGCGACTGGCCGACCC CGTCACCACCAAGAATGGGGCTGTCACCCTCAAGCTGGGGGAGGGGGTGGACCTCGACGACTCGGGAAA АСТСАТСТССАААААТGССАССААGGCCACTGCCCCTCTCAGTATTTCCAACGGCACCATTTCCCTTAA CATGGCTGCCCCTTTTTACAACAACAATGGAACGTTAAGTCTCAATGTTTCTACACCATTAGCAGTATT TCCCACTTTTAACACTTTAGGTATCAGTCTTGGAAACGGTCTTCAAACTTCTAATAAGTTGCTGACTGT АСАGTTAАСТСАТССТСТТАСАТТСАGСТСАААТАGСАТСАСАGТАААААСАGАСАААGGAСТСТАТАТ TAATTCTAGTGGAAACAGAGGGCTTGAGGCTAACATAAGCCTAAAAAGAGGACTGATTTTTGATGGTAA TGCTATTGCAACATACCTTGGAAGTGGTTTAGACTATGGATCCTATGATAGCGATGGGAAAACAAGACC CATCATCACCAAAATTGGAGCAGGTTTGAATTTTGATGCTAATAATGCCATGGCTGTGAAGCTAGGCAC AGGTTTAAGTTTTGACTCTGCCGGTGCCTTAACAGCTGGAAACAAAGAGGATGACAAGCTAACACTTTG GACTACACCTGACCCAAGCCCTAATTGTCAATTACTTTCAGACAGAGATGCCAAATTTACCCTATGTCT TACAAAATGCGGTAGTCAAATACTAGGCACTGTTGCAGTAGCTGCTGTTACTGTAGGTTCAGCACTAAA TCCAATTAATGACACAGTAAAAAGCGCCATAGTATTCCTTAGATTTGACTCTGACGGTGTGCTCATGTC AAACTCATCAATGGTAGGTGATTACTGGAACTTTAGGGAGGGACAGACCACCCAAAGTGTGGCCTATAC AAATGCTGTGGGATTCATGCCCAATCTAGGTGCATATCCTAAAACCCAAAGCAAAACACCAAAAAATAG TATAGTAAGTCAGGTATATTTAAATGGAGAAACTACTATGCCAATGACACTGACAATAACTTTCAATGG CACTGATGAAAAAGACACAACACCTGTGAGCACTTACTCCATGACTTTTACATGGCAGTGGACTGGAGA СTATAAGGACAAGAATATTACCTTTGCTACCAACTCCTTTACTTTCTCCTACATGGCCCAAGAATAAAC CCTGCATGCCAACCCCATTGTTCCCACCACTATGGAAAACTCTGAAGCAGaAAAAAATAAAGTTCAAGT GTTTTATTGATTCAACAGTTTTCACAGAATTCGAGTAGTTATTTTCCCTCCTCCCTCCCAACTCATGGA ATACACCACCCTCTCCCCACGCACAGCCTTAAACATCTGAATGCCATTGGTAATGGACATGGTTTTGGT CTCCACATTCCACACAGTTTCAGAGCGAGCCAGTCTCGGGTCGGTCAGGGAGATGAAACCCTCCGGGCA СТССTGCATCTGCACCTCAAAGTTCAGTAGCTGAGGGCTGTCCTCGGTGGTCGGGATCACAGTTATCTG GAAGAAGAGCGGTGAGAGTCATAATCCGCGAACGGGATCGGGCGGTTGTGGCGCATCAGGCCCCGCAGC AGTCGCTGTCTGCGCCGCTCCGTCAAGCTGCTGCTCAAGGGGTCTGGGTCCAGGGACTCCCTGCGCATG ATGCCGATGGCCCTGAGCATCAGTCGCCTGGTGCGGCGGGCGCAGCAGCGGATGCGGATCTCACTCAGG TCGGAGCAGTACGTGCAGCACAGCACTACCAAGTTGTTCAACAGTCCATAGTTCAACGTGCTCCAGCCA AAACTCATCTGTGGAACTATGCTGCCCACATGTCCATCGTACCAGATCCTGATGTAAATCAGGTGGCGC ССССТССАGAACACACTGCCCATGTACATGATCTCCTTGGGCATGTGCAGGTTCACCACCTCCCGGTAC
-continued
Cequences CCCGCCATGCAGCGCAGGGACCCCGGGTCCTGGCAATGGCAGTGGAGCACCCACCGCTCACGGCCGTGG ATTAACTGGGAGCTGAACAAGTCTATGTTGGCACAGCACAGGCACACGCTCATGCATGTCTTCAGCACT CTCAGTTCCTCGGGGGTCAGGACCATGTCCCAGGGCACGGGGAACTCTTGCAGGACAGTGAACCCGGCA GAACAGGGCAGCCCTCGCACACAACTTACATTGTGCATGGACAGGGTATCGCAATCAGGCAGCACCGGA TGATCCTCCACCAGAGAAGCGCGGGTCTCGGTCTCCTCACAGCGAGGTAAGGGGGCCGGCGGTTGGTAC GGATGATGGCGGGATGACGCTAATCGTGTTCTGGATCGTGTCATGATGGAGCTGTTTCCTGACATTTTC GTACTTCACGAAGCAGAACCTGGTACGGGCACTGCACACCGCTCGCCGGCGACGGTCTCGGCGCTTCGA GCGCTCGGTGTTGAAGTTATAGAACAGCCACTCCCTCAGAGCGTGCAGTATCTCCTGAGCCTCTTGGGT GATGAAAATCCCATCCGCTCTGATGGCTCTGATCACATCGGCCACGGTGGAATGGGCCAGACCCAGCCA GATGATGCAATTTTGTTGGGTTTCGGTGACGGAGGGAGAGGGAAGAACAGGAAGAACCATGATTAACTT TATTCCAAACGGTCTCGGAGCACTTCAAAATGCAGGTCCCGGAGGTGGCACCTCTCGCCCCCACTGTGT TGGTGGAAAATAACAGCCAGGTCAAAGGTGACACGGTTCTCGAGATGTTCCACGGTGGCTTCCAGCAAA GCCTCCACGCGCACATCCAGAAACAAGAGGACAGCGAAAGCGGGAGCGTTTTCTAATTCCTCAATCATC ATATTACACTCCTGCACCATCCCCAGATAATTTTCATTTTTCCAGCCTTGAATGATTCGTATTAGTTCC TGAGGTAAATCCAAGCCAGCCATGATAAAAAGCTCGCGCAGAGCGCCCTCCACCGGCATTCTTAAGCAC ACCCTCATAATTCCAAGAGATTCTGCTCCTGGTTCACCTGCAGCAGATTAACAATGGGAATATCAAAAT СTCTGCCGCGATCCCTAAGCTCCTCCCTCAACAATAACTGTATGTAATCTTTCATATCATCTCCGAAAT TTTTAGCCATAGGGCCGCCAGGAATAAGAGCAGGGCAAGCCACATTACAGATAAAGCGAAGTCCTCCCC AGTGAGCATTGCCAAATGTAAGATTGAAATAAGCATGCTGGCTAGACCCTGTGATATCTTCCAGATAAC TGGACAGAAAATCAGGCAAGCAATTTTTAAGAAAATCAACAAAAGAAAAGTCGTCCAGGTGCAGGTTTA GAGCCTCAGGAACAACGATGGAATAAGTGCAAGGAGTGCGTTCCAGCATGGTTAGTGt TTTTTTGGTGA TCTGTAGAACAAAAAATAAACATGCAATATTAAACCATGCTAGCCTGGCGAACAGGTGGGTAAATCACT CTTTCCAGCACCAGGCAGGCTACGGGGTCTCCGGCGCGACCCTCGTAGAAGCTGTCGCCATGATTGAAA AGCATCACCGAGAGACCTTCCCGGTGGCCGGCATGGATGATTCGAGAAGAAGCATACACTCCGGGAACA TTGGCATCCGTGAGTGAAAAAAaGCGACCTATAAAGCCTCGGGGCACTACAATGCTCAATCTCAATTCC AGCAAAGCCACCCCATGCGGATGGAGCACAAAATTGGCAGGTGCGTAAAAAATGTAATTACTCCCCTCC TGCACAGGCAGCAAAGCCCCCGCTCCCTCCAGAAACACATACAAAGCCTCAGCGTCCATAGCTTACCGA GCACGGCAGGCGCAAGAGTCAGAGAAAAGGCTGAGCTCTAACCTGACTGCCCGCTCCTGTGCTCAATAT ATAGCCCTAACCTACACTGACGTAAAGGCCAAAGTCTAAAAATACCCGCCAAAATGACACACACGCCCA GCACACGCCCAGAAACCGGTGACACACTCAAAAAAATACGTGCGCTTCCTCAAACGCCCAAACCGGCGT CATTTCCGGGTTCCCACGCTACGTCACCGCTCAGCGACTTTCAAATTCCGTCGACCGTTAAAAACGTCA CTCGCCCCGCCCCTAACGGTCGCCCTTCTCTCGGCCAATCACCTTCCTCCCTTCCCAAATTCAAACGCC TCATTTGCATATTAACGCGCACAAAAAGTTTGAGGTATATATTTGAATGATG
(AdHu5 E4Orf6/7)
SEQ ID NO. 39
MTTSGVPFGMTLRPTRSRLSRRTPYSRDRLPPFETETRATILEDHPLLPECNTLTMHNAWTSPSPPVKQ PQVGQQPVAQQLDSDMNLSELPGEFINITDERLARQETVWNITPKNMSVTHDNIMLFKASRGERTVYSV CWEGGGRLNTRVI
(AdHu5 E4Orf6)
SEQ ID NO. 40
MTTSGVPFGMTLRPTRSRLSRRTPYSRDRLPPFETETRATILEDHPLLPECNTLTMHNVSYVRGLPCSV GFTLIQEWVVPWDMVLTREELVILRKCMEVCLCCANIDIMTSMIMINGYESWALHCHCSSPGSLQCIAG GQVLASWFRMVVDGAMFNQRF IWYREVVNYNMPKEVMFMSSVFMRGRHLIYLRLWYDGHVGSVVPAMSE GYSALHCGILNNIVVLCCSYCADLSEIRVRCCARRTRRLMLRAVRIIAEETTAMLYSCRTERRRQQFIR ALLQIIHRPILMHDYDSTPM
(AdHu5 E4Orf4)
SEQ ID NO. 41
MVLPALPAPPVCDSQNECVGWLGVAYSAVVDVIRAAAHEGVYI EPEARGRLDALREWIYYNYYTERSKR RDRRRRSVCHARTWFCFRKYDYVRRSIWHDTTTNTISVVSAHSVQ
(Mycobacterium tuberculosis protein Ag85A-nucleic acid sequence)
SEQ ID NO. 42
ATGGACGCCATGAAGAGGGGCCTGTGCTGCGTGCTGCTGCTGTGTGGCGCCGTGTTCGTGTCCCCCAGC CAGGAAATCCACGCCCGGTTCAGACGGGGCAGCATGCAGCTGGTGGACAGAGTCAGAGGCGCCGTGACC GGCATGAGCAGACGGCTGGTCGTGGGAGCTGTCGGAGCCGCTCTGGTGTCTGGACTCGTGGGAGCCGTG GGCGGAACAGCTACAGCCGGCGCTTTCAGCAGACCCGGCCTGCCCGTGGAATATCTGCAGGTCCCCAGC CCCAGCATGGGCCGGGACATCAAGGTGCAGTTCCAGTCTGGCGGAGCCAACAGCCCTGCTCTGTACCTG CTGGACGGCCTGAGAGCCCAGGACGACTTCAGCGGCTGGGACATCAACACCCCCGCCTTCGAGTGGTAC GACCAGAGCGGCCTGTCTGTGGTCATGCCTGTGGGCGGCCAGAGCAGCTTCTACAGCGACTGGTATCAG CCCGCTTGTGGCAAGGCCGGCTGCCAGACCTACAAGTGGGAGACATTCCTGACCAGCGAGCTGCCCGGC TGGCTGCAGGCCAACAGACACGTGAAGCCCACCGGCTCTGCCGTCGTGGGCCTGTCTATGGCTGCCAGC TCTGCCCTGACCCTGGCCATCTACCACCCCCAGCAGTTCGTGTACGCTGGCGCCATGTCTGGCCTGCTG GATCCTTCTCAGGCCATGGGACCCACCCTGATCGGACTGGCTATGGGAGATGCCGGCGGATACAAGGCC AGCGACATGTGGGGCCCTAAAGAGGACCCCGCCTGGCAGAGAAACGACCCCCTGCTGAACGTGGGCAAG CTGATCGCCAACAACACCAGAGTGTGGGTGTACTGCGGCAACGGCAAGCTGAGCGACCTGGGCGGCAAC AACCTGCCCGCCAAGTTCCTGGAAGGCTTCGTGCGGACCAGCAACATCAAGTTCCAGGACGCCTACAAC GCTGGCGGCGGACACAACGGCGTGTTCGACTTCCCCGACAGCGGCACCCACAGCTGGGAGTATTGGGGA GCCCAGCTGAATGCCATGAAGCCCGACCTGCAGAGAGGCAGCATCCCTAATCCTCTGCTGGGCCTGGAC TGA
-continued
Sequences
(Mycobacterium tuberculosis protein Ag85A-amino acid sequence)
SEQ ID NO. 43
MDAMKRGLCCVLLLCGAVFVSPSQEIHARFRRGSMOLVDRVRGAVTGMSRRLVVGAVGAALVSGLVGAV GGTATAGAFSRPGLPVEYLQVPSPSMGRDI KVQFQSGGANSPALYLLDGLRAQDDFSGWDINTPAFEWY DQSGLSVVMPVGGQSSFYSDWYQPACGKAGCQTYKWETFLTSELPGNLQANRHVKPTGSAVVGLSMAAS SALTLAIYHPQQFVYAGAMSGLLDPSQAMGPTLIGLAMGDAGGYKASDMWGPKEDPANQRNDPLLNVGK LIANNTRVWVYCGNGKLSDLGGNNLPAKFLEGFVRTSNIKFQDAYNAGGGHNGVFDFPDSGTHSWEYWG AQLNAMKPDLQRGSIPNPLLGLD.
(synthetic peptide corresponding to the known immunodominant CD8+ T cell $H-2^{d}$ restricted epitopes in Ag85A-p11)

SEQ ID NO. 44
WYDQSGLSV
(synthetic peptide corresponding to the known immunodominant $\mathrm{CD} 4^{+} \mathrm{T}$ cell $\mathrm{H}-2^{d}$ restricted epitopes in Ag85A-p15)

SEQ ID NO. 45
TFLTSELPGWLQANRHVKPT
(nucleoprotein (NP) and matrix protein 1 (M1) of influenza A virusnucleic acid sequence)

SEQ ID NO. 46
ATGGCCAGCCAGGGCACCAAGCGGAGCTACGAGCAGATGGAAACCGACGGCGACCGGCAGAACGCCACC GAGATCCGGGCCAGCGTGGGCAAGATGATCGACGGCATCGGCCGGTTCTACATCCAGATGTGCACCGAG CTGAAGCTGTCCGACTACGAGGGCCGGCTGATCCAGAACAGCCTGACCATCGAGAAGATGGTGCTGTCC GCCTTCGACGAGCGGCGGAACAGATACCTGGAAGAGCACCCCAGCGCCGGCAAGGACCCCAAGAAAACC GGCGGACCCATCTACCGGCGGGTGGACGGCAAGTGGATGCGGGAGCTGGTGCTGTACGACAAAGAGGAA ATCCGGCGGATCTGGCGGCAGGCCAACAACGGCGAGGACGCCACAGCCGGCCTGACCCACATGATGATC TGGCACAGCAACCTGAACGACACCACCTACCAGCGGACCAGGGCCCTCGTGCGGACCGGCATGGACCCC CGGATGTGCAGCCTGATGCAGGGCAGCACACTGCCCAGAAGAAGCGGAGCTGCCGGAGCCGCCGTGAAG GGCATCGGCACCATGGTGATGGAACTGATCCGGATGGTGAAGCGGGGCATCAACGACCGGAATTTTTGG AGGGGCGAGAACGGCAGAAAGACTAGAAGCGCCTACGAGCGGATGTGCAACATCCTGAAGGGCAAGTTC CAGACAGCCGCCCAGCGGGCCATGGTGGACCAGGTCCGGGAGAGCCGGAACCCCGGCAACGCCGAGATC GAGGACCTGATCTTCCTGGCCCGGTCCGCCCTGATCCTGCGGGGCAGCGTGGCCCACAAGAGCTGCCTG CCCGCCTGCGTGTACGGCCCTGCCGTGAGCAGCGGCTACGACTTCGAGAAAGAGGGCTACAGCCTGGTC GGCATCGACCCCTTCAAGCTGCTGCAGAACAGCCAGGTGTACAGCCTGATCCGGCCCAACGAGAACCCC GCCCACAAGTCCCAGCTGGTCTGGATGGCCTGCCACAGCGCCGCCTTCGAGGATCTGCGGCTGCTGTCC TTCATCCGGGGCACCAAGGTGTCCCCCAGGGGCAAGCTGTCCACCAGAGGCGTGCAGATCGCCAGCAAC GAGAACATGGACAACATGGGCAGCAGCACCCTGGAACTGCGGAGCGGCTACTGGGCCATCCGGACCCGG TCCGGCGGCAACACCAACCAGCAGCGGGCCAGCGCCGGACAGATCAGCGTGCAGCCCACCTTCTCCGTG CAGCGGAACCTGCCCTTCGAGAAGAGCACCGTGATGGCCGCCTTCACCGGCAACACCGAGGGCCGGACC AGCGACATGCGGGCCGAGATTATCCGGATGATGGAAGGCGCCAAGCCCGAGGAAGTGAGCTTCCGGGGC AGGGGCGTGTTCGAGCTGTCCGATGAGAAGGCCACCAACCCCATCGTGCCCAGCTTCGAGATGAGCAAC GAGGGCAGCTACTTCTTCGGCGACAACGCCGAGGAATACGACAATGGCGGCGGACCAGGCGGCGGAATG AGCCTGCTGACCGAGGTGGAGACCTACGTGCTGTCCATCGTGCCTAGCGGCCCTCTGAAGGCCGAGATC GCCCAGCGGCTGGAAGATGTGTTCGCCGGCAAGAACACCGACCTGGAAGCCCTGATGGAATGGCTGAAA ACCCGGCCCATCCTGAGCCCCCTGACCAAGGGCATCCTGGGCTTCGTGTTCACCCTGACCGTGCCCAGC GAGCGGGGCCTGCAGCGGCGGAGATTCGTGCAGAACGCCCTGAACGGCAACGGCGACCCCAACAACATG GATAAGGCCGTGAAGCTGTACCGGAAGCTGAAGCGGGAGATCACCTTCCACGGCGCCAAAGAGATCGCC CTGAGCTACAGCGCCGGAGCCCTGGCCAGCTGCATGGGCCTGATCTACAACCGGATGGGCGCCGTGACC ACCGAGGTGGCCTTCGGCCTGGTCTGCGCCACCTGCGAGCAGATCGCCGACAGCCAGCACAGATCCCAC CGGCAGATGGTGGCCACAACCAACCCTCTGATCAAGCACGAGAACCGGATGGTGCTGGCTAGCACCACC GCCAAGGCCATGGAACAGATGGCCGGCAGCAGCGAGCAGGCCGCCGAAGCCATGGAAATCGCCAGCCAG GCCAGACAGATGGTGCAGGCCATGCGGACCGTGGGCACCCACCCCAGCAGCTCCACCGGCCTGCGGGAC GACCTGCTGGAAAACCTGCAGACCTACCAGAAACGGATGGGGGTGCAGATGCAGCGGTTCAAGTGA
(nucleoprotein (NP) and matrix protein 1 (M1) of influenza A virusamino acid sequence)

SEQ ID NO. 47
MASQGTKRSYEQMETDGDRQNATEIRASVGKMIDGI GRFYIQMCTELKLSDYEGRLIQNSLTIEKMVL SAFDERRNRYLEEHPSAGKDPKKTGGPIYRRVDGKNMRELVLYDKEEIRRIWRQANNGEDATAGLTHM MIWHSNLNDTTYQRTRALVRTGMDPRMCSLMQGSTLPRRSGAAGAAVKGIGTMVMELIRMVKRGINDR NFWRGENGRKTRSAYERMCNI LKGKFQTAAQRAMVDQVRESRNPGNAEIEDLIFLARSALILRGSVAH KSCLPACVYGPAVSSGYDFEKEGYSLVGIDPFKLLQNSQVYSLIRPNENPAHKSQLVWMACHSAAFED LRLLSFIRGTKVSPRGKLSTRGVQIASNENMDNMGSSTLELRSGYWAIRTRSGGNTNQQRASAGQISV QPTFSVQRNLPFEKSTVMAAFTGNTEGRTSDMPAEI IRMMEGAKPEEVSFRGRGVFELSDEKATNPIV PSFEMSNEGSYFFGDNAEEYDNGGGPGGGMSLLTEVETYVLSIVPSGPLICAEIAQRLEDVFAGKITD LEALMEWLKTRPILSPLTKGILGFVFTLTVPSERGLQRRRFVQNALNGNGDPNNMDKAVKLYRKLKRE ITFHGAKEIALSYSAGALASCMGLI YNRMGAVTTEVAFGLVCATCEQIADSQHRSHRQMVATTNPLIK HENRMVLASTTAKAMEQMAGSSEQAAEAMEIASQARQMVQAMRTVGTHPSSSTGLRDDLLENLQTYQK RMGVQMQRFK

Sequences					
(immunodominant $\mathrm{CDS}^{+} \mathrm{T}$ cell $\mathrm{H}-2^{\text {d }}$ restricted epitope in NP)					
TYQRTRALV					
(linker sequence)					
I PNPLLGLD					

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 49

$<210>$	SEQ ID NO 1
$<211>$ LENGTH: 36711	
$<212>$ TYPE : DNA	
$<213>$ ORGANISM: Chimpanzee adenovirus AdY25	
$<220>$ FEATURE:	
$<221>$ NAME/KEY: source	
$<222>$ LOCATION: $1 \ldots 36711$	
$<223>$ OTHER INFORMATION:/mol_type="DNA"	
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE : 1

ccatcatcaa taatatacct caactttt gtgcgegtta atatgcaaat gaggcgtttg 60
aatttgggaa gggaggaagg tgattggccg agagaagggc gaccgttagg ggcggggega 120
gtgacgtttt gatgacgtga cogcgaggag gagccagttt gcaagttctc gtgggaaaag 180
tgacgtcaaa cgaggtgtgg tttgaacacg gaaatactca attttcccgc gctctctgac 240
aggaaatgag gtgtttctag gcggatgcaa gtgaaaacgg gccattttcg cgcgaaaact 300
gaatgaggaa gtgaaaatct gagtaatttc gcgtttatga cagggaggag tatttgccga 360
gggcegagta gactttgacc gattacgtgg gggtttcgat taccgtgttt ttcacctaaa 420
tttccgcgta cggtgtcaaa gtccggtgtt tttacgtagg tgtcagctga tcgccagggt 480
atttaaacct gcgctctcca gtcaagaggc cactcttgag tgccagcgag aagagttttc 540
tcctccgcgc cgcgagtcag atctacactt tgaaagatga ggcacctgag agacctgccc 600
gatgagaaaa tcatcatcgc ttccgggaac gagattctgg aactggtggt aaatgccatg 660
atgggcgacg accctccgga gccccccacc ccatttgagg caccttcgct acacgatttg 720
tatgatctgg aggtggatgt gcccgaggac gaccccaacg aggaggcggt aaatgattta 780
tttagcgatg cegcgetgct agctgcegag gaggcttcga gccetagctc agacagcgac 840
tcttcactgc atacccetag acccggcaga ggtgagaaaa agatccecga gcttaaaggg 900
gaagagatgg acttgcgctg ctatgaggaa tgcttgcccc cgagcgatga tgaggacgag 960
caggcgatcc agaacgcage gagccaggga atgcaagceg ceagcgagag ttttgcgetg 1020
gactgcccgc ctctgcccgg acacggctgt aagtcttgtg aatttcatcg cttgaatact 1080
ggagataaag ctgtgttatg tgcactttgc tatatgagag cttacaacca ttgtgtttac 1140
agtaagtgtg attaagttga actttagagg gaggcagaga gcagggtgac tgggcgatga 1200
ctggtttatt tatgtatata tgttctttat ataggtcccg tctctgacgc agatgatgag 1260
acccccacta cagagtccac ttcgtcaccc ccagaaattg gcacatctcc acctgagaat 1320
attgttagac cagttcctgt tagagccact gggaggagag cagctgtgga atgtttggat 1380
gacttgctac aggctgggga tgaacctttg gacttgtgta cccggaaacg ccccaggcac 1440
-continued

-continued

-continued

-continued

-continued

-continued

-continued

-continued

-continued

-continued

-continued

-continued

agggcacggg	gaactcttge	aggacagtga	ccggcaga	ggggcagc	cctegcacac	34680
aacttacatt	gtgcatggac	agggtatcgc	aatcaggcag	accggatga	tcctccacca	34740
gagaagcgcg	ggtctcggtc	tcctcacagc	gaggtaaggg	ggccggcggt	tggtacggat	34800
gatggcggga	tgacgctaat	cgtgttctgg	atcgtgtcat	gatggagctg	tttcotgaca	34860
ttttcgtact	tcacgaagca	gaacctggta	gggcactgc	acaccgetcg	ccggcgacgg	34920
tctcggcget	tcgagcgetc	ggtgttgaag	ttatagaaca	gccactccct	cagagcgtgc	34980
agtatctcct	gagcetcttg	ggtgatgaaa	tcccatcog	tctgatggc	tctgatcaca	35040
tcggccacgg	tggaatgggc	cagaccoagc	agatgatgc	ttttgttg	ggtttcggtg	35100
acggagggag	agggaagaac	aggaagaacc	tgattaact	tattccaaa	cggtctcgga	35160
gcacttcaaa	atgcaggtcc	cggaggtggc	acctetcgce	cccactgtgt	tggtggaaaa	35220
taacagccag	gtcaaaggtg	acacggttct	gagatgttc	acggtggct	tccagcaaag	35280
cctccacgeg	cacatccaga	aacaagagga	cagcgaaag	agcgttt	ctaattcct	35340
caatcatcat	attacactcc	tgcaccatcc	cagataatt	catttttc	cagcettgaa	35400
tgattcgtat	tagttcctga	ggtaaatcca	agccagceat	gataaaaagc	tcgegcagag	35460
cgecctccac	cggcattctt	aagcacaccc	cataattcc	aagagattct	gctcetggtt	35520
cacctgcagc	agattaacaa	tgggaatatc	aaatctctg	cgcgatccc	taagctcctc	35580
cctcaacaat	aactgtatgt	atctttcat	tcatctccg	aatttttag	ccatagggce	35640
gccaggaata	agagcagggc	aagccacatt	cagataaag	gaagtcetc	ccagtgagc	35700
attgccaaat	gtaagattga	aataagcatg	tggctagac	ctgtgatat	ttccagata	35760
actggacaga	aatcaggca	agcaattttt	agaaaatca	caaaagaaa	agtcgtccag	35820
gtgcaggttt	agagcetcag	gaacaacgat	ggaataagtg	aaggagtgc	gttccagcat	35880
ggttagtgtt	tttttggtga	tctgtagaac	aaaat aaa	atgcaatat	aaaccatgc	35940
tagcetggeg	aacaggtggg	taaatcactc	ttccagcac	aggcagget	cggggtctc	36000
cggcgcgacc	ctcgtagaag	ctgtcgccat	gattgaaaag	catcaccgag	agaccttccc	36060
ggtggceggc	atggatgatt	cgagaagaag	atacactcc	gggaacattg	gcatcegtga	36120
gtgaaaaaaa	gcgacctata	aagcetcggg	gcactacaat	gctcaatctc	aattccagca	36180
aagceaccoc	atgcggatgg	agcacaaaat	tggcaggtgc	gtaaaaaatg	taattactcc	36240
cetcctgcac	aggcagcaaa	gccocogctc	cctccagaaa	cacatacaaa	gcctcagcgt	36300
ccatagctta	ccgagcacgg	caggcgcaag	agtcagagaa	aggetgagc	ctaacctga	36360
ctgcecgctc	ctgtgctcaa	tatatagcec	taacctacac	gacgtaaag	gccaaagtct	36420
aaaaataccc	gccaaaatga	cacacacgec	cagcacacge	ccagaaaccg	gtgacacact	36480
caaaaaaata	cgtgcgcttc	ctcaaacgec	caaaccggcg	tcatttccgg	gttcccacgc	36540
tacgtcaccg	ctcagcgact	ttcaaattcc	gtcgaccgtt	aaaaacgtca	ctcgecccgc	36600
ccctaacggt	cgcecttctc	tcggccaatc	accttcctcc	cttcccaaat	tcaaacgcct	36660
catttgcata	ttaacgegca	caaaaagttt	gaggtatata	tttgaatgat	9	36711

$<210>$ SEQ ID NO 2
$<211>$ LENGTH: 942
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Chimpanzee adenovirus AdY25
$<220>$ FEATURE:
$<221>$ NAME/KEY: SOURCE
$<222>$ LOCATION: $1 . .942$
$<223>$ OTHER INFORMATION: /mol_type="protein"

$<210>$	SEQ ID NO 3
$<211>$	LENGTH: 532
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$ FEATURE:	
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: 1..532	
$<223>$ OTHER INFORMATION:/mol_type="protein"	
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 3

$<210>$	SEQ ID NO 4
$<211>$	LENGTH: 443
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$ FEATURE:	
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION : $1 \ldots 443$	
$<223>$	OTHER INFORMATION : /mol_type="protein"
	/organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE : 4

		35				40					45		
Leu	$\begin{aligned} & \text { Arg I } \\ & 50 \end{aligned}$	Leu	Ala Asp	Pro	$\begin{aligned} & \text { Val } \\ & 55 \end{aligned}$			Ly		$\begin{aligned} & \text { Gly } \\ & 60 \end{aligned}$	Ala		Thr Leu
$\begin{aligned} & \text { Lys L } \\ & 65 \end{aligned}$	Leu	Gly	Glu Gly	$\begin{aligned} & \text { Val } \\ & 70 \end{aligned}$	Asp			As	$\begin{aligned} & \text { Se: } \\ & 75 \end{aligned}$	Gly	Lys	Leu	$\begin{gathered} \text { Ile Ser } \\ 80 \end{gathered}$
Lys A	Asn	Ala	$\begin{gathered} \text { Thr Lys } \\ 85 \end{gathered}$	Ala	Thr	Ala	Pro	$\begin{aligned} & \text { Leu } \\ & 90 \end{aligned}$	S	Ile		Asn	Gly Thr 95
Ile S	Ser L	Leu	$\begin{aligned} & \text { Asn Met } \\ & 100 \end{aligned}$	Ala	Ala	Pro					Asn	$\begin{gathered} \text { Gly } \\ 110 \end{gathered}$	Thr Leu
Ser L	Leu	$\begin{aligned} & \text { Asn } \\ & 115 \end{aligned}$	Val ser	Thr	Pro	$\begin{aligned} & \text { Leu } \\ & 120 \end{aligned}$	Al	Val			$\begin{aligned} & \text { Thr } \\ & 125 \end{aligned}$		Asn Thr
Leu	$\begin{aligned} & \mathrm{Gly} \\ & 130 \end{aligned}$	Ile	Ser Leu	Gly	$\begin{aligned} & \text { Asn } \\ & 135 \end{aligned}$	Gly	Le	G1		$\begin{aligned} & \text { Ser } \\ & 140 \end{aligned}$	Asn	Lys	Leu Leu
$\begin{aligned} & \text { Thr V } \\ & 145 \end{aligned}$	Val		Leu Thr	$\begin{aligned} & \text { His } \\ & 150 \end{aligned}$	Pro		Th		15				$\begin{array}{r} \text { Ile Thr } \\ 160 \end{array}$
Val L	Lys T	Thr	$\begin{array}{r} \text { Asp Lys } \\ 165 \end{array}$	Gly	Leu	Tyr	Il		S		Gly	Asn	$\begin{aligned} & \text { Arg Gly } \\ & 175 \end{aligned}$
Leu	Glu	Ala	$\begin{aligned} & \text { Asn Ile } \\ & 180 \end{aligned}$	Ser	Leu	Lys	$\begin{aligned} & \text { Ar } \\ & 18 \end{aligned}$	Gl	L	Ile	Phe	Asp 190	Gly Asn
Ala I		$\begin{aligned} & \text { Ala } \\ & 195 \end{aligned}$	Thr Tyr	Leu	Gly	$\begin{aligned} & \text { Ser } \\ & 200 \end{aligned}$	Gl	Leu	A	Tyr	$\begin{aligned} & \text { Gly } \\ & 205 \end{aligned}$	Ser	Tyr Asp
	$\begin{aligned} & \text { Asp } \\ & 210 \end{aligned}$	Gly	Lys Thr	Arg	$\begin{aligned} & \text { Pro } \\ & 215 \end{aligned}$	Ile	Il	Th		$\begin{aligned} & \text { Ile } \\ & 220 \end{aligned}$	Gly	Ala	Gly Leu
$\begin{aligned} & \text { Asn } \\ & 225 \end{aligned}$	Phe	Asp	Ala Asn	$\begin{aligned} & \text { Asn } \\ & 230 \end{aligned}$	Ala	Met	Al	Va	23	Leu	Gly	Thr	$\begin{array}{ll} \text { Gly } & \text { Leu } \\ 240 \end{array}$
Ser P	Phe 7	Asp	$\begin{array}{r} \text { Ser Ala } \\ 245 \end{array}$	Gly	Ala	Leu	Th			Asn	Lys	Glu	$\begin{aligned} & \text { Asp Asp } \\ & 255 \end{aligned}$
Lys L	Leu T	Thr	$\begin{aligned} & \text { Leu Trp } \\ & 260 \end{aligned}$	Thr	'hr	Pr	$\begin{aligned} & \text { As } \\ & 26 \end{aligned}$	Pr		Pro	Asn	$\begin{aligned} & \text { Cys } \\ & 270 \end{aligned}$	Gln Leu
Leu S	Ser	$\begin{aligned} & \text { Asp } \\ & 275 \end{aligned}$	Arg Asp	Ala	Lys	$\begin{aligned} & \text { Phe } \\ & 280 \end{aligned}$	Th	Leu		Leu	$\begin{aligned} & \text { Thr } \\ & 285 \end{aligned}$	Lys	Cys Gly
Ser	$\begin{aligned} & \text { Gln } \\ & 290 \end{aligned}$	Ile	Leu Gly	Thr	$\begin{aligned} & \text { Val } \\ & 295 \end{aligned}$	Ala	Va	Al		$\begin{aligned} & \mathrm{Val} \\ & 300 \end{aligned}$	Thr	Val	Gly Ser
$\begin{aligned} & \text { Ala L } \\ & 305 \end{aligned}$	Leu	Asn	Pro Ile	$\begin{aligned} & \text { Asn } \\ & 310 \end{aligned}$	Asp	Thr	V	Ly	31	Ala	Ile		$\begin{array}{r} \text { Phe Leu } \\ 320 \end{array}$
Arg Pr	Phe 7	Asp	$\begin{array}{r} \text { Ser Asp } \\ 325 \end{array}$	Gly	Val	Leu	Me	$\begin{aligned} & \mathrm{Se} \\ & 33 \end{aligned}$	As	Ser	Ser	Met	$\begin{aligned} & \text { Val Gly } \\ & 335 \end{aligned}$
Asp	Tyr T	Trp	Asn Phe 340	Arg	Glu	Gly	$\begin{aligned} & \text { Gl } \\ & 34 \end{aligned}$	Th	Th	Gln	Ser	$\begin{aligned} & \text { Val } \\ & 350 \end{aligned}$	Ala Tyr
Thr A	Asn	Ala 355	val Gly	Phe	Met	$\begin{aligned} & \text { Pro } \\ & 360 \end{aligned}$	As	Le	Gl	Ala	$\begin{aligned} & \text { Tyr } \\ & 365 \end{aligned}$	Pro	Lys Thr
$\begin{gathered} G \ln \\ \\ S \end{gathered}$	$\begin{aligned} & \text { Ser } \\ & 370 \end{aligned}$	Lys	Thr Pro	Lys	Asn 375	Ser	Il	Va	Se	$\begin{aligned} & \mathrm{Gln} \\ & 380 \end{aligned}$	Val	Tyr	Leu Asn
$\begin{aligned} & \text { Gly } \\ & 385 \end{aligned}$	Glu	Thr	Thr Met	$\begin{aligned} & \text { Pro I } \\ & 390 \end{aligned}$	Met	Thr	Le	Th	39	Thr	Phe	Asn	$\begin{aligned} \text { Gly Thr } \\ 400 \end{aligned}$
Asp	Glu L	Lys	$\begin{array}{r} \text { Asp Thr } \\ 405 \end{array}$	Thr	Pro		Se		-			Thr	$\begin{aligned} & \text { Phe Thr } \\ & 415 \end{aligned}$
Trp	Gln T	Trp	$\begin{aligned} & \text { Thr Gly } \\ & 420 \end{aligned}$	Asp	Tyr	Lys	$\begin{aligned} & \mathrm{As}] \\ & 42! \end{aligned}$	Ly	As	Ile	Thr	Phe 430	Ala Thr
Asn S	Ser	Phe 435	Thr Phe	Ser	Tyr	$\begin{aligned} & \text { Met } \\ & 440 \end{aligned}$	Al	G1	Gl				

<211	$>$ LENGTH: 257
<212	$>$ TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION: 1..257
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 5

Met Arg His Leu Arg Asp Leu Pro Asp Glu Lys Ile Ile Ile Ala Ser
10

$<210>$	SEQ ID NO 6
$<211>$ LENGTH: 187	
$<212>$ TYPE : PRT	
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$ NAME/KEY: SOURCE	
$<222>$	LOCATION: $1 \ldots 187$
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 6

$<210>$	SEQ ID NO 7
$<211>$ LENGTH: 499	
$<212>$ TYPE : PRT	
$<213>$ ORGANISM: Chimpanzee adenovirus AdY25	
$<220>$ FEATURE:	
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: 1..499	
$<223>$ OTHER INFORMATION:/mol_type="protein"	
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 7

$<210>$	SEQ ID NO 8
$<211>$ LENGTH: 142	
$<212>$ TYPE: PRT	
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$ FEATURE:	
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: $1 \ldots 142$	
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 8

Met Ser Gly Ser Gly Ser Phe Glu Gly Gly Val Phe Ser Pro Tyr Leu
1

$<210>$	SEQ ID NO 9
$<211>$	LENGTH: 449
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$ NAME /KEY: SOURCE	
$<222>$	LOCATION: $1 \ldots 449$
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 9

Arg	Pro L	Lys	Phe	$\begin{aligned} & \text { Ile } \\ & 245 \end{aligned}$	Lys	Met	Ala	$\text { Tyr } \begin{array}{r} \text { A } \\ 2 \end{array}$	$\begin{aligned} & \text { Asp } \\ & 250 \end{aligned}$	Asp	Leu	Thr Gln	Asp 255	
Asn	Tyr	Asp	$\begin{aligned} & \text { Val } \\ & 260 \end{aligned}$	Ser	Asp	Pro	Arg	$\begin{aligned} & \text { Asn V } \\ & 265 \end{aligned}$	Val	Phe	Ala	$\begin{array}{r} \mathrm{G} \ln \mathrm{Ala} \\ 270 \end{array}$		Ala
His	Gly	$\begin{aligned} & \text { Pro } \\ & 275 \end{aligned}$	Ile	Ala	Ile	Ile	$\begin{aligned} & \text { Met } \\ & 280 \end{aligned}$	Asp	Glu	Cys	Met	$\begin{aligned} & \text { Glu Asn } \\ & 285 \end{aligned}$	Leu	Gly
Gly	$\begin{aligned} & \text { His I } \\ & 290 \end{aligned}$	Lys	Gly	Val	Ala	$\begin{aligned} & \text { Lys } \\ & 295 \end{aligned}$	Phe	Phe H	His	Ala	$\begin{aligned} & \text { Phe } \\ & 300 \end{aligned}$	Pro Ser	Lys	Leu
$\begin{aligned} & \text { His } \\ & 305 \end{aligned}$	Asp	Lys	Phe	Pro	$\begin{aligned} & \text { Lys } \\ & 310 \end{aligned}$	Cys	Thr	Gly T	Tyr	$\begin{aligned} & \text { Thr } \\ & 315 \end{aligned}$	Val	Leu Val		$\begin{aligned} & \text { Leu } \\ & 320 \end{aligned}$
His	Asn	Met	Asn	$\begin{aligned} & \text { Pro } \\ & 325 \end{aligned}$	Arg	Arg	Asp	Leu	$\begin{aligned} & \text { Gly } \\ & 330 \end{aligned}$	Gly	Asn	Ile Ala	$\begin{aligned} & \text { Asn } \\ & 335 \end{aligned}$	Leu
Lys	Ile	Gln	$\begin{aligned} & \text { Ala } \\ & 340 \end{aligned}$	Lys	Met	His	Leu	Ile 345	Ser	Pro	Arg	$\begin{array}{r} \text { Met His } \\ 350 \end{array}$		Ser
Gln	Leu	$\begin{aligned} & \text { Asn } \\ & 355 \end{aligned}$	Arg	Phe	Val	Asn	$\begin{aligned} & \text { Thr } \\ & 360 \end{aligned}$	Tyr T	Thr	Lys	Gly	$\begin{aligned} & \text { Leu Pro } \\ & 365 \end{aligned}$	Val	Ala
Ile	$\begin{aligned} & \text { Ser } \\ & 370 \end{aligned}$	Leu	Leu	Leu	Lys	Asp 375	Ile V	Val	Gln	His	$\begin{aligned} & \mathrm{His} \\ & 380 \end{aligned}$	Ala Leu	Arg	Pro
$\begin{aligned} & \text { Cys } \\ & 385 \end{aligned}$	Tyr	Asp	Trp	Val	$\begin{aligned} & \text { Ile } \\ & 390 \end{aligned}$	TYr	Asn	Thr T	Thr	$\begin{aligned} & \text { Pro } \\ & 395 \end{aligned}$	Glu	His Glu	Ala	$\begin{aligned} & \text { Leu } \\ & 400 \end{aligned}$
Gln	Trp	Ser	Tyr	$\begin{aligned} & \text { Leu } \\ & 405 \end{aligned}$	His	Pro	Arg	$\begin{aligned} \text { Asp } \\ 4 \end{aligned}$	$\begin{aligned} & \mathrm{Gly} \\ & 410 \end{aligned}$	Leu	Met	Pro Met	$\begin{aligned} & \text { Tyr } \\ & 415 \end{aligned}$	Leu
Asn	Ile	Gln	Ala 420	His	Leu	Tyr	Arg	Val L 425	Leu	Glu	Lys	$\begin{array}{r} \text { Ile His } \\ 430 \end{array}$	Arg	Val
Leu	Asn	Asp 435	Arg	Asp	Arg	Trp	$\begin{aligned} & \text { Ser } 7 \\ & 440 \end{aligned}$	Arg A	Ala	Tyr	Arg	$\begin{aligned} & \text { Ala Arg } \\ & 445 \end{aligned}$	Lys	Ile
Lys														

$<210>$	SEQ ID NO 10
$<211>$	LENGTH: 1196
$<212>$ TYPE: PRT	
$<213>$ ORGANISM: Chimpanzee adenovirus AdY25	
$<220>$ FEATURE:	
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: 1..1196	
$<223>$ OTHER INFORMATION: /mol_type="protein"	
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 10

P			Lys	$\begin{aligned} & \mathrm{Gly} \\ & 565 \end{aligned}$	Gln	eu	Lys	Tyr A	Asp 570					$\begin{aligned} & \text { Thr } \\ & 575 \end{aligned}$	Leu
Asp	Tyr	Cys	$\begin{aligned} & \text { Ala I } \\ & 580 \end{aligned}$	Leu	Asp	Val	Leu	$\begin{aligned} & \text { Val T } \\ & 585 \end{aligned}$	Thr	Ala	Glu	Leu	$\begin{aligned} & \mathrm{Val} \\ & 590 \end{aligned}$		Lys
Leu	Gln	Asp 595	Ser	Tyr A	Ala	His	Phe 600	Ile A	Arg A	Asp	Ser	$\begin{aligned} & \text { Val } \\ & 605 \end{aligned}$	Gly	Leu	Pro
His	$\begin{aligned} & \text { Ala } \\ & 610 \end{aligned}$	His	Phe	Asn	Ile	Phe 615	Gln	Arg P	Pro	Thr	$\begin{aligned} & \text { Ile } \\ & 620 \end{aligned}$		Ser	Asn	Ser
$\begin{aligned} & \text { His } \\ & 625 \end{aligned}$	Ala	le	Phe	Arg	$\begin{aligned} & \text { Gln } \\ & 630 \end{aligned}$	$1 e$	Val	Tyr	g	Ala 635	Glu	Lys	Pro		$\begin{aligned} & \text { Arg } \\ & 640 \end{aligned}$
Thr	Asn	Leu	Gly	Pro 645	Gly	Leu	Leu	Ala	$\begin{aligned} & \text { Pro } \\ & 650 \end{aligned}$	Ser	His	Glu	eu	$\begin{aligned} & \text { Tyr } \\ & 655 \end{aligned}$	Asp
Tyr	Val	Arg	$\begin{aligned} & \text { Ala } \\ & 660 \end{aligned}$	Ser	Ile	Arg	Gly	$\begin{aligned} & \text { Gly A } \\ & 665 \end{aligned}$	Arg	Cys	Tyr	Pro	$\begin{aligned} & \text { Thr } \\ & 670 \end{aligned}$	Tyr	Ile
Gly	Ile	Leu 675	Glu	Glu	O	Leu	Tyr	al	r	p	Ile	$\begin{aligned} & \text { Cys } \\ & 685 \end{aligned}$	$1 y$	Met	Tyr
Ala	$\begin{aligned} & \text { Ser } \\ & 690 \end{aligned}$	Ala	Leu	Thr	His	$\begin{aligned} & \text { Pro } \\ & 695 \end{aligned}$	Met	Pro T	Trp	y	$\begin{aligned} & \text { Thr } \\ & 700 \end{aligned}$	Pro	Leu	Ser	Pro
$\begin{aligned} & \text { Tyr } \\ & 705 \end{aligned}$	Glu	Arg	Ala	u	$\begin{aligned} & \text { Ala } \\ & 710 \end{aligned}$	Val	Arg	Glu	Trp	$\begin{aligned} & \mathrm{Gln} \\ & 715 \end{aligned}$	Ala	Ser	eu	Asp	$\begin{aligned} & \text { Asp } \\ & 720 \end{aligned}$
Leu	Ala	Thr	Ser	$\begin{aligned} & \text { Ile } \\ & 725 \end{aligned}$	Ser	Tyr	Phe	Asp	$\begin{aligned} & \text { Pro } \\ & 730 \end{aligned}$	Asp	Leu	Leu	ro	$\begin{aligned} & \text { Gly } \\ & 735 \end{aligned}$	Ile
Phe	Thr	Ile	$\begin{aligned} & \text { Asp } \\ & 740 \end{aligned}$	Ala	Asp	Pro	Pro	$\begin{aligned} & \text { Asp } \\ & 745 \end{aligned}$	Glu	Val	Met	Leu	$\begin{aligned} & \text { Asp } \\ & 750 \end{aligned}$	Pro	Leu
Pro	Pro	Phe 755	Cys	Ser	rg	Lys	$\begin{aligned} & \text { Gly } \\ & 760 \end{aligned}$	Gly A	Arg	Leu	Cys	$\begin{aligned} & \text { Trp } \\ & 765 \end{aligned}$	Thr	Asn	Glu
Pro	$\begin{aligned} & \text { Leu } \\ & 770 \end{aligned}$	Arg	Gly	Glu	al	$\begin{aligned} & \text { Ala } \\ & 775 \end{aligned}$	Thr	Ser V	Val	Asp	$\begin{aligned} & \text { Leu } \\ & 780 \end{aligned}$	Ile	Thr	Leu	His
$\begin{aligned} & \text { Asn } \\ & 785 \end{aligned}$	Arg	Gly	Trp	n	$\begin{aligned} & \text { Val A } \\ & 790 \end{aligned}$	Arg	Ile	Val	ro	$\begin{aligned} & \text { Asp } \\ & 795 \end{aligned}$	Glu	Met	Thr	Thr	$\begin{aligned} & \mathrm{Val} \\ & 800 \end{aligned}$
Phe	Pro	Glu	Trp	$\begin{aligned} & \text { Lys } \\ & 805 \end{aligned}$	Cys	Val	Ala	$\begin{array}{r} \text { Arg } \\ 8 \\ 8 \end{array}$	$\begin{aligned} & \text { Glu } \\ & 810 \end{aligned}$	TYr	Val	Gln	eu	$\begin{aligned} & \text { Asn } \\ & 815 \end{aligned}$	Ile
Ala	Ala	Lys	$\begin{aligned} & \text { Glu } \\ & 820 \end{aligned}$	Arg	la	Asp	Lys	$\begin{aligned} & \text { Glu L } \\ & 825 \end{aligned}$	Lys	sn	Gln	Thr	Met 830	Arg	Ser
Ile	Ala	$\begin{aligned} & \text { Lys } \\ & 835 \end{aligned}$	Leu	Leu	Ser	sn	$\begin{aligned} & \text { Ala } \\ & 840 \end{aligned}$	Leu T	Tyr	Gly	Ser	Phe 845	Ala	Thr	ys
Leu	$\begin{aligned} & \text { Asp } \\ & 850 \end{aligned}$	A.sn	Lys	Lys		$\begin{aligned} & \text { Val } \\ & 855 \end{aligned}$	Phe	Ser A	Asp	Gln	Met 860	Asp	Glu	Gly	Leu
$\begin{aligned} & \text { Leu } \\ & 865 \end{aligned}$	Lys	$1 Y$	$\text { Le } S$	Ser	$\begin{aligned} & \text { Ala } \\ & 870 \end{aligned}$	Gly	hr	al	n	Ile 875	Lys	Ser	Ser		$\begin{aligned} & \text { Phe } \\ & 880 \end{aligned}$
Leu	Glu	Thr	Asp	$\begin{aligned} & \text { Asn } \\ & 885 \end{aligned}$	Leu		Ala		Val 890	Met	Pro	Ala	Phe	$\begin{aligned} & \text { Glu } \\ & 895 \end{aligned}$	Arg
Glu	Tyr L	Leu	Pro 900	Gln	$\mathrm{Gln} \mathrm{I}$	Leu	Ala	905	Leu	Asp	Ser	Asp	Pro 910	Glu	Asp
Ser	Glu	Asp 915	Glu	Gln	$\text { Gly } \mathrm{F}$	Pro	$\begin{aligned} & \text { Ala } \\ & 920 \end{aligned}$	Pro P	Phe	Tyr	Thr	Pro P 925	Pro	Ala	Gly
Thr	$\begin{aligned} & \text { Pro } \\ & 930 \end{aligned}$	Gly	His	Val		$\begin{aligned} & \text { Tyr } \\ & 935 \end{aligned}$	Thr	Tyr L	Lys	Pro	Ile 940	Thr	Phe	Leu	Asp
$\begin{aligned} & \text { Val } \\ & 945 \end{aligned}$	Asp	Glu	$\text { Gly } z$	Asp	Met 950	Cys	Leu	His	Thr	Leu 955	Glu	Lys	Val	Asp	$\begin{aligned} & \text { Pro } \\ & 960 \end{aligned}$
Leu	Val	Asp	Asn	Asp 965	Arg T	Tyr	Pro	Ser H	His 970	Val	Ala	Ser	Phe	Val 975	Leu

$<210>$	SEQ ID NO 11
$<211>$	LENGTH: 646
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$ NAME/KEY: SOURCE	
$<222>$	LOCATION: $1 \ldots 646$
$<223>$	OTHER INFORMATION:/mol type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
<400	SEQUENCE: 11

$<210>$	SEQ ID NO 12
$<211>$ LENGTH: 396	
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: 1.396	
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 12

$<210>$	SEQ ID NO 13
$<211>$	LENGTH: 589
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$ NAME/KEY: SOURCE	
$<222>$	LOCATION: $1 \ldots 589$
$<223>$	OTHER INFORMATION:/mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 13

$<210>$ SEQ ID NO 14
$<211>$ LENGTH: 193
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Chimpanzee adenovirus AdY25

$<220>$	FEATURE:
$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION : $1 \ldots 193$
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 14

$<210>$	SEQ ID NO 15
$<211>$	LENGTH: 340
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$ NAME/KEY: SOURCE	
$<222>$	LOCATION: 1.340
$<223>$	OTHER INFORMATION:/mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 15

$<210>$	SEQ ID NO 16
$<211>$	LENGTH: 77
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$ NAME/KEY: SOURCE	
$<222>$	LOCATION: $1 \ldots 77$
$<223>$	OTHER INFORMATION:/mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 16

$<210>$ SEQ ID NO 17
$<211>$ LENGTH: 243
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Chimpanzee adenovirus AdY25

$<220>$	FEATURE:
$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION : $1 \ldots 243$
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism= "Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 17

$<210>$	SEQ ID NO 18
$<211>$	LENGTH: 209
$<212>$	TYPE: PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: $1 \ldots 209$	
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE : 18

Met

$<210>$	SEQ ID NO 19
$<211>$ LENGTH: 512	
$<212>$ TYPE : PRT	
$<213>$ ORGANISM: Chimpanzee adenovirus AdY25	
$<220>$ FEATURE:	
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: $1 \ldots 512$	
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 19

<210	$>$ SEQ ID NO 20
$<211>$	LENGTH: 802
$<212>$	TYPE: PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION: $1 . .802$
$<223>$	OTHER INFORMATION:/mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 20

	450				455					460			
$\begin{aligned} & \text { Lys } \\ & 465 \end{aligned}$	Asn	Leu	Lys Gly	$\begin{aligned} & \text { Leu } \\ & 470 \end{aligned}$	Trp	Thr	Gly	Phe	$\begin{aligned} & \text { Asp } \\ & 475 \end{aligned}$	Glu	Arg Thr		$\begin{aligned} & \text { Ala } \\ & 480 \end{aligned}$
Ser	Asp	Leu	$\begin{array}{r} \text { Ala Asp } \\ 485 \end{array}$	Leu	Ile	Phe	Pro	$\begin{aligned} & \text { Glu } \\ & 490 \end{aligned}$	Arg	Leu	Arg Leu	$\begin{aligned} & \text { Thr } \\ & 495 \end{aligned}$	Leu
Arg	Asn	Gly	$\begin{aligned} & \text { Leu Pro } \\ & 500 \end{aligned}$	Asp	Phe	Met	$\begin{aligned} & \text { Ser } \\ & 505 \end{aligned}$	Gln	Ser	Met	$\begin{array}{r} \text { Leu } \begin{array}{l} \text { Gln } \\ 510 \end{array} \end{array}$		Phe
Arg	Ser	Phe 515	Ile Leu	lu	Arg	$\begin{aligned} & \text { Ser } \\ & 520 \end{aligned}$	Gly	Ile	Leu	Pro	$\begin{aligned} & \text { Ala Thr } \\ & 525 \end{aligned}$	Cys	Ser
Ala	$\begin{aligned} & \text { Leu } \\ & 530 \end{aligned}$	Pro	Ser Asp	Phe	$\begin{aligned} & \mathrm{Val} \\ & 535 \end{aligned}$	Pro	Leu	Thr	Phe	$\begin{aligned} & \text { Arg } \\ & 540 \end{aligned}$	Glu Cys		Pro
$\begin{aligned} & \text { Pro } \\ & 545 \end{aligned}$	Leu	Trp	Ser His	$\begin{aligned} & \text { Cys } \\ & 550 \end{aligned}$	Tyr	Leu	Leu	Arg	$\begin{aligned} & \text { Leu } \\ & 555 \end{aligned}$	Ala	Asn Tyr	Leu	$\begin{aligned} & \text { Ala } \\ & 560 \end{aligned}$
Tyr	His	Ser	$\begin{array}{r} \text { Asp Val } \\ 565 \end{array}$	Ile	Glu	Asp	Va	$\begin{aligned} & \text { Ser } \\ & 570 \end{aligned}$	Gly	Glu	Gly Leu	$\begin{aligned} & \text { Leu } \\ & 575 \end{aligned}$	Glu
Cys	His	Cys	$\begin{aligned} & \text { Arg Cys } \\ & 580 \end{aligned}$	Asn	Leu	Cys	$\begin{aligned} & \text { Thr } \\ & 585 \end{aligned}$	Pro	His	Arg	$\begin{aligned} & \text { Ser } \begin{array}{l} \text { Leu } \\ 590 \end{array} \end{aligned}$		Cys
Asn	Pro	$\begin{aligned} & \mathrm{Gln} \\ & 595 \end{aligned}$	Leu Leu	Ser	Glu	$\begin{aligned} & \text { Thr } \\ & 600 \end{aligned}$	Gln	Ile	Ile	Gly	Thr Phe 605	Glu	Leu
Gln	$\begin{aligned} & \mathrm{Gly} \\ & 610 \end{aligned}$	Pro	Ser Glu	Gly	$\begin{aligned} & \text { Glu } \\ & 615 \end{aligned}$	Gly	Ala	Lys	Gly	$\begin{aligned} & \text { Gly } \\ & 620 \end{aligned}$	Leu Lys	Leu	Thr
$\begin{aligned} & \text { Pro } \\ & 625 \end{aligned}$	Gly	Leu	Trp Thr	$\begin{aligned} & \text { Ser } \\ & 630 \end{aligned}$	Ala	Tyr	Le	Arg	$\begin{aligned} & \text { Lys } \\ & 635 \end{aligned}$	Phe	Val Pro	Glu	$\begin{aligned} & \text { Asp } \\ & 640 \end{aligned}$
TYr	His	Pro	$\begin{array}{r} \text { Phe Glu } \\ 645 \end{array}$	Ile	Arg	Phe	Tyr	$\begin{aligned} & \text { Glu } \\ & 650 \end{aligned}$	Asp	Gln	Ser Gln	$\begin{aligned} & \text { Pro } \\ & 655 \end{aligned}$	Pro
Lys	Ala	Glu	$\begin{aligned} & \text { Leu Ser } \\ & 660 \end{aligned}$	Ala	Cys	Val	$\begin{aligned} & \text { Ile } \\ & 665 \end{aligned}$	Thr	Gln	Gly_{Y}	$\begin{aligned} & \text { Ala } \\ & 670 \end{aligned}$	Leu	Ala
Gln	Leu	$\begin{aligned} & \text { Gln } \\ & 675 \end{aligned}$	Ala Ile	Gln	Lys	$\begin{aligned} & \text { Ser } \\ & 680 \end{aligned}$	Arg	Gln	Glu.	Phe	Leu Leu 685	Lys	Lys
Gly	Arg 690	Gly	Val Tyr	eu	$\begin{aligned} & \text { Asp } \\ & 695 \end{aligned}$	Pro	Gln	Thr	Gly	$\begin{aligned} & \text { Glu } \\ & 700 \end{aligned}$	Glu Leu	Asn	Pro
$\begin{aligned} & \text { Gly } \\ & 705 \end{aligned}$	Phe	Pro	Gln Asp	$\begin{aligned} & \text { Ala } \\ & 710 \end{aligned}$	Pro	Arg	Lys	Gln	$\begin{aligned} & \text { Glu } \\ & 715 \end{aligned}$	Ala	Glu Ser	Gly	$\begin{aligned} & \text { Ala } \\ & 720 \end{aligned}$
Ala	Ala	Arg	$\begin{aligned} & \text { Gly } \text { Gly } \\ & 725 \end{aligned}$	Phe	Gly	Gly	Arg	$\begin{aligned} & \text { Leu } \\ & 730 \end{aligned}$	Gly	Glu	$\text { Gln } G l n$	$\begin{aligned} & \text { Ser } \\ & 735 \end{aligned}$	Gly
Arg	Gly	Asp	$\begin{aligned} & \text { Gly Gly } \\ & 740 \end{aligned}$	Arg	Leu	Gly	$\begin{aligned} & \mathrm{Gln} \\ & 745 \end{aligned}$	His	Ser	Gly	$\begin{array}{r} \text { Arg Gly } \\ 750 \end{array}$	Gly	Gln
Pro		$\begin{aligned} & \text { Arg } \\ & 755 \end{aligned}$	Gln Ser	Gly	Gly	$\begin{aligned} & \text { Arg } \\ & 760 \end{aligned}$	Arg	Gly	Gly	Gly	$\begin{aligned} & \text { Arg Gly } \\ & 765 \end{aligned}$	Gly	Gly
Gly	$\begin{aligned} & \text { Arg } \\ & 770 \end{aligned}$	ser	Ser Arg	Arg	$\begin{aligned} & \text { Gln } \\ & 775 \end{aligned}$	Thr	Val	Val	Leu	$\begin{aligned} & \text { Gly } \\ & 780 \end{aligned}$	Gly Gly	Glu	Ser
$\begin{aligned} & \text { Lys } \\ & 785 \end{aligned}$	Gln	His	Gly Tyr	$\begin{aligned} & \text { His } \\ & 790 \end{aligned}$	Leu	Arg	Ser	Gly	$\begin{aligned} & \text { Ser } \\ & 795 \end{aligned}$	Gly	Ser Arg	Ser	$\begin{aligned} & \text { Ala } \\ & 800 \end{aligned}$

Pro Gln

$<210>$	SEQ ID NO 21
$<211>$ LENGTH: 184	
$<212>$ TYPE: PRT	
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: $1 \ldots 184$	
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 21

$<210>$	SEQ ID NO 22
$<211>$	LENGTH: 219
$<212>$	TYPE: PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: $1 \ldots 219$	
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 22

Met 1	Pro	Arg	Gly	$\begin{aligned} & \text { Asn } \\ & 5 \end{aligned}$	Lys	Lys	eu	Lys	$\begin{aligned} & \text { Val } \\ & 10 \end{aligned}$	Glu				$\begin{aligned} & \text { Val } \\ & 15 \end{aligned}$	Glu
Asp	Leu	Glu	$\begin{aligned} & \text { Glu } \\ & 20 \end{aligned}$	Asp	Trp	Glu	Asn	$\begin{aligned} & \text { Ser } \\ & 25 \end{aligned}$	Ser	Gln	Ala	Glu	$\begin{aligned} & \text { Glu } \\ & 30 \end{aligned}$	Met	Glu
Glu	Asp	$\begin{aligned} & \text { Trp } \\ & 35 \end{aligned}$	Asp	Ser	Thr	Gln	$\begin{aligned} & \text { Ala } \\ & 40 \end{aligned}$	Glu	Glu	Asp	Ser	$\begin{aligned} & \text { Leu } \\ & 45 \end{aligned}$	Gln	Asp	Ser
Leu	$\begin{aligned} & \text { Glu } \\ & 50 \end{aligned}$	Glu	Asp	Glu	Glu	$\begin{aligned} & \mathrm{Glu} \\ & 55 \end{aligned}$	Ala	Glu	Glu	Glu	$\begin{aligned} & \mathrm{Val} \\ & 60 \end{aligned}$	Glu	Glu	Ala	Ala
$\begin{aligned} & \text { Ala } \\ & 65 \end{aligned}$	Ala	Arg	Pro	Ser	$\begin{aligned} & \text { Ser } \\ & 70 \end{aligned}$	Ser	Ala	Gly	Glu	$\begin{aligned} & \text { Lys } \\ & 75 \end{aligned}$	Ala	Ser	Ser	Thr	$\begin{aligned} & \text { Asp } \\ & 80 \end{aligned}$
Thr	Ile	Ser A	Ala	$\begin{aligned} & \text { Pro } \\ & 85 \end{aligned}$	Gly	Arg	Gly	Pro	$\begin{aligned} & \text { Ala } \\ & 90 \end{aligned}$	Arg	Pro	His	Ser	Arg 95	Trp
Asp	Glu	Thr	$\begin{aligned} & \text { Gly } \\ & 100 \end{aligned}$	Arg	Phe	Pro	Asn	$\begin{aligned} & \text { Pro } \\ & 105 \end{aligned}$	Thr	Thr	Gln	Thr	$\begin{aligned} & \text { Ala } \\ & 110 \end{aligned}$	Pro	Thr
Thr	Ser	$\begin{aligned} & \text { Lys } \\ & 115 \end{aligned}$	Lys	Arg	Gln	Gln	$\begin{aligned} & \text { Gln } \\ & 120 \end{aligned}$	Gln	Lys	Lys	Thr	$\begin{aligned} & \text { Arg } \\ & 125 \end{aligned}$	Lys	Pro	Ala
Arg	$\begin{aligned} & \text { Lys } \\ & 130 \end{aligned}$	Ser	Thr	Ala	Ala	$\begin{aligned} & \text { Ala } \\ & 135 \end{aligned}$	Ala	Ala	Gly	Gly	$\begin{aligned} & \text { Leu } \\ & 140 \end{aligned}$	Arg	Ile		Ala
$\begin{aligned} & \text { Asn } \\ & 145 \end{aligned}$	Glu P	Pro	Ala	Gln	$\begin{aligned} & \text { Thr } \\ & 150 \end{aligned}$	Arg	Glu	Leu	Arg	$\begin{aligned} & \text { Asn } \\ & 155 \end{aligned}$	Arg	Ile	Phe	Pro	$\begin{aligned} & \text { Thr } \\ & 160 \end{aligned}$

$<210>$	SEQ ID NO 23
$<211>$	LENGTH: 227
$<212>$ TYPE : PRT	
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$ FEATURE:	
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: 1..227	
$<223>$ OTHER INFORMATION: /mol_type="protein"	
	/Organism="Chimpanzee adenovirus AdY25"
<400	$>$ SEQUENCE: 23

$<210>$ SEQ ID NO 24
$<211>$ LENGTH: 106
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Chimpanzee adenovirus AdY25
$<220>$ FEATURE:
$<221>$ NAME /KEY: SOURCE
$<222>$ LOCATION: 1.106
$\left.\begin{array}{rl}<223> & \text { OTHER INFORMATION: /mol_type="protein" } \\ & \text { /Organism="Chimpanzee adenovirus AdY25" }\end{array}\right\}$

$<210>$	SEQ ID NO 25
$<211>$ LENGTH: 212	
$<212>$ TYPE: PRT	
$<213>$ ORGANISM: Chimpanzee adenovirus AdY25	
$<220>$ FEATURE:	
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: $1 \ldots 212$	
$<223>$ OTHER INFORMATION: /mol_type="protein"	
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 25

<210	$>$ SEQ ID NO 26
$<211>$	LENGTH: 176
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION: $1 \ldots 176$
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 26

<210	$>$ SEQ ID NO 27
<211	$>$ LENGTH: 209
$<212>$	TYPE: PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$ NAME/KEY: SOURCE	
$<222>$	LOCATION: $1 \ldots 209$
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
<400	SEQUENCE: 27

<210	$>$ SEQ ID NO 28
$<211>$	LENGTH: 302
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION : 1.302	
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE : 28

<210	$>$ SEQ ID NO 29
$<211>$	LENGTH: 91
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: $1 \ldots 91$	
$<223>$	OTHER INFORMATION:/mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 29

$<210>$	SEQ ID NO 30
$<211>$	LENGTH: 147
$<212>$ TYPE: PRT	
$<213>$ ORGANISM: Chimpanzee adenovirus AdY25	
$<220>$ FEATURE:	
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: $1 . .147$	
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 30

Pro Gln Pro Arg Pro Gln Tyr Met Pro Ile Leu Asn Tyr Glu Ala Glu

115

$<210>$	SEQ ID NO 31
$<211>$	LENGTH: 134
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$ FEATURE:	
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: 1..134	
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 31

$<210>$	SEQ ID NO 32
$<211>$	LENGTH: 141
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION: $1 \ldots 141$
$<223>$	OTHER INFORMATION: /mol_tYpe="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 32

$<210>$	SEQ ID NO 33
$<211>$	LENGTH: 299
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: 1.299	
$<223>$	OTHER INFORMATION:/mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 33

<210	$>$ SEQ ID NO 34
$<211>$	LENGTH: 122
$<212>$	TYPE: PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION: $1 \ldots 122$
$<223>$	OTHER INFORMATION:/mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 34

<210	$>$ SEQ ID NO 35
<211	$>$ LENGTH: 117
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$ FEATURE:	
$<221>$ NAME /KEY: SOURCE	
$<222>$ LOCATION: $1 \ldots 117$	
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
<400	$>$ SEQUENCE: 35

$<210>$ SEQ ID NO 36
$<211>$ LENGTH: 129
$<212>$ TYPE: PRT

	$<213>$
<220	$>$ FEATURE:
$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION: 1..129
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism= "Chimpanzee adenovirus AdY25"
$<400>$	SEQUENCE: 36

$<210>$	SEQ ID NO 37
$<211>$	LENGTH: 124
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Chimpanzee adenovirus AdY25
$<220>$	FEATURE:
$<221>$ NAME/KEY: SOURCE	
$<222>$ LOCATION: $1 \ldots 124$	
$<223>$	OTHER INFORMATION: /mol type="protein"
	/Organism="Chimpanzee adenovirus AdY25"
$<$	

$<210>$ SEQ ID NO 38
$<211>$ LENGTH: 30964
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<221>$ NAME/KEY: source

$<222>$	LOCATION: $1 \ldots 30964$
$<223>$	OTHER INFORMATION: /mol_type="DNA"
	/note="Viral vector based on Chimpanzee adenovirus AdY25"
	/Organism= "Artificial Sequence"
$<400>$	SEQUENCE: 38

ttaatcgcgt ttaacccat catcaataat atacctcaaa ctttttgtgc gcgttaatat 60
gcaatgagg cgtttgaatt tgggaaggga ggaaggtgat tggccgagag aagggcgacc 120
gttaggggcg gggcgagtga cgttttgatg acgtgaccgc gaggaggagc cagtttgcaa 180
gttctcgtgg gaaaagtgac gtcaaacgag gtgtggtttg aacacggaaa tactcaattt 240
tcccgcgctc tctgacagga aatgaggtgt ttctaggcgg atgcaagtga aaacgggcca 300
ttttcgcgcg aaaactgaat gaggaagtga aaatctgagt aatttcgcgt ttatgacagg 360
gaggagtatt tgccgaggge egagtagact ttgaccgatt acgtgggggt ttcgattacc 420
gtgtttttca cctaaatttc cgcgtacggt gtcaaagtcc ggtgttttta cgtaggtgtc 480
agctgatcge cagggtattt aacctgcge tctccagtca agaggccact cttgagtgce 540
agcgagaaga gttttctcct cegcgegcga gtcagatcta cactttgaaa ggcgatcget 600
agcgacatcg atcacaagtt tgtacaaaa agctgaacga gaaacgtaaa atgatataaa 660
tatcaatata ttaaattaga ttttgcataa aaaacagact acataatact gtaaaacaca 720
acatatccag tcactatgge ggcegccgat ttattcaaca aagccacgtt gtgtctcaaa 780
atctctgatg ttacattgca caagataaaa atatatcatc atgaacaata aaactgtctg 840
cttacataaa cagtaataca aggggtgtta tgagccatat tcaacgggaa acgtcttgct 900
cgaggccgcg attaaattcc aacatggatg ctgatttata tgggtataaa tgggctcgtg 960
ataatgtcgg gcaatcaggt gcgacaatct atcgattgta tgggaagcec gatgcgccag 1020
agttgtttct gaaacatggc aaaggtagcg ttgccaatga tgttacagat gagatggtca 1080
gactaaactg gctgacggaa tttatgcctc ttccgaccat caagcatttt atccgtactc 1140
ctgatgatgc atggttactc accactgcga tccccgggaa aacagcattc caggtattag 1200
aagaatatcc tgattcaggt gaaaatattg ttgatgcget ggcagtgttc ctgcgecggt 1260
tgcattcgat tcctgtttgt aattgtcctt ttaacagcga tcgcgtattt cgtctcgctc 1320
aggcgcaatc acgaatgaat aacggtttgg ttgatgcgag tgattttgat gacgagcgta 1380
atggctggcc tgttgaacaa gtctggaaag aaatgcataa gcttttgcca ttctcaccgg 1440
attcagtcgt cactcatggt gatttctcac ttgataacct tatttttgac gaggggaaat 1500
taataggttg tattgatgtt ggacgagtcg gaatcgcaga cogataccag gatcttgcca 1560
tcctatggaa ctgcetcggt gagttttctc cttcattaca gaaacggett tttcaaaat 1620

atggtattga taatcctgat atgaataat tgcagtttca tttgatgctc gatgagtttt	1680
tctaatcaga attggttaat tggttgtaac actggcacge gtggatcogg cttactaaaa	1740

gccagataac agtatgcgta tttgcgcget gatttttgcg gtataagaat atatactgat 1800

atgtatacce gaagtatgtc aaaagaggt atgctatgaa gcagcgtatt acagtgacag	1860
ttgacagcga cagctatcag ttgctcaagg catatatgat gtcaatatct coggtctggt	1920

| aagcacaacc atgcagaatg aagcccgtcg tctgcgtgcc gaacgctgga aagcggaaaa | 1980 |
| :--- | :--- | :--- |
| tcaggaaggg atggctgagg tegcccggtt tattgaaatg aacggctctt ttgctgacga | 2040 |
| gaacagggge tggtgaaatg cagtttaagg tttacaccta taaaagagag agccgttatc | 2100 |
| gtctgtttgt ggatgtacag agtgatatta ttgacacgcc cgggcgacgg atggtgatcc | 2160 |

-continued

ccctggccag tgcacgtctg ctgtcagata aagtctcceg tgaactttac	2220
atatcgggga tgaaagctgg cgcatgatga ccaccgatat ggccagtgtg ccggtctccg	2280
ttatcgggga agaagtggct gatctcagcc accgcgaaaa tgacatcaaa	2340
acctgatgtt ctggggaata taaatgtcag gctccottat acacagccag tctgcaggtc	2400
gaccatagtg actggatatg ttgtgttta cagtattatg tagtctgttt tttatgcaaa	2460
atctaattta atatattgat atttatatca tttacgttt ctcgttcagc tttcttgtac	2520
aaagtggtga tcgattcgac agatcgcgat cgcagtgagt agtgttctgg ggcgggggag	2580
gacctgcatg agggccagaa tgactgaaat ctgtgctttt ctgtgtgttg cagcatcatg	2640
agcggaagcg gctectttga gggaggggta ttcagcectt atctgacggg gcgtcteccc	2700
tcctgggcgg gagtgcgtca gaatgtgatg ggatccacgg tggacggecg gcecgtgcag	2760
cccgcgaact cttcaaccet gacctatgca accetgagct cttcgtcggt ggacgeagct	2820
gcegcegcag ctgctgcate cgcegceage gcegtgegcg gaatggecat gggegcegge	2880
tactacggca ctctggtggc caactogagt tccaccaata atcocgccag cotgaacgag	2940
gagaagctgc tgctgctgat ggcecagctt gaggecttga cccagcgect gggcgagctg	3000
acccagcagg tggctcagct gcaggagcag acgcgggceg cggttgceac ggtgaaatcc	3060
aaataaaaa tgaatcaata aataaacgga gacggttgtt gattttaaca cagagtctga	3120
atcttattt gatttttcge gcgcggtagg cectggacca ccggtctcga tcattgagca	3180
cceggtggat cttttccagg acccggtaga ggtgggettg gatgttgagg tacatgggca	3240
tgagcecgtc ccgggggtgg aggtagctec attgcagggc ctcgtgctcg ggggtggtgt	3300
tgtaaatcac ccagtcatag caggggcgea gggcgtggtg ttgcacaata tctttgagga	3360
ggagactgat ggceacgggc agcectttgg tgtaggtgtt tacaaatctg ttgagctggg	3420
agggatgcat gcggggggag atgaggtgca tcttggcetg gatcttgaga ttggcgatgt	3480
taccgcecag atcocgcetg gggttcatgt tgtgcaggac caccagcacg gtgtatcogg	3540
tgcacttggg gaatttatca tgcaacttgg aagggaagge gtgaaagaat ttggcgacgc	3600
cettgtgtce gcceaggttt tccatgcact catccatgat gatggcaatg ggcecgtggg	3660
cggcggcetg ggcaaagacg tttegggggt cggacacatc atagttgtgg tcctgggtga	3720
ggtcatcata ggccatttta atgaatttgg ggcggagggt gccggactgg gggacaaagg	3780
taccetcgat cecgggggeg tagttccect cacagatctg catcteccag gctttgagct	3840
cagagggggg gatcatgtcc acctgcgggg cgataaagaa cacggtttcc ggggcggggg	3900
agatgagctg ggcegaaagc aagttcegga gcagctggga cttgcegcag coggtggggc	3960
cgtaaatgac cccgatgacc ggctgcaggt ggtagttgag ggagagacag ctgccgtcct	4020
cccggaggag gggggccacc tcgttcatca tctcgcgcac gtgcatgttc tcgcgcacca	4080
gttccgccag gaggcgctct ccccccagag ataggagctc ctggagcgag gcgaagtttt	4140
tcagcggctt gagtccgtcg gccatgggca ttttggagag ggtctgttgc aagagttcca	4200
agcggtccea gagcteggtg atgtgctcta cggcatctcg atccagcaga cotcctegtt	4260
tcgcgggttg ggacgactgc gggagtaggg caccagacga tgggcgtcea gcgeagceag	4320
ggtccggtcc ttccagggce gcagcgtccg cgtcagggtg gtctccgtca cggtgaaggy	4380
gtgcgcgecg ggctgggcge ttgcgagggt gcgcttcagg ctcatccggc tggtcgaaaa	4440
cegctcccga teggcgecet gegcgtcggc caggtagcaa ttgaccatga gttcgtagtt	4500
gagcgectcg gcegcgtgge ctttggegcg gagcttacct ttggaagtet gcecgcaggc	456

-continued

ccctgagagt ttcatgacca gcatgaaggg gacgagctgc ttgccgaagg accccatcca	6960
ggtgtaggtt tccacatcgt aggtgaggaa gagcetttcg gtgcgaggat gcgagccgat	7020
ggggaagaac tggatctcct gccaccaatt ggaggaatgg ctgttgatgt gatggaagta	7080
gaaatgccga cggcgcgccg aacactcgtg cttgtgtta tacaagcggc cacagtgctc	7140
gcaacgctgc acgggatgca cgtgctgcac gagctgtacc tgagttcett tgacgaggaa	7200
tttcagtggg aagtggagtc gtggcgectg catctcgtgc tgtactacgt cgtggtggtc	7260
ggcetggece tcttctgcet cgatggtggt catgctgacg agcecgegcg ggaggcaggt	7320
ccagacctog gcgcgagcgg gtcggagage gaggacgagg gcgcgcagge cggagctgtc	7380
cagggtcetg agacgetgcg gagtcaggtc agtgggeage ggcggegegc ggttgacttg	7440
caggagtttt tccagggege gegggaggtc cagatggtac ttgatcteca cogegecgtt	7500
ggtggcgacg tcgatggctt gcagggtccc gtgccectgg ggtgtgacca cogtcceccg	7560
tttcttcttg ggcggctggg gcgacggggg eggtgcetct tccatggtta gaagcggegg	7620
cgaggacgcg cgcegggcgg cagaggcggc tcggggcecg gaggcagggg cggcaggggc	7680
acgtcggcge egcgcgcggg taggttctgg tactgcgcec ggagaagact ggcgtgagcg	7740
acgacgcgac ggttgacgte ctggatctga cgcctctggy tgaaggecac gggacecgtg	7800
agtttgaacc tgaaagagag ttcgacagaa tcaatctcgg tatcgttgac ggcggcctgc	7860
cgcaggatct cttgcacgtc gccogagttg tcctggtagg cgatctcggt catgaactgc	7920
tcgatctcct cetcctgaag gtctccgega ceggcgegct ccacggtgge cgegaggtcg	7980
ttggagatgc ggcecatgag ctgcgagaag gcgttcatgc ccgcetcgtt ccagacgegg	8040
ctgtagacca cgacgccetc gggatcgegg gcgcgcatga ccacctggge gaggttgagc	8100
tccacgtggc gcgtgaagac cgcgtagttg cagaggcget ggtagaggta gttgagcgtg	8160
gtggcgatgt gctcggtgac gaagaaatac atgatccagc ggcggagegg catctcgetg	8220
acgtcgccea gcgcctccaa gcgttccatg gcctcgtaaa agtccacggc gaagttgaaa	8280
aactgggagt tgcgcgccga gacggtcaac tcctcctcca gaagacggat gagctcggcg	8340
atggtggcge gcacctcgeg ctcgaaggec cocgggagtt cctccacttc ctcctettct	8400
tcctcctcca ctaacatctc ttctacttcc tcctcaggeg gtggtggtgg cgggggaggg	8460
ggcetgcgte gccggcggcg cacgggcaga cggtcgatga agcgctcgat ggtctcgccg	8520
cgceggcgte gcatggtcte ggtgacggeg cgcecgtect cgcggggecg cagcgtgaag	8580
acgcegccge gcatctccag gtggcegggg gggtccecgt tgggcaggga gagggcgetg	8640
acgatgcatc ttatcaattg ceccgtaggg actccgcgca aggacetgag cgtctcgaga	8700
tccacgggat ctgaaaaccg ttgaacgaag gcttcgagce agtcgcagtc gcaaggtagg	8760
ctgagcacgg tttcttctgc cgggtcatgt tggggagcgy ggcgggcgat gctgctggtg	8820
atgaagttga aataggcggt tctgagacgg cggatggtgy cgaggagcac caggtctttg	8880
ggcecggctt gctggatgcg cagacggteg gccatgcecc aggegtggtc ctgacacctg	8940
gccaggtcet tgtagtagtc ctgcatgage cgctccacgg gcacctcctc ctegcecgeg	9000
cggcegtgca tgcgcgtgag cecgaagceg cgctgggget ggacgagcge caggtcggeg	9060
acgacgcgct cggcgaggat ggcetgctgg atctgggtga gggtggtctg gaagtcgtca	9120
aagtcgacga agcggtggta ggctccggtg ttgatggtgt aggagcagtt ggccatgacg	9180
gaccagttga cggtctggtg gcccggacgc acgagctegt ggtacttgag gcgcgagtag	9240
gcgcgegtgt cgaagatgta gtcgttgcag gtgcgcacca ggtactggta gccgatgagg	930

-continued

-continued

-continued

-continued

-continued

-continued

<210	$>$ SEQ ID NO 39
$<211>$	LENGTH: 150
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Human adenovirus AdHu5
$<220>$	FEATURE:
$<221>$ NAME/KEY: SOURCE	
$<222>$	LOCATION: $1 \ldots 150$
$<223>$	OTHER INFORMATION: /mol type="protein"
	/Organism="Human adenovirus AdHu5"
$<400>$	SEQUENCE: 39

<210	$>$ SEQ ID NO 40
$<211>$	LENGTH: 294
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Human adenovirus AdHu5
$<220>$	FEATURE:
$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION: $1 \ldots 294$
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/Organism="Human adenovirus AdHu5"
<400	$>$

$<210>$	SEQ ID NO 41
$<211>$	LENGTH: 114
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Human adenovirus AdHu5
$<220>$	FEATURE:
$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION: $1 \ldots 114$
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/organism= "Human adenovirus AdHu5"
$<400>$	SEQUENCE: 41

Trp His Asp Thr Thr Thr Asn Thr | Ile Ser Val Val Ser Ala His Ser |
| :--- |
| 100 |
| 105 |

Val Gln

atggacgcca tgaagagggg cetgtgctgc gtgctgctgc tgtgtggcgc cgtgttegtg 60
tcccccagcc aggaaatcca cgcccggttc agacggggca gcatgcagct ggtggacaga 120
gtcagaggcg cegtgaccgg catgagcaga cggctggtcg tgggagctgt cggagcegct 180
ctggtgtctg gactcgtggg agcegtgggc ggaacagcta cagccggcgc tttcagcaga 240
cceggcetgc cogtggaata tctgcaggtc cecagcceca gcatgggecg ggacatcaag 300
gtgcagttcc agtctggcgg agccaacagc cetgctctgt acctgctgga cggcctgaga 360
gcccaggacg acttcagegg ctgggacatc aacacccccg ccttcgagtg gtacgaccag 420
agcggcetgt ctgtggtcat gcctgtgggc ggccagagca gcttctacag cgactggtat 480
cagcccgctt gtggcaaggc cggctgccag acctacaagt gggagacatt cctgaccagc 540
gagctgcccg gctggctgca ggccaacaga cacgtgaagc ccaccggctc tgccgtcgtg 600
ggcetgtcta tggctgccag ctctgccetg accetggcea tctaccaccc ccagcagttc 660
gtgtacgetg gcgccatgtc tggcctgctg gatccttctc aggccatggg acccaccetg 720
atcggactgg ctatgggaga tgccggcgga tacaaggcea gcgacatgtg gggccetaaa 780
gaggacccog cetggcagag aaacgacccc ctgctgaacg tgggcaagct gatcgccaac 840
aacaccagag tgtgggtgta etgcggcaac ggcaagctga gcgacctggg cggcaacaac 900
ctgccegcca agttcctgga aggcttcgtg cggaccagca acatcaagtt ccaggacgcc 960
tacaacgctg gcggcggaca caacggegtg ttcgacttcc cogacagcgg cacccacagc 1020
tgggagtatt ggggagccca gctgaatgcc atgaagcccg acctgcagag aggcagcatc 1080
cctaatcctc tgctgggect ggactga 1107

<210	$>$ SEQ ID NO 43
$<211>$	LENGTH: 368
$<212>$	TYPE : PRT
$<213>$	ORGANISM: MYCobacterium tuberculosis
$<220>$	FEATURE:
$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION: $1 \ldots 368$
$<223>$	OTHER INFORMATION: /mol_type="protein"
	\quad /note= "Ag85A"

$<210>$ SEQ ID NO 44
$<211>$ LENGTH: 9
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:

$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION: $1 \ldots 9$
$<223>$	OTHER INFORMATION : /mol_type="protein"
	/note="Synthetic peptide corresponding to known immunodominant CD
	$8+$ T cell H-2d restricted epitopes in Ag85A"
	/organism="Artificial sequence"

<400> SEQUENCE: 44
Trp Tyr Asp Gln Ser Gly Leu Ser Val
1

$<210>$	SEQ ID NO 45
$<211>$	LENGTH: 20
$<212>$	TYPE $: ~ P R T ~$
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE:
$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION: $1 \ldots 20$
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/note="Synthetic peptide corresponding to the known immunodominant
	CD $4+$ T cell H-2d restricted epitopes in Ag85A"
	/Organism= "Artificial Sequence"
$<400>$	SEQUENCE: 45

Thr Phe Leu Thr ser Glu Leu Pro Gly Trp Leu Gln Ala Asn Arg His

1
5

10

Val Lys Pro Thr

20

atggccagcc agggcaccaa gcggagctac gagcagatgg aaaccgacgg cgaccggcag 60
aacgccaccg agatccgggc cagcgtgggc aagatgatcg acggcatcgg ccggttctac 120
atccagatgt gcaccgagct gaagctgtcc gactacgagg gccggctgat ccagaacagc 180
ctgaccatcg agaagatggt gctgtccgcc ttcgacgagc ggcggaacag atacctggaa 240
gagcacccca gegccggcaa ggaccccaag aaaaccggcg gacccatcta ccggcgggtg 300
gacggcaagt ggatgcggga gctggtgctg tacgacaaag aggaaatccg gcggatctgg 360
cggcaggcca acaacggcga ggacgccaca gccggcetga cccacatgat gatctggcac 420

gccgccgtga	agggcatcgg	caccatggtg	atggaactga	tccggatggt	gaagcggggc	600
atcaacgacc	ggaatttttg	gaggggcgag	aacggcagaa	agactagaag	cgcctacgag	660
cggatgtgca	acatcctgaa	gggcaagttc	cagacagccg	cccagcgggc	catggtggac	720
caggtceggg	agagceggaa	ccceggcaac	gcogagatcg	aggacctgat	cttcctggce	780
cggtcegcec	tgatcctgcg	gggcagcgtg	cccacaaga	getgectgce	cgcetgegtg	840
tacggcectg	cogtgagcag	cggctacgac	tcgagaaag	agggetacag	cctggtcggc	900
atcgaccoct	tcaagctgct	gcagaacagc	aggtgtaca	gcetgatccg	gcceaacgag	960
a $\operatorname{accccgccc}$	acaagtccca	gctggtctgg	tggcetgcc	acagcgccgc	ttcgaggat	1020
ctgcggctgc	tgtccttcat	cggggcacc	aggtgtccc	ccaggggcaa	gctgtccacc	1080
agaggcgtgc	agatcgccag	aacgagaac	tggacaaca	gggcagcag	accetggaa	1140
ctgcggagcg	gctactgggc	catccggacc	ggtccggcg	gcaacaccaa	ccagcagcgg	1200
gccagcgecg	gacagatcag	cgtgcagcec	accttctccg	tgcagcggaa	cotgeccttc	1260
gagaagagca	cogtgatgge	gcettcacc	gcaacaccg	agggceggac	agcgacatg	1320
cgggccgaga	ttatccggat	gatggaaggc	ccaagcecg	aggaagtgag	cttccggggc	1380
aggggcgtgt	togagctgtc	cgatgagaag	ccaccaacc	catcgtgcc	cagcttcgag	1440
atgagcaacg	agggcagcta	tettcggc	gacaacgccg	aggaatacga	caatggcggc	1500
ggaccaggcg	gcggaatgag	cetgetgacc	gaggtggaga	cetacgtget	gtccatcgtg	1560
cetagcggce	ctctgaaggc	cgagatcgec	agcggctgg	aagatgtgtt	cgceggcaag	1620
aacaccgacc	tggaagccet	gatggaatgg	gaaaaccc	gcccatcet	gagceccetg	1680
accaagggca	tcctgggctt	cgtgttcacc	tgaccgtgc	cagcgagcg	gggcetgcag	1740
cggcggagat	tcgtgcagaa	gcectgaac	ggcaacggcg	accceaacaa	catggataag	1800
gcegtgaagc	tgtaccggaa	gctgaagcgg	gagatcacct	tccacggcgc	caaagagatc	1860
gecctgagct	acagcgccgg	agcoctggce	agctgcatgg	gcetgatcta	caaccggatg	1920
ggcgccgtga	ccaccgaggt	gcettcggc	gggtctgcg	cacctgcga	gcagatcgce	1980
gacagccagc	acagatccea	ccggcagatg	tggccacaa	ccaaccetct	gatcaagcac	2040
gagaaccgga	tggtgctggc	tagcaccacc	gccaaggeca	tggaacagat	ggceggcagc	2100
agcgagcagg	cogecgaage	catggaaatc	gccagccagg	ccagacagat	ggtgcaggec	2160
atgcggaccg	tgggcaccea	ccecagcage	tccaccggec	tgcgggacga	cotgetggaa	2220
aacctgcaga	cctaccagaa	acggatgggg	gtgcagatgc	agcggttcaa	gtga	2274

$<210>$	SEQ ID NO 47
$<211>$	LENGTH: 757
$<212>$	TYPE : PRT
$<213>$	ORGANISM: Unknown
$<220>$	FEATURE:
$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION: $1 \ldots 757$
$<223>$	OTHER INFORMATION: /mol type="protein"
	/note="Influenza A virus nucleoprotein and matrix protein $1 "$
	/organism="Unknown"
$<400>$	SEQUENCE: 47

$<210>$	SEQ ID NO 48
$<211>$	LENGTH: 9
$<212>$	TYPE: PRT
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE:
$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION: $1 \ldots 9$
$<223>$	OTHER INFORMATION:/mol type="protein"
	/note="Synthetic peptide corresponding to known immunodominant CD
	$8+T$ cell H-2d restricted epitope in NP"
	/organism= "Artificial Sequence"
$<400>$	SEQUENCE: 48

| Thr Tyr Gln Arg Thr Arg Ala Leu Val | |
| :--- | :--- | :--- |
| 1 | 5 |

$<211>$	LENGTH: 9
<212	$>$ TYPE : PRT
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE:
$<221>$	NAME/KEY: SOURCE
$<222>$	LOCATION: $1 \ldots 9$
$<223>$	OTHER INFORMATION: /mol_type="protein"
	/note="Linker"
	/Organism="Artificial Sequence"
$<400>$	SEQUENCE: 49
Ile Pro Asn Pro Leu Leu Gly Leu Asp	
1	

The invention claimed is:

1. An adenovirus vector comprising a capsid, wherein said capsid comprises one or more capsid proteins from chimpanzee adenovirus AdY25 and encapsidates a nucleic acid molecule comprising an exogenous nucleotide sequence of interest operably linked to expression control sequences which direct the expression thereof in an animal cell and an adenoviral packaging signal sequence, and wherein the nucleotide sequence that encodes the wild-type chimpanzee adenovirus AdY25 is SEQ ID No. 1.
2. The vector of claim 1 wherein said vector comprises an AdY25 genome that lacks a functional E1 locus.
3. The vector of claim 1 wherein said vector comprises an AdY25 genome that lacks an E3 locus.
4. The vector of claim 1 wherein the vector comprises an AdY25 genome wherein at least one of the E4 open reading frame (Orf) is heterologous.
5. The vector of claim $\mathbf{4}$ wherein the vector lacks a native E4 locus and the at least one E4Orf is the entire E4 locus.
6. The vector of claim 5 wherein the E4Orf6 open reading frame is from AdHu 5.
7. The vector of claim 4 having an E4 locus that comprises E4Orf1, E4Orf2, and E4Orf3 from AdY25 and E4Orf4, Orf6 and Orf6/7 from AdHu5.
8. The vector of claim 1 wherein the exogenous nucleotide sequence of interest encodes a protein or a polypeptide.
9. The vector of claim 8 wherein the protein or the ${ }_{20}$ polypeptide is selected from the group comprising an antigen, a molecular adjuvant, an immunostimulatory protein or a recombinase.
10. The vector of claim 9 , wherein said antigen is Ag 85 A from Mycobacterium tuberculosis.
11. The vector of claim $\mathbf{1}$ wherein said exogenous nucleotide sequence of interest is an miRNA or an immunostimulatory RNA sequence.
12. The vector of claim $\mathbf{1}$ wherein said capsid comprises one or more capsid proteins selected from the group con0 sisting of:
(a) an AdY25 hexon protein comprising the amino acid sequence of SEQ ID NO. 2 :
(b) an AdY25 penton protein comprising the amino acid sequence of SEQ ID NO. 3; and
(c) an AdY25 fibre protein comprising the amino acid sequence of SEQ ID NO. 4.
13. An isolated nucleic acid molecule having a sequence identical to SEQ ID NO. 1 over its entire length.
