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Abstract

Phytophthora infestans (Mont.) de Bary, a hemibiotrophic oomycete, has caused severe

epidemics of late blight in tomato and potato crops around the world since the Irish Potato

Famine in the 1840s. Breeding of late blight resistant cultivars is one of the most effective

strategies to overcome this disruptive disease. However, P. infestans is able to break down

host resistance and acquire resistance to various fungicides, possibly because of the exis-

tence of high genetic variability among P. infestans isolates via sexual and asexual repro-

duction. Therefore, to manage this disease, it is important to understand the genetic

divergence of P. infestans isolates. In this study, we analyzed the genomes of P. infestans

isolates collected from Egypt and Japan using various molecular approaches including the

mating type assay and genotyping simple sequence repeats, mitochondria DNA, and effec-

tor genes. We also analyzed genome-wide single nucleotide polymorphisms using double-

digest restriction-site associated DNA sequencing and whole genome resequencing

(WGRS). The isolates were classified adequately using high-resolution genome-wide

approaches. Moreover, these analyses revealed new clusters of P. infestans isolates in the

Egyptian population. Monitoring the genetic divergence of P. infestans isolates as well as

breeding of resistant cultivars would facilitate the elimination of the late blight disease.

Introduction

Phytophthora infestans (Mont.) de Bary is a hemibiotrophic oomycete that causes late blight

disease in tomato (Solanum lycopersicum) and potato (Solanum tuberosum). Globally, many

epidemics of tomato and potato late blight have been reported since the end of the 19th cen-

tury, among which the Irish Potato Famine in the 1840s was probably the worst. P. infestans is

reported to have originated either in South America [1, 2] or in central Mexico [3, 4]. Although
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numerous studies have been conducted on late blight [5], P. infestans remains a major threat

to global food security [6]. P. infestans is a heterothallic pathogen with two mating types (A1

and A2), which reproduce sexually through oospores [7]. P. infestans also exhibits asexual

reproduction, with high genetic variability. Since 1980, the A1 mating type was dominant glob-

ally, outside the region of its origin [8, 9]. Then, the A2 mating type appeared in many coun-

tries [10]. This was followed by the reappearance of the A1 mating type, which replaced A2

and spread in other regions [11]. This repeated appearance and disappearance of mating types

might explain why P. infestans is able to break down major resistance genes in host plant spe-

cies and develop resistance against various fungicides [12].

Breeding of late blight resistant cultivars is one of the most effective strategies to over-

come this disruptive disease. Resistance genes and/or DNA markers linked to resistance

loci are powerful tools for the selection of resistant lines via marker-assisted selection. To

the best of our knowledge, genetic loci have been identified in late blight resistant germ-

plasms of wild tomato, Solanum pimpinellifolium, in breeding programs [13–15]. More

recently, we identified another resistance locus from a susceptible line of cultivated tomato,

‘Castlerock’, which has a minor effect on the resistance phenotype (Arafa et al. under sub-

mission). These results suggest that plants harbor many resistance genes and employ several

defense mechanisms against the late blight pathogen. Additionally, the pathogenicity of P.

infestans is complicated and has evolved over time, probably because of sequence variations

in virulence genes, also known as effector genes, which encode proteins that suppress the

plant immune system and alter the host response to accelerate the infection process. There-

fore, knowledge of the genetic divergence of P. infestans isolates is important to control the

late blight disease.

Over the last several decades, PCR assays for assessing nucleotide sequence variations in

mitochondrial DNA (mtDNA), simple sequence repeats (SSRs; also known as microsatellites),

and effector genes have been employed to investigate the genetic diversity of P. infestans popu-

lations [16–20]. Advances in sequencing techniques, based on next generation sequencing

(NGS) technology, have enabled the analysis of nucleotide sequence variations on a genome-

wide scale. Since the recent release of the P. infestans reference genome sequence [21],

reduced-representation sequencing approaches, such as genotyping by sequencing [22] and

restriction-site associated DNA sequencing [23], have been used to scan genome-wide

sequence variations. Moreover, because of the contiguous decrease in the cost of NGS and

increase in its throughput, WGRS analysis has enabled the elucidation of the diversity of P.

infestans populations on a genome-wide level. The genome-wide genotyping methods have

been applied to P. infestans populations to reveal their phylogenetic relationship [17, 19]; how-

ever, the number of P. infestans isolates tested has been limited and insufficient to cover the P.

infestans populations spread across the world.

A decision support system in agricultural domains would be essential for successful plant

disease management. Knowledge of the evolution of P. infestans clonal linages, based on DNA

analysis, epidemiology, and population dynamics of this destructive plant pathogen [19],

would be quite useful for the system. Therefore, in this study, we aimed to characterize P. infes-
tans populations collected from Egypt and Japan; neither of these regions has been represented

in the genome-wide genotyping analysis of P. infestans isolates to date. We investigated the

mating types, mtDNA haplotypes, and SSR marker genotypes of the isolates as well as

genome-wide genotypes, based on double-digest restriction-site associated DNA sequencing

(ddRAD-Seq) and WGRS approaches, to gain insights into the diversity of P. infestans popula-

tions at the genome-wide level.

Lineage of Phytophthora infestans isolates
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Results

Mating types in the tested isolates

A total of 80 P. infestans isolates were used in this study; these included 62 isolates collected

from seven counties in Egypt, and 18 isolates obtained from the National Institute of Agrobio-

logical Sciences (NIAS) in Japan, which were collected from three prefectures (S1 Table).

Among these 80 isolates, 67 were of the A1 mating type, 12 were of the A2 mating type, and

one was self-fertile (SF). All three mating types were identified among the 18 isolates obtained

from the NIAS, whereas only the A1 mating type was observed among the 62 isolates collected

from Egypt (Fig 1 and S1 Table). In the NIAS collection, the A1 mating type isolates were col-

lected from potato leaves in Hokkaido prefecture in 2013, while the A2 mating type isolates,

except four, were collected from tomato leaves and fruits in Ibaraki prefecture in 1991–1992.

The remaining three A2 mating type were collected from potato in Hokkaido and from tomato

in Sizuoka prefecture. The SF was isolated from tomato in Ibaraki.

Analysis of mtDNA polymorphisms

The 80 isolates were analyzed by PCR using four restriction fragment length polymorphism

(RFLP) markers to detect sequence variations in P1, P2, P3, and P4 regions of the mitochon-

drial genome (Fig 1 and S1 and S2 Tables). The mtDNA polymorphisms classified the isolates

into two groups, Ia and IIa. Isolates in each group showed a strong association with their area

of collection; isolates in group Ia were collected from Egypt, while those in group IIa were

obtained from Japan. Additionally, polymorphisms in two hypervariable regions (HVRs) in

the mitochondrial genome were analyzed, which divided the isolates into five groups. The IR1

type was the most dominant among Egyptian isolates (61/62), while three IIR2 and fourteen

IIR3 types were observed among the 18 Japanese isolates. The exceptions were one IR2 type in

Egyptian isolates (EG_11) and one IR1 type in Japanese isolates (K92-62).

Analysis of effector gene polymorphism

We tested the PCR assay to detect five effector genes, AVR1,AVR2, AVR2-like, AVR3a, and

AVR4, across all 80 isolates. DNA amplicons were obtained for four genes (AVR2, AVR2-like,
AVR3a, and AVR4) (Fig 1 and S1 and S2 Tables) and a positive control (NitRed), but not for

AVR1. The AVR4 andNitRed genes were amplified from all 80 isolates. However, the remaining

three genes showed polymorphism; AVR3a,AVR2, and AVR2-likewere not detected in 4, 12, and

19 isolates, respectively. All of these three genes (AVR3a,AVR2, andAVR2-like) were not detected

in the Egyptian isolate EG_36, while AVR2-likewas not amplified in all of the Japanese isolates.

SSR genotyping analysis

We tested 16 SSR (or microsatellite) markers in the 80 isolates. A total of 54 peaks were detected,

ranging from two peaks in five markers (Pi33, Pi70, Pi89, SSR2, and SSR8) to seven peaks in

SSR4 (S1 and S2 Tables). The 62 Egyptian and 18 Japanese isolates showed 45 and 38 peaks,

respectively, for the 16 SSR markers. Clustering analysis divided the 80 isolates into four clusters

(Fig 1 and S1 Table). Two clusters, EGY1 and EGY2, contained 50 and 12 Egyptian isolates,

respectively. All of the isolates in the EGY2 cluster were collected in the 2014–2015 growing sea-

son, while those in the EGY1 were sampled in 2014–2015 and 2015–2016. The EGY1 and EGY2

clusters showed no relationship with the geographic location, host species, and infected organs,

and all isolates in the EGY2 cluster lacked the AVR2 amplicon. The other two clusters contained

only Japanese isolates, with 13 isolates in JPN1 and five in JPN2. Isolates in the JPN1 cluster were

collected from 1987–1992, while those in the JPN2 cluster were collected in 2013.

Lineage of Phytophthora infestans isolates
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Discovery of genome-wide single nucleotide polymorphisms (SNPs) using

ddRAD-Seq

The ddRAD-Seq approach was used to analyze genome-wide SNPs. A total of 23 Egyptian iso-

lates were removed from subsequent analysis because of low-quality data, probably because
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Fig 1. Clustering analysis of Phytophthora infestans isolates collected from Egypt and Japan using double-digest

restriction-site associated DNA sequencing (ddRAD-Seq) data. Clusters (EGY1-1, EGY1-2, EGY2, JPN1, and JPN2)

are indicated with solid bars. Clusters determined using simple sequence repeats (SSRs), effector genes, mitochondrial

DNA (mtDNA) polymorphisms, and mating types are shown as colored charts; same colors indicate the members of

the same clusters. Isolates indicated in bold were used to perform whole genome resequencing (WGRS) analysis.

https://doi.org/10.1371/journal.pone.0221604.g001
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the DNA available for analysis was of poor quality and insufficient quantity. An average of

430,489 high-quality ddRAD-Seq reads were obtained per sample from 57 isolates (S3 Table).

Reads were mapped onto the reference genome sequence of the P. infestans strain T30-4 (ver-

sion ASM14294v1) at an average mapping rate of 92.4%, and 996 loci were detected as high-

confidence SNPs based on the read alignments.

Clustering analysis, based on SNPs, grouped the tested isolates into four clusters, EGY1,

EGY2, JPN1, and JPN2, containing 32, 7, 13, and 5 isolates, respectively, in accordance with

the results of the SSR marker analysis (Fig 1). Furthermore, the EGY1 cluster was divided into

two sub-clusters, EGY1-1 and EGY1-2, containing 21 and 11 isolates, respectively. Principal

component analysis (PCA) supported this result, and PC1, PC2, and PC3 axes explained

11.2%, 4.2%, and 3.8% of the variance, respectively (Fig 2).

Whole genome SNP and copy number variation (CNV) analysis

Seventeen isolates representative of each cluster, based on ddRAD-Seq data and sampling loca-

tion, host, and year, were selected for WGRS analysis. An average of 7.9 Gb sequence data per

sample (34.6× coverage) was obtained (S4 Table). The reads were mapped onto the reference

genome sequence of P. infestans at an average mapping rate of 94.5%, and 760,928 high-confi-

dence SNPs, including 479,784 transitions and 281,144 transversions (Ts/Tv ratio = 1.7), were

detected. The Egyptian isolates EG_18 and EG_73 contained the lowest and highest number of

SNPs, respectively. The average density of SNPs was 3.3 per kb. Analysis of SNP annotations

using SnpEff indicated that intergenic variants were the most common (606,900; 79.8%), fol-

lowed by synonymous variants (57,024; 7.4%) and missense variants (56,758; 7.4%) (S5 Table).

A total of 1,267 (0.6%) high- and 56,758 (7.4%) moderate-impact SNPs were identified in

1,085 and 11,289 genes, respectively.

Among the Egyptian isolates, CNVs were detected between EG_18, as a reference, and each

of the remaining 16 isolates. Between any two isolates, an average of 5,402 CNVs were detected

in each isolate, ranging from 533 CNVs in EG_22 to 6,735 CNVs in K92-61. The average size

of a CNV was 4,068 bp, with the longest of 79 kb in EG_75.

To determine the lineage of P. infestans isolates, we used the SNP data and data publicly

available on 11 isolates [19]. On the basis of 90,7671 SNPs detected in 28 isolates including the

17 isolates from this study and 11 from the publica data, four clusters were generated (Fig 3).

Two Egyptian isolates belonging to the EGY2 cluster, EG_18 and EG_22, were grouped with

06_3928A, an isolate collected from England. Two clusters included Japanese and Egyptian
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https://doi.org/10.1371/journal.pone.0221604.g002
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isolates belonging to JPN1, JPN2, and EGY1 clusters. The fourth cluster consisted of ten iso-

lates, all of which have been reported previously as members of US-1 and HERB-1.

Polymorphisms in effector genes

In the P. infestans T30-4 reference genome sequence, 594 and 194 genes have been annotated

as encoding RxLR- and Crinkler-type effector proteins, respectively. Among these, four genes

were identified in the P. infestans T30-4 genome sequence: Avr1 (PITG_16663) in the contig

sequence of supercont1.51, Avr2 (PITG_08943 and PITG_22870) on supercont1.16, Avr3a
(PITG_14371) on supercont1.34, and Avr4 (PITG_07387) on supercont1.11. A total of six

non-synonymous SNPs causing missense mutations were identified. Four of the six missense

mutations caused amino acid substitutions at positions 19, 80, 103, and 124 of PITG_14371

(Avr3a). While the first three mutations were observed in the ten isolates belonging to clusters
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Fig 3. WGRS-based clusters of P. infestans isolates. P. infestans isolates sequenced in this study are indicated in bold.

The remaining isolates represent those whose genome sequences were publicly available.

https://doi.org/10.1371/journal.pone.0221604.g003
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EGY1-1 and EGY1-2, the fourth mutation was identified in all 12 isolates belonging to the EGY2

cluster, in addition to the isolates in EGY1-1 and EGY1-2 clusters. Among the two remaining

missense mutations, one was detected at amino acid position 31 of PITG_08943 (Avr2) in the

two isolates belonging to the JPN2 cluster and one isolate (GBK 14) belonging to JPN1, and the

other was detected at amino acid position 139 of PITG_07387 (Avr4) in seven isolates belonging

to clusters EGY2, JPN1, and JPN2. No SNPs were detected in PITG_16663 (Avr1).

CNVs were detected in Avr1, Avr2, Avr3a, and Avr4. CNVs of Avr1 and Avr4 were

observed in 12 isolates of EGY1-1, EGY1-2, and JPN2, while CNVs of Avr2 were detected in

three isolates belonging to the cluster JPN1 and 12 isolates belonging to EGY1-1, EGY1-2, and

JPN2. The CNV of Avr3a was identified in only one isolate, EG_75, belonging to the sub-clus-

ter EGY1-1.

Discussion

In this study, we analyzed a panel of 80 P. infestans isolates collected from Egypt and Japan

using a series of thorough genotyping assays at different levels, including the target gene level

(SSRs and RFLPs), genome-wide level (ddRAD-Seq and WGRS), and reproduction biology

level (mating type assay). While A1 and A2 mating types were observed among Japanese iso-

lates, the A1 mating type was predominant among Egyptian isolates tested. This suggests that

the A1 mating type might be adapted to the Egyptian environment [24], resulting in the

absence of A2 mating types needed for sexual reproduction to produce oospores. Nevertheless,

Egyptian isolates are more divergent than the Japanese isolates [24], which was supported by

this study. The unstable nature of P. infestans genome may be one of the possible drivers of

genetic diversity [21]. In this study, we observed SNPs and CNVs in the genomes of isolates.

Some genomic variations may alter the host specificity and geographical location of isolates

[17, 25]. According to a recent report [26], CNVs are associated with the emergence of super-

fit clones of P. infestans. However, effector genes do not diverge among the Egyptian isolates,

possibly because most of the tomato and potato cultivars in Egypt are susceptible to late blight,

leading to minimal selection pressure and low mutation rates. Nonetheless, the population

structure of P. infestans isolates, regardless of their reproduction mode, was broader than that

suggested by previous studies on American and European isolates (Fig 3), which was able to

directly compare the isolates from other studies [19, 27–29]. The ddRAD-Seq analysis also pro-

vides information on population structure [30–32]; however, the ability to compare data

depends on the choice of restriction enzymes used for library preparation. The analysis of

SSRs, effector genes, and mtDNA was insufficient to reveal the population structure of P. infes-
tans isolates (Fig 1 and S1 Table). Besides, for gel-based methods, it would be difficult to detect

small sequence variations inside amplicons, e.g., base substitutions and small deletions.

Sequence variations in the P. infestans genome might contribute to its wide host range. In

this study, while two isolates in the EGY2 cluster were members of 06_3928A from England

[27], isolates in JPN1, JPN2, and EGY1 clusters were not represented in the major cluster com-

prising ten isolates analyzed in previous studies (Fig 1). Therefore, it is important to identify

and classify the isolates correctly for successful plant disease management. Additionally, fur-

ther investigation of effector genes is needed to explain the virulence profile of P. infestans iso-

lates. Our results suggest that gene-based analyses are insufficient for isolate identification, and

genotyping the isolates using genome-wide analyses, such as ddRAD-Seq and WGRS, is more

powerful for the classification of new P. infestans isolates together with the previously reported

isolates. Moreover, since sequence data could be compared with others, the ddRAD-Seq and

WGRS reads from this study would be useful for future genetic and genomic studies involving

broad P. infestans collections.
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The number of isolates with a sequenced genome is limited; however, genome-wide

sequence data of different isolates from this study would provide more detailed phylogenetic

information, which would help control isolates that could soon become endemic. As proposed

by Arafa [13], genomics-based characterization of P. infestans will enhance the monitoring of

aggressive isolates propagated via infected plant materials from different geographic regions.

Breeding late blight resistant tomato and potato cultivars is also a promising strategy to over-

come this disease [33, 34]. Surveillance systems such as Asiablight, Euroblight, and USAblight

have played important roles in monitoring the late blight disease [35]; however, similar pro-

grams are unavailable for other regions such as Africa. The plants were in fact completely dam-

aged once infected by new isolates [36]. Overall, a short-term combat protocol based on

prediction, diagnostics, and therapeutics is needed for sustainable farming and food produc-

tion, and a long-term approach based on genetics, genomics, and plant breeding is needed for

the effective control of late blight.

Materials and methods

P. infestans isolates and DNA extraction

A total of 62 isolates were sampled from the leaves, stems, and fruits of tomato and potato

plants growing in 16 geographical locations in Egypt during two growing seasons (2014–2015

and 2015–2016) (S1 Table). Additionally, 18 isolates were obtained from the NIAS Genebank,

Japan (http://www.gene.affrc.go.jp); these isolates were collected from the leaves and fruits of

tomato plants and leaves of potato plants growing in three prefectures, Hokkaido, Ibaraki, and

Shizuoka, from 1987–2013 (S1 Table). P. infestans isolates were extracted from the plants as

described previously [33]. The DNA of isolates was extracted using the GeneJET Plant Geno-

mic DNA Purification Mini Kit (Thermo Fisher Scientific) or DNeasy Plant Mini Kit (Qiagen,

Hilden, Germany), according to the manufacturer’s instructions.

Mating type assay

Mycelium plugs of P. infestans isolates and those of EG_136 [24] and K92-65 (NIAS Gene-

bank) as standard isolates of A1 or A2 mating type, respectively, were placed on rye agar

medium in a Petri dish at a spacing of 3 cm. All samples were incubated at 18˚C in the dark for

3 weeks. The interaction domain of oospores between two isolates was investigated under a

microscope at 20× magnification. Isolates that produced oospores (sexual spores) of the A2

mating type were identified as A1, while isolates that produced oospores of the A1 mating type

were identified as A2 [37].

Analysis of mtDNA and effector genes

The mtDNA of isolates was amplified from the genomic DNA using primers listed in S2 Table.

The thermal cycling conditions used for PCR were based on previous studies [38, 39]. Addi-

tionally, the presence/absence of five effector genes, including AVR1, AVR2, AVR2-like,
AVR3a, and AVR4, in P. infestans isolates was tested in the current populations (S2 Table).

The PCR products were separated by electrophoresis on 2% agarose gels and visualized using a

UV gel documentation system (Biocraft, Co. Japan) after staining with ethidium bromide.

SSR marker analysis

Sixteen SSR markers [40–42] were used to genotype P. infestans isolates using sequence-spe-

cific primers (S2 Table). DNA amplification by PCR and capillary electrophoresis using

ABI3730 DNA analyzer (Applied Biosystems) were performed as described previously [24].
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GeneMarker (SoftGenetics) was used to score the genotype. A phylogenetic tree was con-

structed based on the SSR data set using graphical genotypes (GGT) 2.0 software [43].

Analysis of ddRAD-Seq data

Genomic DNA of isolates was double-digested with PstI andMspI restriction enzymes and

used to construct ddRAD-Seq libraries. The libraries were sequenced using MiSeq (Illumina)

in paired-end 251 bp mode, as described previously [33, 44].

Data processing was performed as described previously [33, 44]. Low-quality sequences

and adapters (S2 and S3 Tables) were removed from the raw sequence reads using PRINSEQ

(version 0.20.4) [45] and fastx_clipper (FASTX Toolkit version 0.0.13; http://hannonlab.cshl.

edu/fastx_toolkit), respectively. The cleaned reads were mapped onto the reference genome

sequence of P. infestans strain T30-4 (ASM14294v1; accession number AATU00000000) [21]

using Bowtie 2 (version 2.2.3) [46]. To obtain a variant call format (VCF) file containing SNP

information, sequence alignment/map format (SAM) files were converted to binary sequence

alignment/map format (BAM) files and subjected to SNP calling using the mpileup command

of SAMtools (version 0.1.19; [47] and the view command of BCFtools [47]. High-confidence

biallelic SNPs were selected using VCFtools (version 0.1.12b) [48], based on the following cri-

teria: 1)�10× coverage in each isolate, 2)>999 SNP quality value, 3)�0.1 minor allele fre-

quency, and 4)<0.5 missing data rate.

Analysis of WGRS data

Sequencing libraries with an insert size of 600 bp were prepared for 17 isolates of P. infestans,
as described previously [33, 49], and sequenced using Illumina NextSeq 500 in paired-end 151

bp mode. Data processing was conducted as described above for ddRAD-Seq data, with the

exception of SNP filtering criteria, which were as follows: 1)�5× coverage in each isolate, 2)>

999 SNP quality value, 3)�0.1 minor allele frequency, and 4)<0.2 missing data rate. Annota-

tions of SNP effects on gene functions were predicted using SnpEff (version 4.2) [50]. CNVs

were detected using CNV-seq (version 0.2.7) [51].

Clustering analysis

Dendrograms were constructed using the unweighted pair-group method with average linkage

(UPGMA). Additionally, PCA was performed to determine the relationship among samples

using the TASSEL software [52], with the number of components limited to four.

Accession numbers: Double digest restriction-site associated DNA sequencing (ddRAD--

Seq) and whole genome resequencing (WGRS) data are available at the DDBJ Sequence Read

Archive database under the accession number DRA007610.
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