MON-89Ø34-3 × DAS-4Ø278-9 - Herbicide tolerant, Lepidoptera resistant maize | BCH-LMO-SCBD-115526 | Living Modified Organism | Biosafety Clearing-House

Loading...
Living Modified Organism (LMO)
  |  
Decisions on the LMO Risk Assessments  
last updated: 16 Apr 2020
Living Modified Organism identity
The image below identifies the LMO through its unique identifier, trade name and a link to this page of the BCH. Click on it to download a larger image on your computer. For help on how to use it go to the LMO quick-links page.
Herbicide tolerant, Lepidoptera resistant maize
EN
MON89034 x DAS40278
Yes
MON-89Ø34-3 × DAS-4Ø278-9
The modified maize was produced by crossing modified parental lines to result in a line with herbicide tolerance and insect resistance. For Lepidoptera resistance, the maize expresses Bacillus thuringiensis Cry1A.105 and Cry2Ab2. In addition to the insecticidal proteins, the maize also expresses Sphingobium herbicidovorans aryloxyalkanoate dioxygenase for tolerance to 2,4-dichlorophenoxyacetic acid and aryloxyphenoxypropionate acetyl coenzyme A carboxylase inhibitors.
EN
The term “Recipient organism” refers to an organism (either already modified or non-modified) that was subjected to genetic modification, whereas “Parental organisms” refers to those that were involved in cross breeding or cell fusion.
  • BCH-ORGA-SCBD-246-6 Organism Zea mays (Maize, Corn, MAIZE)
    Crops
  • BCH-LMO-SCBD-43773-18 Living Modified Organism MON-89Ø34-3 - YieldGard™ VT Pro™
    Monsanto Company | Resistance to diseases and pests (Insects, Lepidoptera (butterflies and moths))
  • BCH-LMO-SCBD-104814-1 Living Modified Organism DAS-4Ø278-9 - Enlist™ Maize
    Dow AgroSciences GmbH | Resistance to herbicides, Tolerance to 2,4-Dichlorophenoxyacetic acid, Tolerance to aryloxyphenoxypropionate
EN
Characteristics of the modification process
PV-ZMIR245 and pDAS1740
EN
  • Cross breeding
Some of these genetic elements may be present as fragments or truncated forms. Please see notes below, where applicable.
  • BCH-GENE-SCBD-101415-9 Ti plasmid left border repeat | Agrobacterium tumefaciens (Agrobacterium)
    Plasmid vector
  • BCH-GENE-SCBD-100366-6 CaMV Enhanced 35S promoter | Cauliflower mosaic virus (CaMV)
    Promoter
  • BCH-GENE-SCBD-100354-6 5' untranslated leader from chlorophyll a/b-binding protein | Triticum aestivum (Wheat)
    Leader sequence
  • BCH-GENE-SCBD-100355-6 Rice actin 1, intron | Oryza sativa (Rice, ORYSA)
    Intron
  • BCH-GENE-SCBD-43771-9 Cry1A.105 | Bacillus thuringiensis (Bt, Bacillus, BACTU)
    Protein coding sequence | Resistance to diseases and pests (Insects, Lepidoptera (butterflies and moths))
  • BCH-GENE-SCBD-100356-6 Heat shock protein 17.3 terminator | Triticum aestivum (Wheat)
    Terminator
  • BCH-GENE-SCBD-101507-5 FMV 34S promoter | Figwort mosaic virus (Figwort mottle virus, FMV, CMoVb)
    Promoter
  • BCH-GENE-SCBD-100359-7 Hsp70 intron | Zea mays (Maize, Corn, MAIZE)
    Intron
  • BCH-GENE-SCBD-100360-4 Transit peptide and first intron of Rubisco SSU | Zea mays (Maize, Corn, MAIZE)
    Transit signal
  • BCH-GENE-SCBD-14988-7 Cry2Ab2 | Bacillus thuringiensis (Bt, Bacillus, BACTU)
    Protein coding sequence | Resistance to diseases and pests (Insects, Lepidoptera (butterflies and moths))
  • BCH-GENE-SCBD-100269-8 Nopaline Synthase Gene Terminator | Agrobacterium tumefaciens (Agrobacterium)
    Terminator
  • BCH-GENE-SCBD-101416-6 Ti plasmid right border repeat | Agrobacterium tumefaciens (Agrobacterium)
    Plasmid vector
  • BCH-GENE-SCBD-104795-4 RB7 matrix attachment region | Nicotiana tabacum (Tobacco, TOBAC )
    Enhancer
  • BCH-GENE-SCBD-100362-7 Ubiquitin gene promoter | Zea mays (Maize, Corn, MAIZE)
    Promoter
  • BCH-GENE-SCBD-104812-3 Aryloxyalkanoate dioxygenase gene | Sphingobium herbicidovorans (SPHHE)
    Protein coding sequence | Resistance to herbicides,Tolerance to 2,4-Dichlorophenoxyacetic acid,Tolerance to aryloxyphenoxypropionate
  • BCH-GENE-SCBD-104813-4 Per5 3' Untranslated Region | Zea mays (Maize, Corn, MAIZE)
    Terminator
DNA insert from MON89034 vector PV-ZMIR245:
Maize line MON89034 expresses two Bt-toxins encoded by Bacillus thuringiensis cry1A.105  and cry2Ab2.

Transcription of cry1A.105 begins at the Cauliflower Mosaic Virus (CaMV) Enhanced 35S promoter and finishes at the wheat (Triticum aestivum) wheat heat shock protein 17.3 terminator. The transcript initially includes (5' to 3'): wheat 5' untranslated leader from the chlorophyll a/b-binding protein, Oryza sativa (rice) actin 1 intron and Cry1A.105. The wheat 5' untranslated leader sequence and the rice intron enhance the expression of cry1A.105.

Transcription of cry2Ab2 commences from the Figwort Mosaic Virus (FMV) 35S promoter and terminates at the Agrobacterium tumefaciens nopaline synthase (nos) terminator. The transcript initially includes (5' to 3'): maize heat shock protein 70 (hsp70) intron, maize transit peptide and first intron from the small subunit of Ribulose-1,5-bisphosphate carboxylase/oxygenase and cry2Ab32. The hsp70 regulates and enhances gene expression, while the transit peptide targets Cry2Ab2 to the chloroplast.

Note:
- The viral promoters are expected to be constitutively active and promote high levels of transcription.
- The coding sequence of cry2Ab2 was codon-optimized for expression within plant systems.
- A second T-DNA insertion (containing CaMV 35S promoter, Escherichia coli neomycin phosphotransferase and A. tumefaciens nos  terminator) was initially inserted into the genome for kanamycin selection during transformation. However, once transformants were regenerated, the selectable marker was bred out of the parental line using convention breeding techniques.
- Southern blot analyses indicated a single copy of the cry1A.105 and the cry2Ab2 cassettes. No backbone plasmid DNA or nptII sequences were detected. PCR and DNA sequence analyses provided the complete DNA sequence of the insert and confirmed the organization of the elements within the insert. Furthermore, sequence analysis indicated that MON 89034 no longer has the duplicated enhancer elements compared to the original e35S promoter in PV-ZMIR245, possibly due to a recombination event that resulted in its deletion.

DNA insert from DAS40278 vector pDAS1740:
The LMO was generated using the Whiskers-mediated transformation method. Sphingobium herbicidovorans aryloxyalkanoate dioxygenase-1 (aad-1)  is under the control of Zea mays ubiquitin gene promoter and Z. mays root preferential cationic peroxidase terminator. The aad-1 coding sequence was optimized for expression in the plant.

Note:
- Southern blot analysis indicated that a single complete copy of the transformation cassette was stably integrated into the host genome at a single locus
- No integration of the vector backbone occurred.
EN
LMO characteristics
EN
Additional Information
EN