Genetically modified organisms (GMOs)- The significance of gene flow through pollen transfer (Environmental issue report- No 28) (2002) | BCH-VLR-SCBD-101082 | Biosafety Virtual Library Resources | Biosafety Clearing-House

Loading...
Biosafety Virtual Library Resources (VLR)
  |  
published: 30 Mar 2010 last updated: 08 May 2012

General Information
Genetically modified organisms (GMOs)- The significance of gene flow through pollen transfer (Environmental issue report- No 28)
EN
Katie Eastham and Jeremy Sweet, with contributions from other participants in the AIGM programme
EN
- Person: Dr J. B. Sweet | BCH-CON-SCBD-101081-2
Person:
Dr J. B. Sweet
Huntingdom Road
Cambridge,
CB3 0LE, United Kingdom of Great Britain and Northern Ireland
Phone:
Fax:
Website:
Related Organization
National Institute of Agricultural Botany (NIAB)
Non-governmental organization (NGO)
European Environment Agency (EEA), Copenhagen
EN
2002
EN
EN
© EEA, Copenhagen, 2002
EN
Access to the resource(s)
Information on the content of the resource
The Table of Contents is as follows:

Executive summary

Project summary

1. Introduction
1.1. Aims and objectives of the report
1.2. Background
1.3. Factors affecting pollen dispersal and cross-pollination
1.4. Hybridisation, gene flow and introgression
1.5. Routes of transgene movement between species

2. Oilseed rape (Brassica napus ssp. oleifera)
with reference to turnip rape (Brassica rapa)
2.1. Reproductive biology and crop use
2.2. Genetic modification
2.3. Pollen dispersal
2.4. Gene flow: Crop to crop
2.5. Gene flow: Crop to wild relative
2.6. Conclusion

3. Sugar beet and fodder beet (Beta vulgaris ssp. vulgaris)
3.1. Reproductive biology and crop use
3.2. Genetic modification
3.3. Pollen dispersal
3.4. Gene flow: Crop to crop
3.5. Definition and status as a weed plant
3.6. Gene flow: Crop to wild relative
3.7. Conclusion

4. Potato (Solanum tuberosum)
4.1. Reproductive biology and crop use
4.2. Genetic modification
4.3. Pollen dispersal
4.4. Gene flow: Crop to crop
4.5. Definition and status as a weed plant
4.6. Gene flow: Crop to wild relative
4.7. Conclusion

4 Genetically modified organisms (GMOs): The significance of gene flow through pollen transfer

5. Maize (Zea mays)
5.1. Reproductive biology and crop use
5.2. Genetic modification
5.3. Pollen dispersal
5.4. Gene flow: Crop to crop
5.5. Definition and status as a weed plant
5.6. Gene flow: Crop to wild relative
5.7. Conclusion

6. Wheat (Triticum aestivum)
6.1. Reproductive biology and crop use
6.2. Genetic modification
6.3. Pollen dispersal
6.4. Gene flow: Crop to crop
6.5. Definition and status as a weed plant
6.6. Gene flow: Crop to wild relative
6.7. Conclusion

7. Barley (Hordeum vulgare)
7.1. Reproductive biology and crop use
7.2. Genetic modification
7.3. Pollen dispersal
7.4. Gene flow: Crop to crop
7.5. Definition and status as a weed plant
7.6. Gene flow: Crop to wild relative
7.7. Conclusion

8. Fruit crops
8.1. Strawberries (Fragaria x ananassa)
8.2. Apples (Malus x domestica)
8.3. Grapevines (Vitis vinifera)
8.4. Plums (Prunus domestica)
8.5. Blackberries (Rubus fruticosus) and raspberries (Rubus idaeus)
8.6. Blackcurrants (Ribes nigrum)

9. Evaluation and conclusions
9.1. Oilseed rape
9.2. Sugar beet
9.3. Potato
9.4. Maize
9.5. Wheat
9.6. Barley
9.7. Fruit crops

10. Future considerations and recommendations
10.1.Gene flow: Crop to crop
10.2.Gene flow: Crop to wild relatives
10.3.Gene flow barriers

Acknowledgements

References

Appendix: Assessment of the impacts of genetically modified plants (AIGM)
EN
Keywords for facilitating searching for information in the clearing-houses

https://bch.cbd.int/onlineconferences/ra_guidance_references.shtml

Yes
No
No
No
Additional Information
Identifier (ISBN, ISSN, etc.)
ISBN: 92-9167-411-7
Format
75-page PDF file
EN