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Late blight, caused by the oomycete Phytophthora infestans, is

a major global disease of potato and tomato. Cell biology is

teaching us much about the developmental stages associated

with infection, especially the haustorium, which is a site of

intimate interaction and molecular exchange between

pathogen and host. Recent observations suggest a role for the

plant endocytic cycle in specific recruitment of host proteins to

the Extra-Haustorial Membrane, emphasising the unique

nature of this membrane compartment. In addition, there has

been a strong focus on the activities of RXLR effectors, which

are delivered into plant cells to modulate and manipulate host

processes. RXLR effectors interact directly with diverse plant

proteins at a range of subcellular locations to promote disease.
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Introduction
Late blight is a devastating disease of potato and tomato.

The organism that causes it, Phytophthora infestans, is an

oomycete; related to diatoms and brown algae. Its discov-

ery in the late 19th century contributed to the establish-

ment of plant pathology as a research discipline. Late

blight remains the number one potato disease nearly

150 years later. The global population of P. infestans
constantly changes, with emergence of aggressive new

strains, ensuring that late blight continues to be an

ongoing threat to global food security [1,2].

The development of late blight disease can be better

understood through the cell biology of both pathogen

and host, and especially the intimate points of contact

between them, epitomised by the haustorial interface.
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Effort has focussed in recent years on the activities of

effectors that are delivered inside plant cells; on where

they go, what they target and what they alter to facilitate

infection. Whilst this review broadly introduces P. infes-
tans cell biology, we highlight the molecular interactions

and exchanges between pathogen and host that dictate

disease or disease resistance, and describe the approaches

used to observe these events in close detail.

The infection cycle
There are over 120 known species of Phytophthora [3] and

all are pathogens of plants. They colonise different host

tissues, such as roots, tubers, herbaceous stems, woody

trunks, foliage, and fruit. Phytophthora species develop

distinct cellular stages in their infection cycle [4]. Multi-

nucleate sporangia and uninucleate motile zoospores rep-

resent the primary dispersal stages. P. infestans sporangia

formed on aerial plant parts may be blown or splashed to

new hosts, where they may either germinate directly, or

release zoospores, to initiate infection. Zoospores discard

flagella and synthesise a cell wall, forming a cyst. These

germinate within hours and may enter host tissue through

natural openings such as stomata, or form an appressorium-

like swollen germ tube, beneath which penetration of host

epidermal cells occurs. Upon host cell penetration, a

spherical primary infection vesicle is formed from which

hyphae emerge to ramify through plant tissue. P. infestans
hyphae grow intercellularly, projecting digit-like haustoria

into host cells [5–8]. Haustoria are structures that form an

intimate interaction with host cells, removing the plant cell

wall but leaving the membrane intact to facilitate molecu-

lar exchange between the pathogen and a living plant cell.

It is of interest to reveal how these specialised cell types

differ from one another and how transition is regulated

from one stage to the next: sporangium ! zoospore ! cyst

! germination ! appressorium ! host penetration and

infection vesicle ! intercellular hyphal growth ! hausto-

rium formation ! initiation of sporulation. Knowledge of

the differences and similarities between these develop-

mental stages will facilitate novel means to control infec-

tion through targeted inhibition of regulatory processes in

the pathogen. Infection vesicles, haustoria and intercellu-

lar hyphae are of particular interest, as these stages are in

close contact with plant cells and this is where the outcome

of infection is determined (Figure 1).

Cell biology of protein localisation in
developmental stages
It is challenging to determine the fate or origins of

individual pathogen structures, or determine the time-

scales over which some developmental events occur.
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Figure 1
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Diagram of the P. infestans infection cycle and the many roles effectors play in modulating plant cellular processes. The main dispersal stage is

the multinucleate sporangium (S) which either germinates directly or releases zoospores (Z). Zoospores rapidly encyst (C) on a host plant then

germinate to form an appressorium-like (A) swelling at the end of the germ tube, under which penetration takes place to form the infection vesicle

(IV). From this intercellular hyphae extend and grow between host cells, projecting haustoria (H) into cells. The haustoria are the sites of secretion

of the RXLR class of effectors (shown in red) and some of their characterised protein targets and activities are represented in this diagram.

Several effectors are attuned to suppress signal transduction pathways emanating from membrane-bound, BRASSINOSTEROID-ASSOCIATED

KINASES 1 (BAK1)-dependent receptors such as FLAGELLIN-SENSING 2 (FLS2), and can act redundantly. Some effectors act to inhibit specific

immune response factors and pathways, while others promote the activity of negative regulators which can thus be regarded as susceptibility

factors (S factors). Several effectors target diverse nuclear-located processes while others target processes involving the endoplasmic reticulum

(ER), vesicles in the secretory pathway, the plasma membrane, or autophagosomes.
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Adoption of the jellyfish green fluorescent protein (GFP)

for examining cell biology in a multitude of organisms

began in the mid-1990s. Many other fluorescent proteins

(FPs) have since been developed, with emission spectra

covering all visible light [9]. The expression of FPs relies

on the delivery of foreign DNA into an organism to stably

or transiently express these transgenes. Stable transfor-

mation of P. infestans and other Phytophthora species has

been achieved by a variety of methods [10], with GFP-

expressing P. parasitica and P. palmivora being the first

recorded fluorescently-labelled species [11,12]. Other

Phytophthora species have since been labelled with

GFP or other FPs [13–15]. Fluorescently-labelled strains

of P. infestans allow investigation of the life cycle and the

dynamics of infection in living host tissue.

In P. infestans, proteins have been localised to specific

lifecycle stages as FP-fusions. However, there are rela-

tively few studies where the dynamics of the localised

proteins have been followed systematically through the

entire infection cycle. For example, use of the LifeAct-

GFP tag for live actin localisation [16] revealed that actin

in P. infestans in vitro cultured hyphae exists as long-lived

plaques and highly dynamic filaments [17]. Future stud-

ies may reveal actin dynamics associated with penetration

of the host and haustorium formation.

Similarly, two oomycete-specific G protein coupled

receptors with phosphatidylinositol phosphate kinase

domains (called GK1 and GK4) were localised to vesicles

in germinating P. infestans sporangia in vitro [18]. Al-

though the two GKs are expressed throughout infection,

and GK4 and G protein-mediated signalling are required

for full pathogenicity [18,19], the behaviour of GK1 and

GK4 have yet to be investigated during infection.

Additional proteins that have been localised in P. infestans
include the bZIP transcription factor PITG_11668 in the

nucleus [20], Picdc14 in the nucleus and flagella basal

body [21], and Argonaute in the cytoplasm [22]. FP fusion

markers for subcellular organelles such as golgi, endoplas-

mic reticulum, peroxisomes, and mitochondria have been

expressed in P. infestans, but have only been examined in

cultured hyphae and have yet to be studied during

infection [23].

The haustorium as a site of molecular
exchange with the host
P. infestans haustorium formation was first examined by

electron microscopy (EM) in potato leaf tissue [24]. This

and later studies revealed a complex host–pathogen in-

terface where haustoria are bounded by a pathogen cell

wall, and surrounded by the host cell. The ‘space’ be-

tween the haustorial wall and the host cell membrane is

referred to as the extrahaustorial matrix (EHMx). The

EHMx possesses protuberances that interlink with plant

cell membrane invaginations, suggesting that P. infestans
www.sciencedirect.com 
haustoria establish intimate interactions with the host.

The haustorium wall is continuous with the hyphae,

without the neck or neckband observed in fungal haus-

toria. Host cell wall appositions (callose) were observed to

be generally absent, or formed a collar-like structure near

the base of haustoria in susceptible host tissue, while such

appositions fully encased haustoria in resistant host tis-

sues [5,6,25].

Microbes suppress plant immunity by the secretion of so-

called effector proteins that can act either outside (apo-

plastic effectors) or inside (cytoplasmic effectors) the host

cell. P. infestans is no exception. The avirulence protein

Avr3a (PiAvr3a), a member of the RXLR class of cyto-

plasmic effectors [26], was fused to monomeric red fluo-

rescent protein (mRFP) and localised to haustoria [7]. A

similar mRFP fusion to PiAvr3a, but with the RXLR

motif mutated to alanine residues, showed red fluores-

cence apparently leaking out into the apoplast from

around the haustorium. Mutation of the RXLR motif

prevented the effector entering plant cells, presumably

resulting in its accumulation in the EHMx. One inter-

pretation of the observed leakage of the mutant protein is

that the EHMx is not a compartment sealed from the

apoplast. This was consistent with observations from

earlier EM studies that did not identify a haustorium

neckband that would seal off the EHMx as a discrete

compartment [5,6,25]. Other RXLR effectors, such as

PiAvr2 [27], PiAvr4, and PiAvrBlb1 (IPIO) [28] have also

been localised to haustoria, implicating this as a site of

secretion and delivery of these effectors into host cells

(Figure 1). Remarkably, although predicted apoplastic

effectors such as the cystatin-like protein PiEPIC1 [29]

have been functionally well characterised, the sites at

which they are secreted by the pathogen during infection

are unknown.

The infection-induced haustorium membrane protein 1

(PiHmp1) protein, predicted to be membrane localised,

was also shown to reside in the haustorial membrane [8].

Expression of an PiHmp1–mRFP fusion was driven by its

native gene promotor, allowing the temporal aspects of

protein translation, transport, and localisation to be de-

termined during plant colonisation. PiHmp1 was ob-

served to be initially translated and stored in vesicles

in germinating cysts and appressoria, after which it was

localised to the haustorium surface. During haustorium

development, PiHmp1 first localised to small plaques on

the surface of hyphae. These plaques became the sites at

which haustoria were formed. The haustoria entered host

cells within three hours, and developed into the charac-

teristic hooked digit shape over a 12 h period. Transient

silencing of PiHmp1 prevented infection, demonstrating

the importance of haustoria to host colonisation [8].

Although P. infestans is the most intensively studied

oomycete [7,8,27,28], secreted effectors and additional
Current Opinion in Microbiology 2016, 34:127–135
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infection-related proteins from other Phytophthora species

have been localised during plant infection. In P. sojae, the

RXLR effector PsAvr1b was localised specifically to

haustoria [30�]. In the same study, a non-conventionally

secreted isochorismate mutase was also shown to accu-

mulate preferentially, but not exclusively, at P. sojae
haustoria. In P. parasitica, a secreted protein disulphide

isomerase also localised to haustoria [31]. These, and

results from P. infestans, suggest that Phytophthora hausto-

ria are major sites of protein export during infection, and

that both conventional and non-conventional secretion

occurs at these structures.

Biogenesis of the extra-haustorial membrane
A host-derived membrane, the extra-haustorial mem-

brane (EHM) separates the haustorium and the EHMx

from the invaded plant cell. Recent studies have shown

that the EHM is a distinct membrane compartment; a

number of plant plasma membrane (PM)-localised pro-

teins are excluded from the EHM in P. infestans-infected

cells, whereas others such as remorin REM1.3 and synap-

totagmin SYT1 are localised to the EHM. Moreover,

significant re-programming is apparent in haustoriated

cells, perhaps indicating that the plant endocytic cycle

contributes to the biogenesis of the EHM [32�]. Using

super-resolution confocal microscopy, REM1.3 was

shown to co-localise with the effector PiAvrblb2 at dis-

crete EHM domains. By contrast, SYT1 localised to

distinct EHM domains. Whereas overexpression of

REM1.3 enhanced P. infestans leaf colonisation, virus-

induced gene silencing (VIGS) of REM1.3 attenuated

infection, suggesting that it acts as a susceptibility (S)

factor; a host protein whose activity contributes to disease

development [33].

More recently, specific re-routing of plant late endocytic

trafficking to the EHM was shown to occur. The Rab7

GTPase RabG3c is a marker of late endosomes and the

tonoplast. During P. infestans infection, RabG3c was

recruited to the EHM, whereas another tonoplast-local-

ised marker, the sucrose transporter SUC4, was not [34�].
In addition, the pattern recognition receptor FLS2 was

shown to be re-localised to the P. infestans EHM specifi-

cally following activation by treatment with its ligand

flg22 [34�]. It will be important not only to better charac-

terise the constituents of the EHM, and whether they are

derived from pathogen or host, but also to determine the

roles of P. infestans effectors in facilitating EHM biogen-

esis for the benefit of the pathogen, in contrast to the

contribution of the plant immune system to dictating

EHM composition.

Secretion and delivery of effectors into host
cells
Considerable evidence has accumulated over the past

decade to indicate that RXLR effectors function inside

host cells. For example, all avirulence proteins detected
Current Opinion in Microbiology 2016, 34:127–135 
by cytoplasmic resistance (R) proteins belong to this class

of effectors, and a growing body of evidence has provided

the cytoplasmic virulence targets of RXLR effectors,

revealing their contributions to infection (see below).

Nevertheless, there has been controversy about the

mechanism by which RXLR effectors are translocated

into plant cells from Phytophthora haustoria [35–39]. De-

livery of a tagged effector from the pathogen into plant

cells has not been directly observed. The closest to direct

observation of RXLR effector translocation involved fu-

sion of the RXLR domain of PiAvr3a to the b-glucuroni-

dase (GUS) enzyme to demonstrate effector delivery [7].

However, this assay has not been attempted in other

pathosystems with RXLR effectors, and cannot accurate-

ly provide subcellular localisation of the translocated

effector. PiAvr3a-mRFP fusions were not observed in

host cells containing haustoria likely due to dilution

within the much larger plant cells, compounded by the

low fluorescence intensity of mRFP and the presence of

contaminating autofluorescence from tissue damage,

making it difficult to be confident about detection of

low intensity red signal [7]. In this regard, a labelled

effector known to be targeted to a specific host cell

organelle, such as the host cell nucleus, may yield the

best likelihood of success due to specific accumulation at

a discrete site in plant cells. Direct visualisation of

an RXLR effector that has been translocated from a

Phytophthora species into a plant cell would provide

unambiguous evidence for effector delivery, and provide

greater opportunity for in vivo analyses of effector trans-

location.

Another class of oomycete effectors, termed crinkling

and necrosis (CRN), are proposed to act inside host

plant cells during infection. Again, evidence of their

translocation  comes from expression in P. capsici or P.
sojae of N-terminal CRN fusions to RXLR avirulence

effector domains, and subsequent detection of cell

death in plants expressing the cognate resistance protein

[40,41�]. No CRN effector has been fluorescently tagged

in Phytophthora species and localised during infection of

plants. Further work will hopefully demonstrate by

direct observation whether this family of proteins are

translocated into plant cells by Phytophthora species

during infection.

Sites of action, targets and recognition of
RXLR effectors inside host cells
‘In reviewing the cell biology of late blight disease, it is

important to consider the sites of activity of RXLR effec-

tors inside host cells and the identification of their host

protein targets. This has been a major research focus in

recent years. When delivered into the plant, RXLR effec-

tors are predicted to traffic to a range of subcellular

localisations and target diverse host proteins and processes

to promote disease. Studies of P. infestans effector localisa-

tion and function inside plant cells has been greatly
www.sciencedirect.com
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facilitated by transient Agrobacterium tumefaciens-mediated

expression in Nicotiana benthamiana, allowing over expres-

sion of proteins, or their reduction by virus-induced gene

silencing (VIGS). In addition, P. infestans can complete its

infection cycle in N. benthamiana, and this plant thus acts

as a model host for cell biology studies of late blight

disease.

PiAvr3a was the first RXLR effector from P. infestans to be

studied in detail. Expressed transiently in N. benthamiana
as an N-terminal FP fusion protein (CFP-PiAvr3a), lack-

ing the secretion signal peptide, the effector is generally

nucleo-cytoplasmic in host cells and retains its ability to

suppress pathogen-associated molecular pattern (PAMP)-

triggered immunity (PTI) activated by perception of the

P. infestans Infestin1 (INF1) protein. It does so by inter-

action in planta with the ubiquitin E3 ligase CMPG1,

stabilising it and thus preventing its normal activity in

promoting INF1-mediated cell death (Figure 1) [42,43].

Importantly, fusion of CFP to the N-terminus of PiAvr3a,

in place of the signal peptide, does not inhibit effector

activity, allowing this to be directly correlated with sub-

cellular localisation. The PiAvr3aKI form of the effector is

recognised by the potato R3a protein. However, CMPG1

is not required for this recognition, indicating that it is not

a ‘guardee’ monitored by R3a [42,43]. The R3a protein,

expressed as an N-terminal FP fusion, is generally cyto-

plasmic, similar to PiAvr3a. However, when co-expressed

in N. benthamiana with the recognised PiAVR3aKI form,

both R3a and the effector are re-localised to late endo-

somes [44]. Treatment with inhibitors of the endocytic

cycle, such as brefeldin A or wortmannin, attenuated both

re-localisation of R3a and PiAvr3aKI to late endosomes

and the R3a-mediated hypersensitive response (HR).

Thus, effector recognition and consequent HR signalling

by R3a require its re-localisation to vesicles in the endo-

cytic pathway [44].

GFP-PiAvr1 has also recently been reported to be nucleo-

cytoplasmic when expressed inside N. benthamiana cells

[45�]. PiAvr1 associates with the exocyst subunit Sec5 in

yeast-2-hybrid experiments and in planta. Bimolecular

fluorescence complementation (BiFC) between PiAvr1

and Sec5 indicate that they are in close proximity at

mobile vesicles in the host cell (Figure 1) [46�]. The

exocyst complex is involved in both secretion and endo-

cytosis, and virus-induced gene silencing (VIGS) of Sec5
resulted in reduced callose deposition and pathogenesis-

related 1 (PR1) secretion, and increased leaf colonisation

by P. infestans [46�]. PiAvr1 is recognised by the potato R1

resistance protein. By contrast to the detection of PiAvr3a

by R3a, recognition of PiAvr1 by the potato R1 protein

occurred only when both proteins were present in the

nucleus. Addition of a nuclear export signal (NES) to

either R1 or PiAvr1 prevented R1-mediated HR [45�]. It

has not yet been determined whether R1-mediated HR is

dependent on the interaction between PiAvr1 and Sec5.
www.sciencedirect.com 
By contrast to PiAvr3a and PiAvr1, RXLR effectors

PiAvrblb2 [47] and PiAvr2 [48] are partially associated

with the host plasma membrane (PM) when expressed

inside N. benthamiana cells, and hyper-accumulate around

the sites of haustorium formation during infection.

PiAvrblb2 associates in planta with vesicles containing

a defence-associated protease C14, preventing its secre-

tion into the apoplast (Figure 1) [47]. PiAvr2, however,

interacts in yeast-2-hybrid and in planta with the putative

phosphatase BSL1, which is predicted to be involved in

brassinosteroid signal transduction, and thus a positive

regulator of growth and development [48]. As yet, the

consequence to virulence of PiAvr2 interaction with

BSL1 is unknown. However, recognition of PiAvr2 by

the potato R2 resistance protein is dependent on BSL1

interaction, suggesting that R2 monitors non-self-modifi-

cation of BSL1 structure or activity, in line with the Guard

Hypothesis [48].

Expression of 35 candidate P. infestans RXLR effectors in

tomato protoplasts revealed eight that suppressed PTI

activated by the bacterial PAMP flg22 (Figure 1) [49��],
indicating that there is functional redundancy in the

effector repertoire. This medium-throughput screen in-

volved flg22-mediated activation of the FRK1 promoter

fused to the reporter luciferase. Whilst P. infestans lacks

the flg22 peptide that activates the host receptor FLA-

GELLIN-SENSING 2 (FLS2), the signalling pathway

activated by this PAMP is generic, and was suppressed by

eight P. infestans effectors. This indicates that the path-

way is activated by perception of an as yet unknown

oomycete PAMP. Of the eight RXLR effectors that

attenuated flg22-mediated pFRK1-luciferase induction,

three also suppressed MAP-kinase activation, indicating

that they act upstream of this event. These three effectors

showed varying levels of association with the host PM,

perhaps indicating that they act on receptor complexes at

the plant cell surface. By contrast, one of the effectors,

SFI1, that suppressed pFRK1-luciferase expression but

not MAPK activation, localised to the host nucleus and

nucleolus. Addition of an N-terminal myristoylation sig-

nal to this effector to make Myr-GFP-SFI1 resulted in its

exclusion from the nucleus and accumulation at the host

PM [49��]. This misdirected form of SFI1 no longer

suppressed flg22-induced pFRK1-luciferase expression,

indicating that the host nucleus/nucleolus was the likely

site of effector activity.

RXLR effector PexRD2, expressed in N. benthamiana
cells, interacts in the cytoplasm with MAP3Ke, a positive

regulator of cell death that relays signals to promote cell

death following perception of Cladosporium fulvum CfAvr4

by the tomato Cf4 resistance receptor (Figure 1) [50�].
The effector interacts directly with the kinase domain,

suppressing kinase activity, but does not interact with the

closely related MAP3Ka. Moreover, PexRD2 failed to

suppress MAP kinase activation upon flg22 treatment,
Current Opinion in Microbiology 2016, 34:127–135
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demonstrating the exquisitely targeted nature of PexRD2

to a specific immune protein and pathway.

The P. infestans RXLR effector Pi03192 localised to the

endoplasmic reticulum (ER) when expressed in N.
benthamiana cells. In a yeast-2-hybrid screen, Pi03192

interacted with two potato NAC transcription factors

(TFs), NTP1 and NTP2, each of which also localised

to the host ER [51�]. Upon PAMP treatment, NTP1 and

NTP2 were released from the ER and accumulated in the

host nucleus. Silencing of NTP1 and NTP2 enhanced

susceptibility to P. infestans, indicating that these TFs

are likely to be positive regulators of immunity. Effector

Pi03192 prevented re-localisation of the NAC TFs from

the ER into the host nucleus (Figure 1), thus providing a

simple mode-of-action to promote disease progression

that was determined using cell biology [51�].

More recently, P. infestans RXLR effector PexRD54 was

shown to possess an ATG8 interacting motif and to

associate in planta with the autophagy regulator

ATG8CL, stimulating the formation of autophagosomes

[52��]. Remarkably, PexRD54 acts to promote selective

autophagy, excluding the autophagy cargo receptor joka2,

a positive regulator of immunity, from ATG8CL com-

plexes (Figure 1). Further work will demonstrate whether

the effector, in turn, promotes the formation of autopha-

gosomes with cargo of benefit to the pathogen, perhaps

redistributing cellular resources to the haustorial interface

as a source of nutrition.

The characterised P. infestans RXLR effectors referred to

above generally target host proteins that are positive

regulators of immunity to inhibit or disrupt their contri-

bution to defence. Given that PexRD54 promotes autop-

hagy, the story of its role in infection may extend beyond

the observed exclusion of joka2 from autophagosomes

[52��]. Recently, P. infestans RXLR effectors have also

been shown to target host proteins whose activity can play

a positive role in promoting disease; so-called suscepti-

bility (S) factors [53]. Effectors Pi04089 [54�] and Pi04314

[55��] localise in the nucleus and nucleolus when

expressed transiently in N. benthamiana, where they en-

hance P. infestans colonisation. This promotion of coloni-

sation is attenuated when they are redirected away from

the nucleus; Pi04089 by addition of an NES, and Pi04314

by addition of a myristoylation signal. By contrast, RXLR

effector Pi02860 enhances P. infestans colonisation and

suppresses INF1-triggered cell death when excluded

from the nucleus, indicating that the nucleus is not the

site of its activity in plant cells [56�].

Pi04089 interacts with a predicted K-homology RNA

binding protein, KRBP1, which localises to nuclear

speckles (Figure 1). Co-expression of KRBP1 with

Pi04089 indicates that they interact at these speckles,

and that the effector increases the abundance of KRBP1.
Current Opinion in Microbiology 2016, 34:127–135 
Remarkably, overexpression of KRBP1 enhances P. infes-
tans infection; a key criterion in defining it as an S factor

[54�]. Pi04314 interacts in yeast and in planta with three

isoforms of protein phosphatase 1 catalytic (PP1c) sub-

units (Figure 1). The effector promotes re-localisation of

the PP1c isoforms from the nucleolus into the nucleo-

plasm; something that also happens during infection by P.
infestans. Pi04314 interaction is mediated by an R/KVxF

motif, indicating that Pi04314 mimics PP1c regulatory

subunits. Either VIGS of the PP1c isoforms, or over-

expression of a phosphatase-dead mutant of PP1c,

reduces P. infestans infection, indicating that PP1c is

required for infection. Indeed, the effector does not

inhibit PP1c phosphatase activity, but rather is predicted

to form a holoenzyme with PP1c, potentially directing its

activity to the dephosphorylation of substrates involved in

plant defence [55��]. In addition to being defined as an S

factor, PP1c can also be considered an ‘effector helper’; a

host protein that is co-opted by the effector to help

modify defence proteins [53,57]. The RXLR effector

Pi02860 interacts in the cytoplasm and at the host PM

with a non-phototrophic hypocotyl 3/Root phototropism 2

(NPH3/RPT2)-Like protein, NRL1 (Figure 1), which is

predicted to form a ubiquitin E3 ligase with Cullin 3 [56�].
Remarkably, over-expression of NRL1 suppresses INF1-

triggered cell death and enhances P. infestans leaf coloni-

sation, whereas silencing of NRL1 by VIGS accelerates

INF1-triggered cell death and reduces pathogen coloni-

sation. NRL1 is a negative regulator of immunity, and

thus a further S factor targeted by a P. infestans RXLR

effector [56�]. Given that plants have well-tuned endog-

enous mechanisms for negative regulation of immunity, it

is not surprising that pathogens have evolved effectors to

exploit this.

Conclusions and future work
The cell biology of late blight disease has focussed

heavily in recent years on the activities of effectors.

Great strides have been made in identifying the targets

of RXLR effectors and in characterising the changes

these effectors make inside the plant cell to promote

disease. The haustorium is recognised as a site for deliv-

ery of RXLR effectors. Indeed, growing evidence sug-

gests the haustorium may be a general site of secretion,

both conventional and non-conventional, during infec-

tion. Nevertheless, the precise means by which RXLR or

CRN effectors may be translocated into plant cells

remains unknown. Protein secretion from P. infestans
during infection needs to be studied systematically to

determine the spatiotemporal dynamics of cytoskeletal

proteins such as actin and tubulin, transport proteins such

as dynamin, kinesin and myosin, and protein complexes

such as the exocyst, with a role in exocytosis. Alternative

pathways for protein secretion are also an emerging area

for investigation in oomycetes. In mammalian pathosys-

tems, non-conventional protein secretion has been found

to involve exosomes, tiny membrane vesicles produced
www.sciencedirect.com
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from pathogen cells that can fuse with host cells to deliver

virulence proteins (reviewed in [58]). Future cell biolog-

ical studies could determine the potential involvement of

exosomes in effector delivery by P. infestans. In addition,

important observations have highlighted the unique na-

ture of the EHM, and the potential role for plant endo-

cytic processes in its biogenesis. The precise

mechanisms behind EHM biogenesis warrant further

detailed study, as does the contribution that pathogen

effectors make to shaping and controlling this biogenic

process.

The general cell biology of P. infestans and other oomy-

cetes is relatively poorly studied compared to model fungi

such as Neuropspora crassa, or fungal pathogens such as

Magnaporthe oryzae and Ustilago maydis. An important

benefit that could arise from expanding such studies

would be the development of new agrochemical control

compounds. By combining a detailed knowledge of the

molecular processes required for disease, with improved

cell biology resources and tools, it may be possible to

identify new targets for chemical control, or new chemical

classes with activity against validated targets. Specific

pathogen cellular components may be labelled, and phe-

notyping assays developed to screen compounds for the

ability to disrupt these processes and inhibit pathogen

growth or infection. These assays can be used in high-

throughput confocal microscopy to quantify changes

caused by exposure of Phytophthora to tested chemicals.

Such high-content screening strategies are being used for

discovery of new drugs to combat human diseases [59–62]

and could help to revolutionise the generation of new

mechanisms of action for chemical control of this eco-

nomically devastating crop disease.
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Phytophthora infestans RXLR effector RD2 acts in the host cytoplasm to
specifically block an immune signal transduction pathway.
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