(12) United States Patent

Cirpus et al.
(10) Patent No.: \quad US 8,049,064 B2
(45) Date of Patent:
(54) METHOD FOR PRODUCING

POLYUNSATURATED C C_{20}-AND C_{22}-FATTY ACIDS WITH AT LEAST FOUR DOUBLE BONDS IN TRANSGENIC PLANTS

Inventors: Petra Cirpus, Mannheim (DE); Jörg Bauer, Ludwigshafen (DE)

Assignee: BASF Plant Science GmbH (DE)
(*) Notice:
Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 959 days.
(21) Appl. No.:

11/886,857
PCT Filed:
Mar. 21, 2006
PCT No.: PCT/EP2006/060913
§ 371 (c)(1),
(2), (4) Date: Sep. 21, 2007

PCT Pub. No.: WO2006/100241
PCT Pub. Date: Sep. 28, 2006
Prior Publication Data
US 2009/0158462 A1 Jun. 18, 2009
Foreign Application Priority Data
Mar. 22, 2005 (DE) \qquad 102005013779

Int. Cl.	
A01H 5/00	(2006.01)
C12N 15/82	(2006.01)
C07H 21/04	(2006.01)

Field of Classification Search \qquad None See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

| $5,614,393$ | A | $3 / 1997$ | Thomas et al. |
| :--- | :--- | :--- | :--- | :--- |
| 6,075,183 A | (| $6 / 2000$ | Knutzon et al. |
| $7,179,647$ | B2 | $2 / 2007$ | Lerchl et al. |

2004/0111763 A1 6/2004 Heinz et al.
FOREIGN PATENT DOCUMENTS

CA	2180154	$7 / 1995$	
CA	2455163	A1	$2 / 2003$
CA	2533613	A1	$2 / 2005$
EP	0550162	A1	$7 / 1993$
EP	0616644	B1	$9 / 1994$
EP	0794250	A1	$9 / 1997$
WO	WO-91/13972	A1	$9 / 1991$
WO	WO-93/06712	A1	$4 / 1993$
WO	WO-93/11245	A1	$6 / 1993$
WO	WO-94/11516	A1	$5 / 1994$
WO	WO-94/18337 A1	$8 / 1994$	
WO	WO-95/18222	A1	$7 / 1995$
WO	WO-96/21022	A2	$7 / 1996$
WO	WO-97/21340 A1	$6 / 1997$	
WO	WO-97/30582 A1	$8 / 1997$	
WO	WO-98/46763 A1	$10 / 1998$	

WO	WO-98/46764 A1	$10 / 1998$	
WO	WO-98/46765 A1	$10 / 1998$	
WO	WO-98/46776 A2	$10 / 1998$	
WO	WO-99/27111 A1	$6 / 1999$	
WO	WO-99/64616	$A 2$	$12 / 1999$
WO	WO-00/21557 A1	$4 / 2000$	
WO	WO-01/59128 A2	$8 / 2001$	
WO	WO-02/08401	$A 2$	$1 / 2002$
WO	WO-02/26946	$A 2$	$4 / 2002$
WO	WO-02/44320 A2	$6 / 2002$	
WO	WO-02/077213	A2	$10 / 2002$
WO	WO-03/012092	A1	$2 / 2003$
WO	WO-03/064638	A2	$8 / 2003$
WO	WO-03/093482	A2	$11 / 2003$
WO	WO-2005/007845	A2	$1 / 2005$
WO	WO-2005/012316	A2	$2 / 2005$

OTHER PUBLICATIONS

Drexler et al, J. Plant Physiol 160: 779-802. 2003.*
Parker-Barnes et al, PNAS, USA 97(15): 8284-8289, Jul. 18, 2000.* Beaudoin et al, PNAS, USA 97(12): 6421-6426, Jun. 6, 2000.* Broun et al, Science 282: 1315-1317, Nov. 13, 1998.*
Van de Loo et al, PNAS USA 92: 6743-6747, Jul. 1995.*
Doerks, TIG 14(6) 248-250, Jun. 1998.*
Brenner, S.E., TIG 15(4): 132-133, Apr. 1999.*
Bork et al TIG 12(10): 425-427, Oct. 1996.*
Voelker, Ann Rev Plant Physiol and Plant Mol Biol 52: 335-361, 2001.*

Sequence search results 1-9, for SEQ ID No. 25, dated Aug. 17, 2010.*

Poulos, A., "Very long chain fatty acids in higher animals-A review", Lipids, 1995, vol. 30, No. 1, pp. 1-14.
Horrocks, L. A., et al., "Health benefits of docosahexaenoic acid (DHA)", Pharmacolofical Research, 1999, vol. 40, No. 3, pp. 211225.

Stukey, J. E., et al., "The OLE1 gene of Saccharomyces cerevisiae encodes the $\Delta 9$ fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene", The Journal of Biological Chemistry, 1990, vol. 265, No. 33, pp. 20144-20149.
Wada, H., et al., "Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation", Nature, 1990, vol. 347, pp. 200-203.

(Continued)

Primary Examiner - Elizabeth McElwain
(74) Attorney, Agent, or Firm - Connolly Bove Lodge \& Hutz LLP

ABSTRACT
The present invention relates to a process for the production of polyunsaturated fatty acids in transgenic plants, by introducing, into the plant, the nucleic acids which code for polypeptides with $\Delta 6$-desaturase, $\Delta 6$-elongase, a $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase activity. These desaturases and elongases are advantageously derived from Phytophthora sojae. The invention furthermore relates to the nucleic acid sequence, nucleic acid constructs, vectors and organisms comprising the nucleic acid sequences according to the invention, vectors comprising the nucleic acid sequence and/or the nucleic acid constructs and to transgenic plants comprising the abovementioned nucleic acid sequence, nucleic acid constructs and/or vectors. A further part of the invention relates to fatty acid compositions produced by the process according to the invention and to their use.

OTHER PUBLICATIONS

Huang, Y-S., et al., "Cloning of $\Delta 2$ - and $\Delta 6$-desaturases from Mortierella alpina and recombinant production of γ-linolenic acid in Saccharomyces cerevisiae", Lipids, 1999, vol. 34, No. 7, pp. 649659.

McKeon T., et al., "[34] Stearoyl-acyl carrier protein desaturase from safflower seeds", in "Methods in Enzymology, vol. 71, Lipids, Part C", Lowenstein, J. M., ed., Academic Press, pp. 275-281.
Wang, X. M., et al., "Biosynthesis and regulation of linolenc acid in higher plants", Plant Physiol. Biochem., 1988, vol. 26, No. 6, pp. 777-792.
Millar, A. A., et al., "Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme", The Plant Journal, 1997, vol. 12, No. 1, pp. 121-131. Millar, A. A., "CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme", The Plant Cell, 1999, vol. 11, pp. 825-838. Tvrdik, P., et al., "Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids", The Journal of Cell Biology, 2000, vol. 149, No. 3, pp. 707-717.
Vazhappilly, R., et al., "Heterotrophic production potential of omega- 3 polyunsaturated fatty acids by microalgae and algae-like microorganisms", Botanica Marina, 1998, vol. 41, pp. 553-558.
Totani, N., et al., "The filamentous fungus Mortierella alpina, high in arachidonic acid", Lipids, 1987, vol. 22, No. 12, pp. 1060-1062.
Akimoto, M., et al., "Carbon dioxide fixation and polyunsaturated fatty acid production by the red alga Porphyridium cruentum", Applied Biochemistry and Biotechnology, 1998, vol. 73, pp. 269278.

Tocher, D. R., et al., "Recent advances in the biochemistry and molecular biology of fatty acyl desaturases", Prog. Lipid Res., 1998, vol. 37, No. 2/3, pp. 73-117.
Takeyama, H., et al., "Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp.", Microbiology, 1997, vol. 143, pp. 2725-2731.

Zank, T. K., "Cloning and functional characterisation of an enzyme involved in the elongation of $\Delta 6$-polyunsaturated fatty acids from the moss Physcomitrella patens", The Plant Journal, 2002, vol. 31, No. 3, pp. 255-268
Sakuradani, E., et al, " $\Delta 6$-Fatty acid desaturase from an arachidonic acid-producing Mortierella fungus-gene cloning and its heterologous expression in a fungus, Aspergillus", Gene, 1999, vol. 238, pp. 445-453.
Sprecher, H., "Metabolism of highly unsaturated $n-3$ and $n-6$ fatty acids", Biochimica et Biophysica Acta, 2000, vol. 1486, vol. 219231.

Domergue, F., et al., "Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis", Eur. J. Biochem., 2002, vol. 269, pp. 4105-4113.
Calder, P. C., "Dietary modification of inflammation with lipids", Proceedings of the Nutrition Society, 2002, vol. 61, pp. 345-358.
"Delta-12 desaturase", UniProtKB/TrEMBL Database, Accession No. Q6UB74, Jul. 5, 2004.
Cleland, L. G., et al., "Fish oil and rheumatoid arthritis: Antiinflammatory and collateral health benefits", The Journal of Rheumatology, 2000, vol. 27, No. 10, pp. 2305-2307.
Ucciani, E., "Nouveau Dictionnaire des Huiles Végétales", Technique \& Documentation-Lavoisier, 1995, pp. 577, 578, and 582.
Pereira, S.L., et al., "A Novel $\omega \beta$-fatty Acid Desaturase Involved in the Biosynthesis of Eicosapentaenoic Acid", Biochem. J., vol. 378, No. 2, (2004), pp. 665-671.
Shimokawa, H., "Beneficial Effects of Eicosapentaenoic Acid on Endothelial Vasodilator Functions in Animals and Humans", World Rev. Nutr. Diet, vol. 88, (2001), pp. 100-108.
Yu, R., et al., "Production of Eicosapentaenoic Acid by a Recombinant Marine Cyanobacterium, Synechococcus sp.", Lipids, vol. 35, No. 10, (2000), pp. 1061-1064.

* cited by examiner

B

$\omega 6-$
pathway
c3-
pathway
$\xrightarrow{\text { (3-desaturase }}$
$18: 2^{-49,12}$
$18: 3^{49,12,15}$
 $20: 2^{\Delta 11,14} \quad 18: 3^{\Delta 6,9,12} \quad 18: 4^{\Delta 6,9,12,15} 20: 3 \Delta 11,14,17$ $\Delta 8$-desaturase $\downarrow / \Delta 6$-elongase $\downarrow \Delta 8$-desaturase

[^0]$22: 6^{\Delta 4,7,10,13,16,19}$

METHOD FOR PRODUCING POLYUNSATURATED C_{20} - AND C_{22}-FATTY ACIDS WITH AT LEAST FOUR DOUBLE BONDS IN TRANSGENIC PLANTS

RELATED APPLICATIONS

This application is a national stage application (under 35 U.S.C. 371) of PCT/EP2006/060913 filed Mar. 21, 2006, which claims benefit of German application 102005013 779.2 filed Mar. 22, 2005.

Submission on Compact Disc
The contents of the following submission on compact discs are incorporated herein by reference in its entirety: two copies of the Sequence Listing (COPY 1 and COPY 2) and a computer readable form copy of the Sequence Listing (CRF COPY), all on compact disc, each containing: file name: Sequence List-13987-00069-US, date recorded: Sep. 21, 2007, size: 129 KB.

The present invention relates to a process for the production of polyunsaturated fatty acids in transgenic plants, by introducing, into the plant, the nucleic acids which code for polypeptides with $\Delta 6$-desaturase, $\Delta 6$-elongase, a $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase activity. These desaturases and elongases are advantageously derived from Phytophthora sojae.

The invention furthermore relates to the nucleic acid sequences, nucleic acid constructs, vectors and organisms comprising the nucleic acid sequences according to the invention, vectors comprising the nucleic acid sequences and/or the nucleic acid constructs and to transgenic plants comprise the abovementioned nucleic acid sequences, nucleic acid constructs and/or vectors.

A further part of the invention relates to fatty acid compositions produced by the process according to the invention and to their use.

Fatty acids and triacylglycerides have a multiplicity of applications in the food industry, in animal nutrition, in cosmetics and in the pharmacological sector. Depending on whether they are free saturated or unsaturated fatty acids or else triacylglycerides with an elevated content of saturated or unsaturated fatty acids, they are suitable for very different applications. Polyunsaturated fatty acids such as linoleic acid and linolenic acid are essential for mammals, since they cannot be produced by the latter. Polyunsaturated $\omega 3$-fatty acids and $\omega 6$-fatty acids are therefore an important constituent in animal and human nutrition.

Polyunsaturated long-chain $\omega 3$-fatty acids such as eicosapentaenoic acid (=EPA, C20:5 ${ }^{\Delta 5,8,11,14,17}$) or docosahexaenoic acid ($=$ DHA, C22: $6^{\wedge 4,7,10,13,16,19}$) are important components in human nutrition owing to their various roles in health aspects, including the development of the child brain, the functionality of the eyes, the synthesis of hormones and other signal substances, and the prevention of cardiovascular disorders, cancer and diabetes (Poulos, A Lipids 30:1-14, 1995; Horrocks, LA and Yeo Y K Pharmacol Res 40:211-225, 1999). This is why there is a demand for the production of polyunsaturated long-chain fatty acids.

Owing to the present-day composition of human food, an addition of polyunsaturated $\omega 3$-fatty acids, which are preferentially found in fish oils, to the food is particularly important. Thus, for example, polyunsaturated fatty acids such as docosahexaenoic acid ($=$ DHA, C22:6 ${ }^{\text {44,7,10,13,16,19 }}$) or eicosapentaenoic acid (=EPA, C20:5 $5^{\wedge 5,8,11,14,17}$) are added to infant formula to improve the nutritional value. The unsaturated fatty acid DHA is said to have a positive effect on the development and maintenance of brain functions.

Hereinbelow, polyunsaturated fatty acids are referred to as PUFA, PUFAs, LCPUFA or LCPUFAs (poly unsaturated fatty acids, PUFA, long chain poly unsaturated fatty acids, LCPUFA).
The various fatty acids and triglycerides are mainly obtained from microorganisms such as Mortierella and Schizochytrium or from oil-producing plants such as soybean, oilseed rape, algae such as Crypthecodinium or Phaeodactylum and others, where they are obtained, as a rule, in the form of their triacylglycerides (=triglycerides=triglycerols). However, they can also be obtained from animals, such as, for example, fish. The free fatty acids are advantageously prepared by hydrolysis. Very long-chain polyunsaturated fatty acids such as DHA, EPA, arachidonic acid (=ARA, C20:4 ${ }^{\text {45 }}$, 8,11,14), dihomo- γ-linolenic acid (C20:3 $3^{\wedge 8,11,14}$) or docosapentaenoic acid (DPA, C22:5 ${ }^{\Delta 7,10,13,16,19}$) are not synthesized in oil crop plants such as oilseed rape, soybean, sunflower or safflower. Conventional natural sources of these fatty acids are fish such as herring, salmon, sardine, redfish, eel, carp, trout, halibut, mackerel, zander or tuna, or algae.

Depending on the intended use, oils with saturated or unsaturated fatty acids are preferred. In human nutrition, for example, lipids with unsaturated fatty acids, specifically polyunsaturated fatty acids, are preferred. The polyunsaturated $\omega 3$-fatty acids are said to have a positive effect on the cholesterol level in the blood and thus on the possibility of preventing heart disease. The risk of heart disease, stroke or hypertension can be reduced markedly by adding these $\omega 3$-fatty acids to the food. Also, $\omega 3$-fatty acids have a positive effect on inflammatory, specifically on chronically inflammatory, processes in association with immunological diseases such as rheumatoid arthritis. They are therefore added to foodstuffs, specifically to dietetic foodstuffs, or are employed in medicaments. $\omega 6$-Fatty acids such as arachidonic acid tend to have a negative effect on these disorders in connection with these rheumatic diseases on account of our usual dietary intake.
$\omega 3$ - and $\omega 6$-fatty acids are precursors of tissue hormones, known as eicosanoids, such as the prostaglandins, which are derived from dihomo- γ-linolenic acid, arachidonic acid and eicosapentaenoic acid, and of the thromboxanes and leukotrienes, which are derived from arachidonic acid and eicosapentaenoic acid. Eicosanoids (known as the PG_{2} series) which are formed from $\omega 6$-fatty acids generally promote inflammatory reactions, while eicosanoids (known as the PG_{3} series) from $\omega 3$-fatty acids have little or no proinflammatory effect.

Owing to the positive characteristics of the polyunsaturated fatty acids, there has been no lack of attempts in the past to make available genes which are involved in the synthesis of these fatty acids or triglycerides for the production of oils in various organisms with a modified content of unsaturated fatty acids. Thus, WO 91/13972 and its US equivalent describes a $\Delta 9$-desaturase. WO $93 / 11245$ claims a $\Delta 15$-desaturase and WO 94/11516 a $\Delta 12$-desaturase. Further desaturases are described, for example, in EP-A-0 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey et al., J. Biol. Chem., 265, 1990: 2014420149, Wada et al., Nature 347, 1990: 200-203 or Huang et al., Lipids 34, 1999: 649-659. However, the biochemical characterization of the various desaturases has been insufficient to date since the enzymes, being membrane-bound proteins, present great difficulty in their isolation and characterization (McKeon et al., Methods in Enzymol. 71, 1981: 12141-12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777-792). As a rule, membrane-bound desaturases are characterized by being introduced into a suitable organism which
is subsequently analyzed for enzyme activity by analyzing the starting materials and the products. $\Delta 6$-Desaturases are described in WO 93/06712, U.S. Pat. No. 5,614,393, U.S. Pat. No. 5,614,393, WO 96/21022, WO 00/21557 and WO 99/27111 and the application for the production in transgenic organisms is described in WO 98/46763, WO 98/46764 and WO 98/46765. In this context, the expression of various desaturases and the formation of polyunsaturated fatty acids is also described and claimed in WO 99/64616 or WO 98/46776. As regards the expression efficacy of desaturases and its effect on the formation of polyunsaturated fatty acids, it must be noted that the expression of a single desaturase as described to date has only resulted in low contents of unsaturated fatty acids/lipids such as, for example, γ-linolenic acid and stearidonic acid. Moreover, a mixture of $\omega 3$-and $\omega 6$-fatty acids was obtained, as a rule.

A large number of attempts have been made in the past of obtaining elongase genes. Millar and Kunst, 1997 (Plant Journal 12:121-131) and Millar et al. 1999, (Plant Cell 11:825838) describe the characterization of elongases from plants for the synthesis of monounsaturated long-chain fatty acids (C22:1) and for the synthesis of very long-chain fatty acids for the production of wax in plants $\left(\mathrm{C}_{28}-\mathrm{C}_{32}\right)$, respectively. Descriptions on the synthesis of arachidonic acid and EPA are found, for example, in WO0159128, WO0012720, WO02077213 and WO0208401. The synthesis of polyunsaturated C24-fatty acids is described for example in Tvrdik et al 2000, JCB 149:707-717 or WO0244320.

Especially suitable microorganisms for the production of PUFAs are microalgae such as Phaeodactylum tricornutum, Porphiridium species, Thraustochytrium species, Schizochytrium species or Crypthecodinium species, ciliates such as Stylonychia or Colpidium, fungae such as Mortierella, Entomophthora or Mucor and/or mosses such as Physcomitrella, Ceratodon and Marchantia (R. Vazhappilly \& F. Chen (1998) Botanica Marina 41: 553-558; K. Totani \& K. Oba (1987) Lipids 22: 1060-1062; M. Akimoto et al. (1998) Appl. Biochemistry and Biotechnology 73: 269-278). Strain selection has resulted in the development of a number of mutant strains of the microorganisms in question which produce a series of desirable compounds including PUFAs. However, the mutation and selection of strains with an improved production of a particular molecule such as the polyunsaturated fatty acids is a time-consuming and difficult process. This is why recombinant methods as described above are preferred whenever possible. However, only limited amounts of the desired polyunsaturated fatty acids such as DPA, EPA or ARA can be produced with the aid of the abovementioned microorganisms, and, depending on the microorganism used, these are generally obtained as fatty acid mixtures of, for example, EPA, DPA and ARA.

A variety of synthetic pathways is being discussed for the synthesis of arachidonic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (FIG. 1). Thus, EPA or DHA are produced in marine bacteria such as Vibrio sp. or Shewanella sp . via the polyketide pathway (Yu, R. et al. Lipids 35:1061-1064, 2000; Takeyama, H. et al. Microbiology 143:2725-2731, 1997).

An alternative strategy is the alternating activity of desaturases and elongases (Zank, T. K. et al. Plant Journal 31:255268, 2002; Sakuradani, E. et al. Gene 238:445-453, 1999). A modification of the above-described pathway by $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase and $\Delta 4$-desaturase is the Sprecher synthetic pathway (Sprecher 2000, Biochim. Biophys. Acta 1486:219-231) in mammals. Instead of the $\Delta 4$-desaturation, a further elongation step is effected here to give C_{24}, followed by a further $\Delta 6$-desaturation and
finally β-oxidation to give the C_{22} chain length. Thus what is known as Sprecher synthetic pathway (see FIG. 1) is, however, not suitable for the production in plants and microorganisms since the regulatory mechanisms are not known.
As can be seen from FIG. 1, the production of longer-chain polyunsaturated fatty acids such as arachidonic acid, EPA or in particular DHA (C22:6n-3) require, besides the desaturases, also elongases, which elongate unsaturated fatty acids with double bonds, for example in delta-9, delta-6 or delta-5 position by at least two carbon atoms. One distinguishes between two different types of elongase, depending on their function. The type I-elongases, which are widespread in the animal kingdom, only have poor substrate specificity, that is to say they elongate a series of different unsaturated fatty acids. Type II-elongases are distinguished by a much higher substrate specificity. They convert only few fatty acids with double bonds in specific positions.

WO 2005/012316 describes some of the abovementioned desaturases and elongases. Specifically, WO 2005/012316 discloses first type II-elongases which specifically elongate fatty acids with a double bond in the delta- 5 position.

Depending on their desaturation pattern, the polyunsaturated fatty acids can be divided into two large classes, viz. w6or $\omega 3$-fatty acids, which differ with regard to their metabolic and functional activities (FIG. 1).

The starting material for the $\omega 6$-metabolic pathway is the fatty acid linoleic acid ($18: 2^{\Delta 9,12}$) while the $\omega 3$-pathway proceeds via linolenic acid ($18: 3^{\Delta 9,12,15}$). Linolenic acid is formed by the activity of an $\omega 3$-desaturase (Tocher et al. 1998, Prog. Lipid Res. 37, 73-117; Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113).

Mammals, and thus also humans, have no corresponding desaturase activity ($\Delta 12$ - and $\omega 3$-desaturase) and must take up these fatty acids (essential fatty acids) via the food. Starting with these precursors, the physiologically important polyunsaturated fatty acids arachidonic acid ($=\mathrm{ARA}, 20: 4^{\Delta 5,8,11}$, 14), an $\omega 6$-fatty acid and the two $\omega 3$-fatty acids eicosapentaenoic acid (=EPA, 20:5 $5^{\text {®5,8,11,14,17 }}$) and docosahexaenoic acid (DHA, 22: $6^{\mathbf{4 4}, 7,10,13,17,19}$) are then synthesized via the sequence of desaturase and elongase reactions. The application of $\omega 3$-fatty acids shows the therapeutic activity described above in the treatment of cardiovascular diseases (Shimikawa 2001, World Rev. Nutr. Diet. 88, 100-108), inflammations (Calder 2002, Proc. Nutr. Soc. 61, 345-358) and arthritis (Cleland and James 2000, J. Rheumatol. 27, 2305-2307).

Higher plants comprise polyunsaturated fatty acids such as linoleic acid (C18:2) and linolenic acid (C18:3). ARA, EPA and DHA are found not at all in the seed oil of higher plants, or only in miniscule amounts (E. Ucciani: Nouveau Dictionnaire des Huiles Végétales [New Dictionary of Vegetable Oils]. Technique \& Documentation-Lavoisier, 1995. ISBN: 2-7430-0009-0). However, the production of LCPUFAs in higher plants, preferably in oil crops such as oilseed rape, linseed, sunflower and soybeans, would be advantageous since large amounts of high-quality LCPUFAs for the food industry, animal nutrition and pharmaceutical purposes might be obtained economically in this way. To this end, it is advantageous to introduce, into oil crops, genes which code for enzymes of the LCPUFA biosynthesis via recombinant methods and to express them therein. WO 2005/012316 describes such an approach. However, the disadvantage of the path described in WO 2005/012316 is that the yield of the desired fatty acids is still too low to be exploited industrially. In addition, not only the desired fatty acids such as ARA, EPA or DHA are generated, but undesired secondary reactions also
give rise to fatty acids which further reduce the yield and contaminate the product formed

An advantageous process for the production of polyunsaturated fatty acids should therefore combine in itself as many as possible of the following properties:
high specificity of the desaturases and elongases used for the production of polyunsaturated fatty acids,
high synthesis rate of the desaturases and elongases used,
synthesis of, if possible, only one polyunsaturated fatty acids such as ARA, EPA or DHA,
high yield of polyunsaturated fatty acids such as ARA, EPA or DHA or their mixtures,
the lowest possible amount of undesired secondary products, if any,
no production of unnatural fatty acids, i.e. fatty acids which do not occur naturally,
synthesis of the polyunsaturated fatty acids advantageously only in the triglycerides.
In order to make possible a fortification of the food and of the feed with these polyunsaturated fatty acids, there is therefore a great demand for a simple, inexpensive process for the production of these polyunsaturated fatty acids, specifically in eukaryotic systems.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts various synthetic pathways for the biosynthesis of DHA (docosahexaenoic acid).

DETAILED DESCRIPTION

It was therefore an object to develop a simple, inexpensive process which has as many as possible of the abovementioned advantageous properties. This object was achieved by the process according to the invention for the production of polyunsaturated $\mathrm{C}_{20}-$ or C_{22}-fatty acids with at least four double bonds in transgenic plants with a content of at least 15% by weight based on the total triglyceride content of the transgenic plants, which comprises the following process steps:
a) introducing, into the transgenic plant, a nucleic acid construct which comprises nucleic acid sequences which codes for a $\Delta 6$-desaturase, a $\Delta 6$-elongase and a $\Delta 5$-desaturase, or
b) introducing, into the transgenic plant, a nucleic acid construct which comprises nucleic acid sequences which codes for a $\Delta 6$-desaturase, a $\Delta 6$-elongase, a $\Delta 5$-desaturase, a $\Delta 12$-desaturase and $\omega 3$-desaturase, or
c) introducing, into the transgenic plant, a nucleic acid construct which comprises nucleic acid sequences which codes for a $\Delta 6$-desaturase, a $\Delta 6$-elongase, a $\Delta 5$-desaturase, a $\Delta 5$-elongase and $\Delta 4$-desaturase, or
d) introducing, into the transgenic plant, a nucleic acid construct which comprises nucleic acid sequences which codes for a $\Delta 6$-desaturase, a $\Delta 6$-elongase, a $\Delta 5$-desaturase, a $\Delta 5$-elongase, $\Delta 4$-desaturase, a $\Delta 12$-desaturase and $\omega 3$-desaturase, and
e) obtaining the oils or lipids from the plants.

The C_{20} - and C_{22}-polyunsaturated fatty acids produced in the process according to the invention advantageously comprise at least four, five or six double bonds. The fatty acids especially advantageously comprise five or six double bonds. Saturated fatty acids are advantageously converted to a minor degree, or not at all, by the nucleic acids used in the process. To a minor degree is to be understood as meaning that the saturated fatty acids are reacted with less than 5% of the activity, advantageously less than 3%, especially advantageously with less than 2%, very especially preferably with
less than $1,0.5,0.25$ or 0.125% of the activity in comparison with polyunsaturated fatty acids. These fatty acids which have been produced can be produced in the process as a single product or be present in a fatty acid mixture.
The nucleic acid sequences used in the process according to the invention are isolated nucleic acid sequences which code for polypeptides with $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase activity.

Nucleic acid sequences which are advantageously used in the process according to the invention are those which code for polypeptides with $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase activity, selected from the group consisting of:

SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11,SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19,SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25.

The polyunsaturated C_{20} - or C_{22}-fatty acids with at least four double bonds which are produced in the process are especially advantageously the fatty acids arachidonic acid (=ARA), eicosapentaenoic acid (=EPA) or docosahexaenoic acid (=DHA). In an advantageous embodiment of the process, the polyunsaturated $\mathrm{C}_{20}-$ or C_{22}-fatty acids with at least four double bonds is arachidonic acid. In another advantageous embodiment, the polyunsaturated C_{20} - or C_{22}-fatty acids with at least four double bonds which are produced are eicosapentaenoic acid or docosahexaenoic acid or their mixtures. Mixtures of ARA, EPA and DHA can also be produced by the process according to the invention.
Advantageously, arachidonic acid or eicosapentaenoic acid with a content of at least $15,16,17,18,19$ or 20% by weight, preferably $25,30,35$ or 40% by weight, especially preferably $45,50,55$ or 60% by weight, based on the total triglyceride content, are produced in the transgenic plant in the process according to the invention.
In another advantageous embodiment of the process, docosahexaenoic acid with a content of at least 4,5 or 6% by weight, advantageously with a content of $7,8,9$ or 10% by weight, based on the total triglyceride content, is produced in the transgenic plant.

It is especially advantageous that, in the process according to the invention, less than $0.5,0.4,0.3,0.2$ or 0.1% by weight, advantageously less than $0.09,0.08,0.07,0.06$ or 0.05% by weight, especially advantageously less than $0.04,0.03,0.02$ or 0.01% by weight, based on the total fatty acid content of the triglycerides, of a polyunsaturated fatty acid selected from the group consisting of the $\mathrm{C} 22: 4^{\Delta 7,10,13,16}$, $\mathrm{C} 22: 5^{\Delta 4,7,10,13,16}$. or $\mathrm{C} 22: 5^{\Delta 7,10,13,16,19}$-fatty acid should be present in the triglycerides.
The polyunsaturated fatty acids produced in the process are advantageously bound in triacylglycerides, but may also occur in the organisms as free fatty acids or else bound in the form of other fatty acid esters. In this context, they may be present as "pure products" or else advantageously in the form of mixtures of various fatty acids or mixtures of different glycerides.

The process according to the invention advantageously yields fatty acid esters with polyunsaturated $\mathrm{C}_{20}-$ and/or $\mathrm{C}_{22}{ }^{-}$ fatty acid molecules with at least four double bonds in the fatty acid ester, advantageously with at least five or six double bonds in the fatty acid ester. This leads to the synthesis of $\omega 3$-eicosatetraenoic acid ($=$ ETA, C20:4 ${ }^{\wedge 5,8,11,14}$), arachidonic acid (ARA, C20:4 $4^{\wedge 5,8,11,14}$), eicosapentaenoic acid (EPA, C20:5 ${ }^{\Delta 5,8,11,14,17}$), $\omega 6$-docosapentaenoic acid (C22: $5^{\wedge 4,7,10,13,16}$), $\omega 6$-docosatetraenoic acid ($\left(22: 4^{\wedge 7,10,13,16}\right.$), $\omega 3$-docosapentaenoic acid ($=\mathrm{DPA}, \quad \mathrm{C} 22: 5^{\Delta 7,10,13,16,19}$),
docosahexaenoic acid (=DHA, C22:6 $6^{\Delta 4,7,10,13,16,19}$) or mixtures of these ARA, EPA and/or DHA are preferably produced. In an especially preferred embodiment of the process, $\omega 6$-fatty acids, advantageously arachidonic acid, are produced. In another especially preferred embodiment of the process, $\omega 3$-fatty acids such as EPA and/or DHA are produced.

The process according to the invention, as described above, especially advantageously yields polyunsaturated fatty acids selected from the group consisting of $\omega 6$-docosa-tetraenoic acid C22:4 $3^{\Delta 7,10,13,16}$, $\omega 6$-docosapentaenoic acid C22:5 ${ }^{\Delta 4,7}$, 10,13,16 or $\omega 3$-docosapentaenoic acid C22:5 ${ }^{47,10,13,16,19}$ in the triglycerides with less than 0.5% by weight based on the total fatty acid content of the triglycerides.

The fatty acid esters with polyunsaturated C_{20} - and/or $\mathrm{C}_{22}-$ fatty acid molecules can be isolated in the form of an oil or lipid, for example in the form of compounds such as sphingolipids, phosphoglycerides, lipids, glycolipids such as glycosphingolipids, phospholipids such as phosphatidylethanolamine, phosphatidylcholine, phosphatidyl-serine, phosphatidylglycerol, phosphatidylinositol or diphosphatidylglycerol, monoacyl-glycerides, diacylglycerides, triacylglycerides or other fatty acid esters such as the acetylcoenzyme A esters which comprise the polyunsaturated fatty acids with at least four, five or six, preferably five or six double bonds, from the organisms which have been used for the preparation of the fatty acid esters; advantageously, they are isolated in the form of their diacylglycerides, triacylglycerides and/or in the form of phosphatidylcholine, especially preferably in the form of the triacylglycerides. In addition to these esters, the polyunsaturated fatty acids are also present in the organisms, advantageously the plants as free fatty acids or bound in other compounds. As a rule, the various abovementioned compounds (fatty acid esters and free fatty acids) are present in the organisms with an approximate distribution of 80 to 90% by weight of triglycerides, 2 to 5% by weight of diglycerides, 5 to 10% by weight of monoglycerides, 1 to 5% by weight of free fatty acids, 2 to 8% by weight of phospholipids, the total of the various compounds amounting to 100% by weight.

The process according to the invention yields the LCPUFAs, such as arachidonic acid and eicosapentaenoic acid produced in a content of at least 15% by weight, advantageously at least 16 or 17% by weight, preferably at least 18,19 or 20% by weight, especially preferably at least $21,22,23,24$ or 25% by weight, most preferably at least $26,27,28,29$ or 30% by weight based on the total fatty acids in the transgenic organisms, advantageously in a transgenic plant. In this context, it is advantageous to convert C_{18} - and/or C_{20}-fatty acids which are present in the host organisms to at least 10%, preferably to at least 20%, especially preferably to at least 30%, most preferably to at least 40% to give the corresponding products such as ARA, EPA and/or DHA. The fatty acids are advantageously produced in bound form. These unsaturated fatty acids can, with the aid of the nucleic acids used in the process according to the invention, be positioned at the sn1, sn2 and/or sn3 position of the advantageously produced triglycerides. Since a plurality of reaction steps are performed by the starting compounds linoleic acid (C18:2) and linolenic acid (C18:3) in the process according to the invention, the end products of the process such as, for example, arachidonic acid (ARA), eicosapentaenoic acid (EPA) or docosapentaenoic acid (DHA) are not obtained as absolutely pure products; minor traces of the precursors are always present in the end product. If, for example, both linoleic acid and linolenic acid are present in the starting organism and the starting plant, the end products such as ARA, EPA or DHA are generally present
as mixtures. The precursors linoleic acid and/or linolenic acid should advantageously not amount to more than 20% by weight, preferably not to more than 15% by weight, especially preferably not to more than 10% by weight, most preferably not to more than 5% by weight, based on the amount of the end product in question. Advantageously, only ARA, ARA and EPA, EPA and DHA or only DHA, bound or as free acids, are produced as end products in a transgenic plant owing to the process according to the invention. If the compounds ARA, EPA and DHA are produced simultaneously, they are advantageously produced in a ratio of at least 1:1:2 (EPA:ARA:DHA), advantageously of at least 1:1:3, preferably $1: 1: 4$, especially preferably $1: 1: 5$. If ARA and EPA are produced in the process, they are advantageously produced in a ratio of at least $5: 1$ to at least 1:5. If EPA and DHA are produced in the process, they are advantageously produced in a ratio of at least $5: 1$ to at least $1: 5$.

Fatty acid esters or fatty acid mixtures produced by the process according to the invention advantageously comprise 6 to 15% of palmitic acid, 1 to 6% of stearic acid, $7-85 \%$ of oleic acid, 0.5 to 8% of vaccenic acid, 0.1 to 1% of arachic acid, 7 to 25% of saturated fatty acids, 8 to 85% of monounsaturated fatty acids and 60 to 85% of polyunsaturated fatty acids, in each case based on 100% and on the total fatty acid content of the organisms. Advantageous polyunsaturated fatty acids which are present in the fatty acid esters or fatty acid mixtures are preferably at least $0.1,0.2,0.3,0.4,0.5,0.6$, $0.7,0.8,0.9$ or 1% of arachidonic acid, based on the total fatty acid content. Moreover, the fatty acid esters or fatty acid mixtures which have been produced by the process of the invention advantageously comprise fatty acids selected from the group of the fatty acids erucic acid (13-docosaenoic acid), sterulic acid (9,10 -methylene-octadec-9-enoic acid), malvalic acid (8,9 -methyleneheptadec-8-enoic acid), chaulmoogric acid (cyclopentenedodecanoic acid), furan fatty acid (9,12-epoxy-octadeca-9,11-dienoic acid), vernolic acid (9,10-epoxyoctadec-12-enoic acid), tariric acid (6-octadecynoic acid), 6 -nonadecynoic acid, santalbic acid (t11-octade-cen-9-ynoic acid), 6,9-octadecenynoic acid, pyrulic acid (t10-heptadecen-8-ynoic acid), crepenyninic acid (9-octade-cen-12-ynoic acid), 13,14-dihydrooropheic acid, octadecen-13-ene-9,11-diynoic acid, petroselenic acid (cis-6-octadecenoic acid), 9c,12t-octa-decadienoic acid, calendulic acid (8 t 10 t 12 c -octadecatrienoic acid), catalpic acid (9 t 11 t 13 c -octadecatrienoic acid), eleostearic acid (9 c 11 t 13 t -octadecatrienoic acid), jacaric acid (8 c 10 t 12 c -octadecatrienoic acid), punicic acid (9 c 11 t 13 c -octadecatrienoic acid), parinaric acid (9c11t13t15c-octadecatetraenoic acid), pinolenic acid (all-cis-5,9,12-octadecatrienoic acid), laballenic acid (5,6-octadecadienallenic acid), ricinoleic acid (12-hydroxyoleic acid) and/or coriolic acid (13-hydroxy-9c,11t-octadecadienoic acid). The abovementioned fatty acids are, as a rule, advantageously only found in traces in the fatty acid esters or fatty acid mixtures produced by the process according to the invention, that is to say that, based on the total fatty acids, they occur to less than 30%, preferably to less than $25 \%, 24 \%$, $23 \%, 22 \%$ or 21%, especially preferably to less than 20%, $15 \%, 10 \%, 9 \%, 8 \%, 7 \%, 6 \%$ or 5%, very especially preferably to less than $4 \%, 3 \%, 2 \%$ or 1%. The fatty acid esters or fatty acid mixtures produced by the process according to the invention advantageously comprise less than 0.1%, based on the total fatty acids, or no butyric acid, no cholesterol, no clupanodonic acid (=docosapentaenoic acid, C22:5 ${ }^{\wedge 4,8,12,15}$, 21) and no nisinic acid (tetracosahexaenoic acid, $\mathrm{C} 23: 6^{\mathrm{A3}, 8}$, 12,15,18,21).

Owing to the nucleic acid sequences according to the invention, or the nucleic acid sequences used in the process
according to the invention, an increase in the yield of polyunsaturated fatty acids of at least 50%, advantageously of at least 80%, especially advantageously of at least 100%, very especially advantageously of at least 150%, in comparison with the nontransgenic plant such as Arabidopsis, linseed, oilseed rape, soybean or Camelina can be obtained when compared by GC analysis.

Chemically pure polyunsaturated fatty acids or fatty acid compositions can also be synthesized by the processes described above. To this end, the fatty acids or the fatty acid compositions are isolated from the plant, in a known manner, for example via extraction, distillation, crystallization, chromatography or a combination of these methods. These chemically pure fatty acids or fatty acid compositions are advantageous for applications in the food industry sector, the cosmetic sector and especially the pharmacological industry sector.

Suitable organisms for the production in the process according to the invention are, in principle, all plants. Oil crop plants or useful plants are advantageously used in the process.

Plants which are suitable are, in principle, all those plants which are capable of synthesizing fatty acids, such as all dicotyledonous or monocotyledonous plants, algae or mosses. Advantageous plants are selected from the group of the plant families Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannabaceae, Convolvulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Linaceae, Prasinophyceae or vegetable plants or ornamentals such as Tagetes.

Examples which may be mentioned are the following plants selected from the group consisting of: Adelotheciaceae such as the genera Physcomitrella, for example the genus and species Physcomitrella patens, Anacardiaceae such as the genera Pistacia, Mangifera, Anacardium, for example the genus and species Pistacia vera [pistachio], Mangifer indica [mango] or Anacardium occidentale [cashew], Asteraceae, such as the genera Calendula, Carthamus, Centaurea, Cichorium, Cynara, Helianthus, Lactuca, Locusta, Tagetes, Valeriana, for example the genus and species Calendula officinalis [common marigold], Carthamus tinctorius [safflower], Centaurea cyanus [cornflower], Cichorium intybus [chicory], Cynara scolymus [artichoke], Helianthus annus [sunflower], Lactuca sativa, Lactuca crispa, Lactuca esculenta, Lactuca scariola L. ssp. sativa, Lactuca scariola L. var. integrate, Lactuca scariola L. var. integrifolia, Lactuca sativa subsp. romana, Locusta communis, Valeriana locusta [salad vegetables], Tagetes lucida, Tagetes erecta or Tagetes tenuifolia [african or french marigold], Apiaceae, such as the genus Daucus, for example the genus and species Daucus carota [carrot], Betulaceae, such as the genus Corylus, for example the genera and species Corylus avellana or Corylus colurna [hazelnut], Boraginaceae, such as the genus Borago, for example the genus and species Borago officinalis [borage], Brassicaceae, such as the genera Brassica, Camelina, Melanosinapis, Sinapis, Arabadopsis, for example the genera and species Brassica napus, Brassica rapa ssp. [oilseed rape], Sinapis arvensis Brassica juncea, Brassica juncea var. juncea, Brassica juncea var. crispifolia, Brassica juncea var. foliosa, Brassica nigra, Brassica sinapioides, Camelina sativa, Melanosinapis communis [mustard], Brassica oleracea [fodder beet] or Arabidopsis thaliana, Bromeliaceae, such as the genera Anana, Bromelia (pineapple), for example the genera and species Anana comosus, Ananas ananas or Bromelia comosa [pineapple], Caricaceae, such as the genus

Carica, such as the genus and species Carica papaya [pawpaw], Cannabaceae, such as the genus Cannabis, such as the genus and species Cannabis sative [hemp], Convolvulaceae, such as the genera Ipomea, Convolvulus, for example the genera and species Ipomoea batatus, Ipomoea pandurata, Convolvulus batatas, Convolvulus tiliaceus, Ipomoea fastigiata, Ipomoea tiliacea, Ipomoea triloba or Convolvulus panduratus [sweet potato, batate], Chenopodiaceae, such as the genus Beta, such as the genera and species Beta vulgaris, Beta vulgaris var. altissima, Beta vulgaris var. Vulgaris, Beta maritima, Beta vulgaris var. perennis, Beta vulgaris var. conditiva or Beta vulgaris var. esculenta [sugarbeet], Crypthecodiniaceae, such as the genus Crypthecodinium, for example the genus and species Cryptecodinium cohni, Cucurbitaceae, such as the genus Cucubita, for example the genera and species Cucurbita maxima, Cucurbita mixta, Cucurbita pepo or Cucurbita moschata [pumpkin/squash], Cymbellaceae, such as the genera Amphora, Cymbella, Okedenia, Phaeodactylum, Reimeria, for example the genus and species Phaeodactylum tricomutum, Ditrichaceae, such as the genera Ditrichaceae, Astomiopsis, Ceratodon, Chrysoblastella, Ditrichum, Distichium, Eccremidium, Lophidion, Philibertiella, Pleuridium, Saelania, Trichodon, Skottsbergia, for example the genera and species Ceratodon antarcticus, Ceratodon columbiae, Ceratodon heterophyllus, Ceratodon purpurascens, Ceratodon purpureus, Ceratodon purpureus ssp. convolutus, Ceratodon purpureus ssp. stenocarpus, Ceratodon purpureus var. rotundifolius, Ceratodon ratodon, Ceratodon stenocarpus, Chrysoblastella chilensis, Ditrichum ambiguum, Ditrichum brevisetum, Ditrichum crispatissimum, Ditrichum difficile, Ditrichum falcifolium, Ditrichum flexicaule, Ditrichum giganteum, Ditrichum heteromallum, Ditrichum lineare, Ditrichum lineare, Ditrichum montanum, Ditrichum montanum, Ditrichum pallidum, Ditrichum punctulatum, Ditrichum pusillum, Ditrichum pusillum var. tortile, Ditrichum rhynchostegium, Ditrichum schimperi, Ditrichum tortile, Distichium capillaceum, Distichium hagenii, Distichium inclinatum, Distichium macounii, Eccremidium floridanum, Eccremidium whiteleggei, Lophidion strictus, Pleuridium acuminatum, Pleuridium alternifolium, Pleuridium holdridgei, Pleuridium mexicanum, Pleuridium ravenelii, Pleuridium subulatum, Saelania glaucescens, Trichodon borealis, Trichodon cylindricus or Trichodon cylindricus var. oblongus, Elaeagnaceae, such as the genus Elaeagnus, for example the genus and species Olea europaea [olive], Ericaceae, such as the genus Kalmia, for example the genera and species Kalmia latifolia, Kalmia angustifolia, Kalmia microphylla, Kalmia polifolia, Kalmia occidentalis, Cistus chamaerhodendros or Kalmia lucida [mountain laurel], Euphorbiaceae, such as the genera Manihot, Janipha, Jatropha, Ricinus, for example the genera and species Manihot utilissima, Janipha manihot, Jatropha manihot, Manihot aipil, Manihot dulcis, Manihot manihot, Manihot melanobasis, Manihot esculenta [cassava] or Ricinus communis [cas-tor-oil plant], Fabaceae, such as the genera Pisum, Albizia, Cathormion, Feuillea, Inga, Pithecolobium, Acacia, Mimosa, Medicajo, Glycine, Dolichos, Phaseolus, soybean, for example the genera and species Pisum sativum, Pisum arvense, Pisum humile [pea], Albizia berteriana, Albizia julibrissin, Albizia lebbeck, Acacia berteriana, Acacia littoralis, Albizia berteriana, Albizzia berteriana, Cathormion berteriana, Feuillea berteriana, Inga fragrans, Pithecellobium berterianum, Pithecellobium fragrans, Pithecolobium berterianum, Pseudalbizzia berteriana, Acacia julibrissin, Acacia nemu, Albizia nemu, Feuilleea julibrissin, Mimosa julibrissin, Mimosa speciosa, Sericanrda julibrissin, Acacia lebbeck, Acacia macrophylla, Albizia lebbeck, Feuilleea leb-
beck, Mimosa lebbeck, Mimosa speciosa [siris tree], Medicago sativa, Medicago falcata, Medicago varia [alfalfa] Glycine max Dolichos soja, Glycine gracilis, Glycine hispida, Phaseolus max, Soja hispida or Soja max [soybean], Funariaceae, such as the genera Aphanorrhegma, Entosthodon, Funaria, Physcomitrella, Physcomitrium, for example the genera and species Aphanorrhegma serratum, Entosthodon attenuatus, Entosthodon bolanderi, Entosthodon bonplandii, Entosthodon californicus, Entosthodon drummondii, Entosthodon jamesonii, Entosthodon leibergii, Entosthodon neoscoticus, Entosthodon rubrisetus, Entosthodon spathulifolius, Entosthodon tucsoni, Funaria americana, Funaria bolanderi, Funaria calcarea, Funaria californica, Funaria calvescens, Funaria convoluta, Funaria flavicans, Funaria groutiana, Funaria hygrometrica, Funaria hygrometrica var. arctica, Funaria hygrometrica var. calvescens, Funaria hygrometrica var. convoluta, Funaria hygrometrica var. muralis, Funaria hygrometrica var. utahensis, Funaria microstoma, Funaria microstoma var. obtusifolia, Funaria muhlenbergii, Funaria orcuttii, Funaria plano-convexa, Funaria polaris, Funaria ravenelii, Funaria rubriseta, Funaria serrata, Funaria sonorae, Funaria sublimbatus, Funaria tucsoni, Physcomitrella californica, Physcomitrella patens, Physcomitrella readeri, Physcomitrium australe, Physcomitrium californicum, Physcomitrium collenchymatum, Physcomitrium coloradense, Physcomitrium cupuliferum, Physcomitrium drummondii, Physcomitrium eurystomum, Physcomitrium flexifolium, Physcomitrium hookeri, Physcomitrium hookeri var. serratum, Physcomitrium immersum, Physcomitrium kellermanii, Physcomitrium megalocarpum, Physcomitrium pyriforme, Physcomitrium pyriforme var. serratum, Physcomitrium rufipes, Physcomitrium sandbergii, Physcomitrium subsphaericum, Physcomitrium washingtoniense, Geraniaceae, such as the genera Pelargonium, Cocos, Oleum, for example the genera and species Cocos nucifera, Pelargonium grossularioides or Oleum cocois [coconut], Gramineae, such as the genus Saccharum, for example the genus and species Saccharum officinarum, Juglandaceae, such as the genera Juglans, Wallia, for example the genera and species Juglans regia, Juglans ailanthifolia, Juglans sieboldiana, Juglans cinerea, Wallia cinerea, Juglans bixbyi, Juglans californica, Juglans hindsii, Juglans intermedia, Juglans jamaicensis, Juglans major, Juglans microcarpa, Juglans nigra or Wallia nigra [walnut], Lauraceae, such as the genera Persea, Laurus, for example the genera and species Laurus nobilis [bay], Persea americana, Persea gratissima or Persea persea [avocado], Leguminosae, such as the genus Arachis, for example the genus and species Arachis hypogaea [peanut], Linaceae, such as the genera Adenolinum, for example the genera and species Linum usitatissimum, Linum humile, Linum austriacum, Linum bienne, Linum angustifolium, Linum catharticum, Linum flavum, Linum grandiflorum, Adenolinum grandiflorum, Linum lewisii, Linum narbonense, Linum perenne, Linum perenne var. lewisii, Linum pratense or Linum trigynum [linseed], Lythrarieae, such as the genus Punica, for example the genus and species Punica granatum [pomegranate], Malvaceae, such as the genus Gossypium, for example the genera and species Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense, Gossypium herbaceum or Gossypium thurberi [cotton], Marchantiaceae, such as the genus Marchantia, for example the genera and species Marchantia berteroana, Marchantia foliacea, Marchantia macropora, Musaceae, such as the genus Musa, for example the genera and species Musa nana, Musa acuminata, Musa paradisiaca, Musa spp. [banana], Onagraceae, such as the genera Camissonia, Oenothera, for example the genera and species Oenothera
biennis or Camissonia brevipes [evening primrose], Palmae, such as the genus Elacis, for example the genus and species Elaeis guineensis [oil palm], Papaveraceae, such as the genus Papaver, for example the genera and species Papaver orientale, Papaver rhoeas, Papaver dubium [poppy], Pedaliaceae, such as the genus Sesamum, for example the genus and species Sesamum indicum [sesame], Piperaceae, such as the genera Piper, Artanthe, Peperomia, Steffensia, for example the genera and species Piper aduncum, Piper amalago, Piper angustifolium, Piper auritum, Piper betel, Piper cubeba, Piper longum, Piper nigrum, Piper retrofractum, Artanthe adunca, Artanthe elongata, Peperomia elongata, Piper elongatum, Steffensia elongata [cayenne pepper], Poaceae, such as the genera Hordeum, Secale, Avena, Sorghum, Andropogon, Holcus, Panicum, Oryza, Zea (maize), Triticum, for example the genera and species Hordeum vulgare, Hordeumjubatum, Hordeum murinum, Hordeum secalinum, Hordeum distichon Hordeum aegiceras, Hordeum hexastichon, Hordeum hexastichum, Hordeum irregulare, Hordeum sativum, Hordeum secalinum[barley], Secale cereale [rye], Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida [oats], Sorghum bicolor, Sorghum halepense, Sorghum saccharatum, Sorghum vulgare, Andropogon drummondii, Holcus bicolor, Holcus sorghum, Sorghum aethiopicum, Sorghum arundinaceum, Sorghum caffrorum, Sorghum cernuum, Sorghum dochna, Sorghum drummondii, Sorghum durra, Sorghum guineense, Sorghum lanceolatum, Sorghum nervosum, Sorghum saccharatum, Sorghum subglabrescens, Sorghum verticilliflorum, Sorghum vulgare, Holcus halepensis, Sorghum miliaceum, Panicum militaceum [millet], Oryza sativa, Oryza latifolia [rice], Zea mays [maize] Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum or Triticum vulgare [wheat], Porphyridiaceae, such as the genera Chroothece, Flintiella, Petrovanella, Porphyridium, Rhodella, Rhodosorus, Vanhoeffenia, for example the genus and species Porphyridium cruentum, Proteaceae, such as the genus Macadamia, for example the genus and species Macadamia intergrifolia [macadamia], Prasinophyceae, such as the genera Nephroselmis, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus, for example the genera and species Nephroselmis olivacea, Prasinococcus capsulatus, Scherffelia dubia, Tetraselmis chui, Tetraselmis suecica, Mantoniella squamata, Ostreococcus tauri, Rubiaceae, such as the genus Coffea, for example the genera and species Cofea spp., Coffea arabica, Coffea canephora or Coffea liberica [coffee], Scrophulariaceae, such as the genus Verbascum, for example the genera and species Verbascum blattaria, Verbascum chaixii, Verbascum densiflorum, Verbascum lagurus, Verbascum longifolium, Verbascum lychnitis, Verbascum nigrum, Verbascum olympicum, Verbascum phlomoides, Verbascum phoenicum, Verbascum pulverulentum or Verbascum thapsus [verbascum], Solanaceae, such as the genera Capsicum, Nicotiana, Solanum, Lycopersicon, for example the genera and species Capsicum annuum, Capsicum annuum var glabriusculum, Capsicum frutescens [pepper], Capsicum annuum [paprika], Nicotiana tabacum, Nicotiana alata, Nicotiana attenuata, Nicotiana glauca, Nicotiana langsdorffii, Nicotiana obtusifolia, Nicotiana quadrivalvis, Nicotiana repanda, Nicotiana rustica, Nicotiana sylvestris [tobacco], Solanum tuberosum [potato], Solamum melongena [eggplant] Lycopersicon esculentum, Lycopersicon lycopersicum, Lycopersicon pyriforme, Solanum integrifolium or Solanum lycopersicum [tomato], Sterculiaceae, such as the genus Theobroma, for example the genus and species Theobroma cacao [cacao] or Theaceae, such as the genus Camellia, for example the genus and species Camellia sinensis [tea].

Transgenic plants such as dicotyledonous or monocotyledonous plants are employed in the process according to the invention. Those which are especially advantageously employed in the process according to the invention are oil crop plants which comprise large amounts of lipid compounds, such as peanut, oilseed rape, canola, sunflower, safflower (Carthamus tinctoria), poppy, mustard, hemp, castoroil plant, olive, sesame, Calendula, Punica, evening primrose, verbascum, thistle, wild roses, hazelnut, almond, macadamia, avocado, bay, pumpkin/squash, linseed, soybean, pistachios, borage, trees (oil palm, coconut or walnut) or arable crops such as maize, wheat, rye, oats, triticale, rice, barley, cotton, cassava, pepper, Tagetes, Solanaceae plants such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa or bushy plants (coffee, cacao, tea), Salix species. Preferred plants according to the invention are oil crop plants such as peanut, oilseed rape, canola, sunflower, safflower, poppy, mustard, hemp, castor-oil plant, olive, Calendula, Punica, evening primrose, pumpkin/squash, linseed, soybean, borage, trees (oil palm, coconut). Especially preferred are plants which are high in C18:2- and/or C18:3-fatty acids, such as sunflower, safflower, tobacco, verbascum, sesame, cotton, pumpkin/squash, poppy, evening primrose, walnut, linseed, hemp, thistle or safflower. Very especially preferred plants are plants such as safflower, sunflower, poppy, evening primrose, walnut, linseed or hemp.

In principle, all genes of the fatty acid or lipid metabolism can be used in the process for the production of polyunsaturated fatty acids, advantageously in combination with the $\Delta 6$-desaturase(s),$\quad \Delta 6$-elongase(s),$\quad \Delta 5$-desaturase(s), $\Delta 5$-elongase(s), $\Delta 4$-desaturase(s), $\Delta 12$-desaturase(s) and/or $\omega 3$-desaturase(s) [for the purposes of the present invention, the plural is understood as encompassing the singular and vice versa]. Genes of the fatty acid or lipid metabolism selected from the group consisting of acyl-CoA dehydrogenase(s), acyl-ACP [=acyl carrier protein] desaturase(s), acylACP thioesterase(s), fatty acid acyl transferase(s), acyl-CoA: lysophospholipid acyl-transferases, fatty acid synthase(s), fatty acid hydroxylase(s), acetyl-coenzyme A carboxylase(s), acyl-coenzyme A oxidase(s), fatty acid desaturase(s), fatty acid acetylenases, lipoxygenases, triacylglycerol lipases, allenoxide synthases, hydro-peroxide lyases or fatty acid elongase(s) are advantageously used in combination with the $\Delta 6$-desaturase(s), $\quad \Delta 6$-elongase(s), $\quad \Delta 5$-desaturase(s), $\Delta 5$-elongase(s), $\Delta 4$-desaturase(s), $\Delta 12$-desaturase(s) and/or $\omega 3$-desaturase(s), it being possible to use individual genes or a plurality of genes in combination.

In addition to the production directly in the organism, of the starting fatty acids for the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and an $\omega 3$-desaturase used in the process of the invention, the fatty acids can also be fed externally. The production in the organism is preferred for reasons of economy. Preferred substrates are linoleic acid ($\mathrm{C} 18: 2^{\Delta 9,12}$) and/or γ-linolenic acid (C18:3 ${ }^{\Delta 6,9,12}$).

To increase the yield in the above-described process for the production of oils and/or triglycerides with an advantageously elevated content of polyunsaturated fatty acids, it is advantageous to increase the amount of starting product for the synthesis of fatty acids; this can be achieved for example by introducing, into the organism, a nucleic acid which codes for a polypeptide with $\Delta 12$-desaturase. The $\Delta 12$-desaturase which is used in the process according to the invention advantageously converts oleic acid ($\mathrm{C} 18: 1^{\wedge 9}$) into linoleic acid (C18:2 ${ }^{\wedge 今, 12}$) or $\mathrm{C} 18: 2^{\Delta 6,9}$ into $\mathrm{C} 18: 3^{\triangle \sigma, 9,12}$ (GLA). This increasingly provides the starting materials linoleic acid (C18:2 ${ }^{\Delta 9,12}$) and γ-linolenic acid (C18:3 ${ }^{\Delta 6,9,12}$) for the syn-
thesis of the polyunsaturated fatty acids. This is particularly advantageous in oil-producing organisms such as those from the family of the Brassicaceae, such as the genus Brassica, for example oilseed rape; the family of the Elaeagnaceae, such as the genus Elaeagnus, for example the genus and species Olea europaea, or the family Fabaceae, such as the genus Glycine, for example the genus and species Glycine max, which are high in oleic acid. Since these organisms are only low in linoleic acid (Mikoklajczak et al., Journal of the American Oil Chemical Society, 38, 1961, 678-681), the use of the abovementioned $\Delta 12$-desaturases for producing the starting material linoleic acid is advantageous.

Nucleic acids used in the process according to the invention are advantageously derived from plants such as algae, for example algae of the family of the Prasinophyceae such as the genera Heteromastix, Mammella, Mantoniella, Micromonas, Nephroselmis, Ostreococcus, Prasinocladus, Prasinococcus, Pseudoscourfielda, Pycnococcus, Pyramimonas, Scherffelia or Tetraselmis such as the genera and species Heteromastix longifilis, Mamiella gilva, Mantoniella squamata, Micromonas pusilla, Nephroselmis olivacea, Nephroselmis pyriformis, Nephroselmis rotunda, Ostreococcus tauri, Ostreococcus sp. Prasinocladus ascus, Prasinocladus lubricus, Pycnococcus provasolii, Pyramimonas amylifera, Pyramimonas disomata, Pyramimonas obovata, Pyramimonas orientalis, Pyramimonas parkeae, Pyramimonas spinifera, Pyramimonas sp., Tetraselmis apiculata, Tetraselmis carteriaformis, Tetraselmis chui, Tetraselmis convolutae, Tetraselmis desikacharyl, Tetraselmis gracilis, Tetraselmis hazeni, Tetraselmis impellucida, Tetraselmis inconspicua, Tetraselmis levis, Tetraselmis maculata, Tetraselmis marina, Tetraselmis striata, Tetraselmis subcordiformis, Tetraselmis suecica, Tetraselmis tetrabrachia, Tetraselmis tetrathele, Tetraselmis verrucosa, Tetraselmis verrucosa fo. Rubens or Tetraselmis sp . The nucleic acids used are advantageously derived from algae of the genus Ostreococcus. Further advantageous organisms are diatoms such as Thalassiosira, Phaeodactylum or Thraustochytrium or fungi such as Thraustochytrium or Phytophthora.

In the process according to the invention advantageously the abovementioned nucleic acid sequences or their derivatives or homologues which code for polypeptides which retain the enzymatic activity of the proteins code ford by nucleic acid sequences. These sequences, individually or in combination with the nucleic acid sequences which code for $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase, are cloned into expression constructs and used for the introduction into, and expression in, plants. Owing to their construction, these expression constructs make possible an advantageous optimal synthesis of the polyunsaturated fatty acids produced in the process according to the invention.

In a preferred embodiment, the process furthermore comprises the step of obtaining a cell or an intact organism which comprises the nucleic acid sequences used in the process, where the cell and/or the plant is transformed with a nucleic acid sequence according to the invention which codes for the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase, a gene construct or a vector as described below, alone or in combination with further nucleic acid sequences which code for proteins of the fatty acid or lipid metabolism. In a further preferred embodiment, this process furthermore comprises the step of obtaining the oils, lipids or free fatty acids from the cell or plant. The culture can, for example, take the form of a fermentation culture, for example in the case of the cultivation of plant cells, or a greenhouse- or field-grown culture of
a plant. The cell or the plant produced thus is advantageously a cell of an oil-producing organism, such as an oil crop, such as, for example, peanut, oilseed rape, canola, linseed, hemp, peanut, soybean, safflower, hemp, sunflowers or borage.

In the case of plant cells, plant tissue or plant organs, "growing" is understood as meaning, for example, the cultivation on or in a nutrient medium, or of the intact plant on or in a substrate, for example in a hydroponic culture, potting compost or on arable land.

For the purposes of the invention, "transgenic" or "recombinant" means with regard to, for example, a nucleic acid sequence, an expression cassette ($=$ gene construct) or a vector comprising the nucleic acid sequence according to the invention or an organism transformed with the nucleic acid sequences, expression cassettes or vectors according to the invention, all those constructions brought about by recombinant methods in which either
a) the nucleic acid sequence according to the invention, or
b) a genetic control sequence which is operably linked with
the nucleic acid sequence according to the invention, for
example a promoter, or
c) (a) and (b)
are not located in their natural genetic environment or have been modified by recombinant methods, it being possible for the modification to take the form of, for example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide residues. The natural genetic environment is understood as meaning the natural genomic or chromosomal locus in the original organism or the presence in a genomic library. In the case of a genomic library, the natural genetic environment of the nucleic acid sequence is preferably retained, at least in part. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp , preferably at least 500 bp , especially preferably at least 1000 bp , most preferably at least 5000 bp . A naturally occurring expression cassette-for example the naturally occurring combination of the natural promoter of the nucleic acid sequences according to the invention with the corresponding $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-de-saturase-becomes a transgenic expression cassette when this expression cassette is modified by non-natural, synthetic ("artificial") methods such as, for example, mutagenic treatment. Suitable methods are described, for example, in U.S. Pat. No. 5,565,350 or WO 00/15815.

A transgenic plant for the purposes of the invention is therefore understood as meaning, as above, that the nucleic acids used in the process are not at their natural locus in the genome of the plant, it being possible for the nucleic acids to be expressed homologously or heterologously. However, as mentioned, transgenic also means that, while the nucleic acids according to the invention are at their natural position in the genome of the plant, the sequence has been modified with regard to the natural sequence, and/or that the regulatory sequences of the natural sequences have been modified. Transgenic is preferably understood as meaning the expression of the nucleic acids according to the invention at an unnatural locus in the genome, i.e. homologous or, preferably, heterologous expression of the nucleic acids takes place.

Host organisms for the nucleic acids, the expression cassette or the vector used in the process according to the invention are, in principle, advantageously all plants which are capable of synthesizing fatty acids, specifically unsaturated fatty acids, and/or which are suitable for the expression of recombinant genes. Examples which may be are plants such as Arabidopsis, Asteraceae such as Calendula or crop plants such as soybean, peanut, castor-oil plant, sunflower, maize,
cotton, flax, oilseed rape, coconut, oil palm, safflower (Carthamus tinctorius) or cacao bean. Preferred plants are those which are naturally capable of synthesizing substantial amounts of oil, such as soybean, oilseed rape, coconut, oil palm, safflower, flax, hemp, castor-oil plant, Calendula, peanut, cacao bean or sunflower.

Plants for the purpose of the present invention include plant cells and certain tissues, organs and parts of plants in all their phenotypic forms such as anthers, fibers, root hairs, stalks, embryos, calli, cotyledons, petioles, harvested material, plant tissue, reproductive tissue and cell cultures which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant.

Transgenic plants which comprise the polyunsaturated fatty acids synthesized in the process according to the invention can advantageously be marketed directly without there being any need for the oils, lipids or fatty acids synthesized to be isolated. Plants for the process according to the invention are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, embryos, calli, cotyledons, petioles, harvested material, plant tissue, reproductive tissue and cell cultures which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. However, the compounds produced in the process according to the invention can also be isolated from the organisms, advantageously plants, in the form of their oils, fats, lipids and/or free fatty acids. Polyunsaturated fatty acids produced by this process can be obtained by harvesting the organisms, either from the culture in which they grow, or from the field. This can be done via pressing or extraction of the plant parts, preferably the plant seeds. In this context, the oils, fats, lipids and/or free fatty acids can be obtained by pressing by what is known as cold-beating or cold-pressing without applying heat. To allow for greater ease of disruption of the plant parts, specifically the seeds, they are previously comminuted, steamed or roasted. The seeds which have been pretreated in this manner can subsequently be pressed or extracted with solvents such as warm hexane. The solvent is subsequently removed again. In this manner, more than 96% of the compounds produced in the process can be isolated. Thereafter, the resulting products are processed further, i.e. refined. In this process, substances such as the plant mucilages and suspended matter are first removed again. What is known as desliming can be effected enzymatically or, for example, chemico-physically by addition of acid such as phosphoric acid. Thereafter, the free fatty acids are removed by treatment with a base, for example sodium hydroxide solution. The resulting product is washed thoroughly with water to remove the alkali remaining in the product and then dried. To remove the pigment remaining in the product, the products are subjected to bleaching, for example using filler's earth or active charcoal. At the end, the product is deodorized, for example using steam.

An embodiment according to the invention is the use of the oils, lipids, the fatty acids and/or the fatty acid composition which have been produced by the process according to the invention or by mixing these oils, lipids and/or fatty acids with animal, microbial or vegetable oils, lipids or fatty acids in feedstuffs, foodstuffs, cosmetics or pharmaceuticals. The oils, lipids or fatty acids produced in the process of the invention can be used in the manner with which the skilled worker is familiar for mixing with other oils, lipids, fatty acids or fatty acid mixtures of animal origin, such as, for example, fish oils.

The term "oil", "lipid" or "fat" is understood as meaning a fatty acid mixture comprising unsaturated, saturated, preferably esterified, fatty acid(s), advantageously bound in triglycerides. The oil, lipid or fat is preferably high in polyunsaturated free or, advantageously, esterified fatty acid(s), in particular linoleic acid, γ-linolenic acid, dihomo- γ-linolenic acid, arachidonic acid, α-linolenic acid, stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid or docosahexaenoic acid, especially advantageously arachidonic acid, eicosapentaenoic acid or docosahexaenoic acid. The amount of unsaturated esterified fatty acids preferably amounts to approximately 30%, a content of 50% is more preferred, a content of $60 \%, 70 \%, 80 \%$ or more is even more preferred. For the analysis, the fatty acid content can, for example, be determined by gas chromatography after converting the fatty acids into the methyl esters by transesterification. The oil, lipid or fat can comprise various other saturated or unsaturated fatty acids, for example calendulic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid and the like. The content of the various fatty acids in the oil or fat can vary, in particular depending on the starting organism.

The polyunsaturated fatty acids with advantageously at least four double bonds which are produced in the process are, as described above, for example sphingolipids, phosphoglycerides, lipids, glycolipids, phospholipids, monoacylglycerol, diacylglycerol, triacylglycerol or other fatty acid esters, preferably triacylglycerides.

Starting from the polyunsaturated fatty acids with advantageously at least five or six double bonds, which acids have been prepared in the process according to the invention, the polyunsaturated fatty acids which are present can be liberated for example via treatment with alkali, for example aqueous KOH or NaOH , or acid hydrolysis, advantageously in the presence of an alcohol such as methanol or ethanol, or via enzymatic cleavage, and isolated via, for example, phase separation and subsequent acidification via, for example, $\mathrm{H}_{2} \mathrm{SO}_{4}$. The fatty acids can also be liberated directly without the above-described processing step.

After their introduction into an organism, advantageously a plant cell or plant, the nucleic acids used in the process can either be present on a separate plasmid or, advantageously, integrated into the genome of the host cell. In the case of integration into the genome, integration can be random or else be effected by recombination such that the native gene is replaced by the copy introduced, whereby the production of the desired compound by the cell is modulated, or by the use of a gene in trans, so that the gene is linked operably with a functional expression unit which comprises at least one sequence which ensures the expression of a gene and at least one sequence which ensures the polyadenylation of a functionally transcribed gene. The nucleic acids are advantageously introduced into the organisms via multiexpression cassettes or constructs for multiparallel expression, advantageously into the plants for the multiparallel seed-specific expression of genes.

Mosses and algae are the only known plant systems which produce substantial amounts of polyunsaturated fatty acids such as arachidonic acid (ARA) and/or eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA). Mosses comprise PUFAs in membrane lipids, while algae, organisms which are related to algae and a few fungi also accumulate substantial amounts of PUFAs in the triacylglycerol fraction. This is why nucleic acid molecules which are isolated from such strains which also accumulate PUFAs in the triacylglycerol fraction are particularly advantageous for the process according to the invention and thus for the modification of the lipid and PUFA production system in a host, in particular
plants such as oil crop plants, for example oilseed rape, canola, linseed, hemp, soybeans, sunflowers and borage. They can therefore be used advantageously in the process according to the invention.
Substrates which are advantageously suitable for the nucleic acids which are used in the process according to the invention and which code for polypeptides with $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and $\omega 3$-desaturase activity and/or the further nucleic acids used, such as the nucleic acids which code for polypeptides of the fatty acid or lipid metabolism selected from the group acyl-CoA dehydrogenase(s), acylACP [=acyl carrier protein] desaturase(s), acyl-ACP thioesterase(s), fatty acid acyltransferase(s), acyl-CoA:lysophospholipid acyltransferase(s), fatty acid synthase(s), fatty acid hydroxylase(s), acetyl-coenzyme A carboxylase(s), acyl-coenzyme A oxidase(s), fatty acid desaturase(s), fatty acid acetylenases, lipoxygenases, triacylglycerol lipases, allenoxide synthases, hydroperoxide lyases or fatty acid elongase(s) are advantageously $\mathrm{C}_{16^{-}}, \mathrm{C}_{18}$ - or C_{20}-fatty acids. The fatty acids converted as substrates in the process are preferably converted in the form of their acyl-CoA esters and/or their phospholipid esters.

To produce the long-chain PUFAs according to the invention, the polyunsaturated C_{18}-fatty acids must first be desaturated by the enzymatic activity of a desaturase and subsequently be elongated by at least two carbon atoms via an elongase. After one elongation cycle, this enzyme activity gives C_{20}-fatty acids and after two elongation cycles C_{22}-fatty acids. The activity of the desaturases and elongases used in the process according to the invention preferably leads to $\mathrm{C}_{20^{-}}$ and/or C_{22}-fatty acids with at least four double bonds in the fatty acid molecule, preferably to give C_{20}-fatty acids with at least four double bonds, especially preferably to give $\mathrm{C}_{20}{ }^{-}$ and/or C_{22}-fatty acids with at least five or six double bonds, very specially preferably with six double bonds in the molecule. Produces of the process according to the invention which are especially preferred are arachidonic acid, eicosapentaenoic acid and/or docosahesaenoic acid. The C_{20} - and/or C_{22}-fatty acids with at least four double bonds in the fatty acid can be elongated by the enzymatic activity according to the invention in the form of the free fatty acid or in the form of the esters, such as phospholipids, glycolipids, sphingolipids, phosphoglycerides, monoacylglycerol, diacylglycerol or triacylglycerol.

The preferred biosynthesis site of the fatty acids, oils, lipids or fats in the plants which are advantageously used is, for example, in general the seed or cell strata of the seed, so that seed-specific expression of the nucleic acids used in the process makes sense. However, it is obvious that the biosynthesis of fatty acids, oils or lipids need not be limited to the seed tissue, but can also take place in a tissue-specific manner in all the other parts of the plant, for example in epidermal cells or in the tubers.
Owing to the use of the nucleic acids according to the invention which code for a $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 12$-desaturase and $\omega 3$-desaturase, the polyunsaturated fatty acids produced in the process can be increased by at least 5%, preferably by at least 10%, especially preferably by at least 20%, very especially preferably by at least 50% in comparison with the wild types of the plants which do not comprise the nucleic acids recombinantly.

In principle, the polyunsaturated fatty acids produced by the process according to the invention can be increased in the plants used in the process in two different ways. Advantageously, the pool of free polyunsaturated fatty acids and/or the content of the esterified polyunsaturated fatty acids pro-
duced via the process can be enlarged. Advantageously, the pool of esterified polyunsaturated fatty acids in the transgenic plants is enlarged by the process according to the invention.

The fatty acids obtained in the process are also suitable as starting material for the chemical synthesis of the products of value. They can be used, for example, in combination with one another or alone for the production of pharmaceuticals, foodstuffs, animal feed or cosmetics.

The invention furthermore relates to isolated nucleic acid sequences which code for polypeptides with $\Delta 6$-desaturase activity, selected from the group consisting of:
a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 1 ,
b) nucleic acid sequences which code for a protein with the sequence shown in SEQ ID NO: 2, or
c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 1 which code for polypeptides with at least 70\% identity at the amino acid level with SEQ ID NO: 2 and which have a $\Delta 6$-desaturase activity.
The invention furthermore relates to isolated nucleic acid sequences which code for polypeptides with $\Delta 6$-elongase activity, selected from the group consisting of:
a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7,
b) nucleic acid sequences which code for a protein with the sequence shown in SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 8, or
c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 which code for polypeptides with at least 70\% identity at the amino acid level with SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 8 and which have a $\Delta 6$-elongase activity.
The invention furthermore relates to isolated nucleic acid sequences which code for polypeptides with $\Delta 5$-desaturase activity, selected from the group consisting of:
a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 9 ,
b) nucleic acid sequences which code for a protein with the sequence shown in SEQ ID NO: 10, or
c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 9 which code for polypeptides with at least 40% identity at the amino acid level with SEQ ID NO: 10 and which have a $\Delta 5$-desaturase activity.
The invention furthermore relates to isolated nucleic acid sequences which code for polypeptides with $\omega 3$-desaturase activity, selected from the group consisting of:
a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 23 ,
b) nucleic acid sequences which code for a protein with the sequence shown in SEQ ID NO: 24, or
c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 23 which code for polypeptides with at least 40% identity at the amino acid level with SEQ ID NO: 24 and which have a $\omega 3$-desaturase activity.
The invention furthermore relates to isolated nucleic acid sequences which code for polypeptides with $\Delta 12$-desaturase activity, selected from the group consisting of:
a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 25 , or
b) nucleic acid sequences which code for a protein with the sequence shown in SEQ ID NO: 26, or
c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 25 which code for polypeptides with at least 40\% identity at the amino acid level with SEQ ID NO: 26 and which have a $\Delta 12$-desaturase activity.
The invention furthermore relates to gene constructs which comprise the nucleic acid sequences SEQ ID NO: 1 , SEQ ID

NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 23 or SEQ ID NO: 25 according to the invention, wherein the nucleic acid is linked operably with one or more regulatory signals. In addition, additional biosynthesis genes of the fatty acid or lipid metabolism comprises selected from the group acyl-CoA dehydrogenase(s), acyl-ACP [$=$ acyl carrier protein] desaturase(s), acyl-ACP thioesterase(s), fatty acid acyltransferase(s), acyl-CoA:lysophospholipid acyltransferase(s), fatty acid synthase(s), fatty acid hydroxylase(s), acetyl-coenzyme A carboxylase(s), acyl-coenzyme A oxidase(s), fatty acid desaturase(s), fatty acid acetylenases, lipoxygenases, triacylglycerol lipases, allenoxide synthases, hydroperoxide lyases or fatty acid elongase(s) may be present in the gene construct. Advantageously, biosynthesis genes of the fatty acid or lipid metabolism selected from the group $\Delta 4$-desaturase, $\Delta 8$-desaturase, $\Delta 9$-elongase or $\Delta 5$-elongase are additionally present.

All of the nucleic acid sequences used in the process according to the invention are advantageously derived from an organism such as a plant or a microorganism. The nucleic acid sequences are preferably derived from algae such as Ostreococcus, fungi such as Phytophthora or from diatoms such as Thalassiosira.

The nucleic acid sequences used in the process which code for proteins with $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase activity are advantageously introduced alone or, preferably, in combination in an expression cassette (-nucleic acid construct) which makes possible the expression of the nucleic acids in a plant. The nucleic acid construct can comprise more than one nucleic acid sequence of an enzymatic activity, such as, for example, of a $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase.
To introduce the nucleic acids used in the process, the latter are advantageously amplified and ligated in the known manner. Preferably, a procedure following the protocol for Pfu DNA polymerase or a Pfu/Taq DNA polymerase mixture is followed. The primer(s) are selected taking into consideration the sequence to be amplified. The primers should advantageously be chosen in such a way that the amplificate comprises the entire codogenic sequence from the start codon to the stop codon. After the amplification, the amplificate is expediently analyzed. For example, a gel-electrophoretic separation can be carried out, which is followed by a quantitative and a qualitative analysis. Thereafter, the amplificate can be purified following a standard protocol (for example Qiagen). An aliquot of the purified amplificate is then available for the subsequent cloning step. Suitable cloning vectors are generally known to the skilled worker. These include, in particular, vectors which are capable of replication in microbial systems, that is to say mainly vectors which ensure efficient cloning in yeasts or fungi and which make possible the stable transformation of plants. Those which must be mentioned in particular are various binary and cointegrated vector systems which are suitable for the T-DNA-mediated transformation. Such vector systems are, as a rule, characterized in that they comprise at least the vir genes required for the Agrobacterium-mediated transformation and the T-DNA-delimiting sequences (T-DNA border). These vector systems advantageously also comprise further cis-regulatory regions such as promoters and terminator sequences and/or selection markers, by means of which suitably transformed organisms can be identified. While in the case of cointegrated vector systems vir genes and T-DNA sequences are arranged on the same vector, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, while a second
one bears T-DNA, but no vir gene. Owing to this fact, the last-mentioned vectors are relatively small, easy to manipulate and to replicate both in E. coli and in Agrobacterium. These binary vectors include vectors from the series pBIBHYG, pPZP, pBecks, pGreen. In accordance with the invention, $\operatorname{Bin} 19, \mathrm{pBI} 101, \mathrm{pBinAR}, \mathrm{pGPTV}$ and pCAMBIA are used by preference. An overview of the binary vectors and their use is found in Hellens et al, Trends in Plant Science (2000) 5, 446-451. In order to prepare the vectors, the vectors can first be linearized with restriction endonuclease(s) and then modified enzymatically in a suitable manner. Thereafter, the vector is purified, and an aliquot is employed for the cloning step. In the cloning step, the enzymatically cleaved and, if appropriate, purified amplificate is cloned with vector fragments which have been prepared in a similar manner, using ligase. In this context, a particular nucleic acid construct, or vector or plasmid construct, can have one or else more than one codogenic gene segments. The codogenic gene segments in these constructs are preferably linked operably with regulatory sequences. The regulatory sequences include, in particular, plant sequences such as the above-described promoters and terminator sequences. The constructs can advantageously be stably propagated in microorganisms, in particular in E. coli and Agrobacterium tumefaciens, under selective conditions and make possible the transfer of heterologous DNA into plants or microorganisms.

The nucleic acids used in the process, the inventive nucleic acids and nucleic acid constructs, can be introduced into organisms such as microorganisms or advantageously plants, advantageously using cloning vectors, and thus be used in the transformation of plants such as those which are published and cited in: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Fla.), Chapter 6/7, p. 71-119 (1993); F. F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, Ed.: Kung and R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, Ed.: Kung and R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225. Thus, the nucleic acids, the inventive nucleic acids and nucleic acid constructs, and/or vectors used in the process can be used for the recombinant modification of a broad spectrum of organisms, advantageously plants, so that the latter become better and/or more efficient PUFA producers.

A series of mechanisms by which a modification of the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 12$-desaturase and $\omega 3$-desaturase protein and of the further proteins used in the process, such as $\Delta 5$-elongase or $\Delta 4$-desaturase protein, is possible exist, so that the yield, production and/or production efficiency of the advantageous polyunsaturated fatty acids in a plant, preferably in an oil crop plant, can be influenced directly owing to this modified protein. The number or activity of the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and $\omega 3$-desaturase proteins or genes can be increased, so that greater amounts of the gene products and, ultimately, greater amounts of the polyunsaturated fatty acids with at least four double bonds produced in the process according to the invention are produced. A de novo synthesis in a plant which has lacked the activity and ability to biosynthesize the compounds prior to introduction of the corresponding gene(s) is also possible. This applies analogously to the combination with further desaturases or elongases or further enzymes of the fatty acid and lipid metabolism. The use of various divergent sequences, i.e. sequences which differ at the DNA sequence level, may also be advantageous in this context, or
else the use of promoters for gene expression which make possible a different gene expression in the course of time, for example as a function of the degree of maturity of a seed or an oil-storing tissue.

Owing to the introduction of a $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase gene into a plant, alone or in combination with other genes in a cell, it is not only possible to increase biosynthesis flux towards the end product, but also to increase, or to create de novo the corresponding triacylglycerol composition. Likewise, the number or activity of other genes which are involved in the import of nutrients which are required for the biosynthesis of one or more fatty acids, oils, polar and/or neutral lipids, can be increased, so that the concentration of these precursors, cofactors or intermediates within the cells or within the storage compartment is increased, whereby the ability of the cells to produce PUFAs as described below is enhanced further. By optimizing the activity or increasing the number of one or more $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase genes which are involved in the biosynthesis of these compounds, or by destroying the activity of one or more genes which are involved in the degradation of these compounds, an enhanced yield, production and/or efficiency of production of fatty acid and lipid molecules in plants, is made possible.

The isolated nucleic acid molecules used in the process according to the invention code for proteins or parts of these, where the proteins or the individual protein or parts thereof comprise(s) an amino acid sequence with sufficient homology to an amino acid sequence which is shown in the sequences SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10 , SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22 , SEQ ID NO: 24 or SEQ ID NO: 26 , so that the proteins or parts thereof retain $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase activity. The proteins or parts thereof which is/are code ford by the nucleic acid molecule(s) preferably retain their essential enzymatic activity and the ability of participating in the metabolism of compounds required for the synthesis of cell membranes or lipid bodies in plants, or in the transport of molecules across these membranes. Advantageously, the proteins code ford by the nucleic acid molecules have at least approximately 40%, preferably at least approximately 50% or 60% and more preferably at least approximately $70 \%, 80 \%$ or 90% and most preferably at least approximately $85 \%, 86 \%, 87 \%, 88 \%, 89 \%, 90 \%, 91 \%$, $92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%, 99 \%$ or more identity with the amino acid sequences shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24 or SEQ ID NO: 26. For the purposes of the invention, homology or homologous is understood as meaning identity or identical, respectively.

The homology was calculated over the entire amino acid or nucleic acid sequence region. The skilled worker has available a series of programs which are based on various algorithms for the comparison of various sequences. Here, the algorithms of Needleman and Wunsch or Smith and Waterman give particularly reliable results. The program PileUp (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) or the programs Gap and BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) and Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], which are comprised in the GCG software packet [Genetics Com-
puter Group, 575 Science Drive, Madison, Wis., USA 53711 (1991)], were used for the sequence alignment. The sequence homology values which are indicated above as a percentage were determined over the entire sequence region using the program GAP and the following settings: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 and Average Mismatch: 0.000 . Unless otherwise specified, these settings were always used as standard settings for the sequence alignments.

Essential enzymatic activity of the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase used in the process according to the invention is understood as meaning that they retain at least an enzymatic activity of at least 10%, preferably 20%, especially preferably 30% and very especially 40% in comparison with the proteins/enzymes code ford by the sequence SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25 and their derivatives and can thus participate in the metabolism of compounds required for the synthesis of fatty acids, fatty acid esters such as diacylglycerides and/or triacylglycerides in a plant or a plant cell, or in the transport of molecules across membranes, meaning $\mathrm{C}_{20}-$ or C_{22}-carbon chains in the fatty acid molecule with double bonds at least four, five or six positions.

Nucleic acids which can advantageously be used in the process are derived from bacteria, fungi, diatoms, animals such as Caenorhabditis or Oncorhynchus or plants such as algae or mosses, such as the genera Shewanella, Physcomitrella, Thraustochytrium, Fusarium, Phytophthora, Ceratodon, Mantoniella, Ostreococcus, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Crypthecodinium, specifically from the genera and species Oncorhynchus mykiss, Thalassiosira pseudonona, Mantoniella squamata, Ostreococcus sp., Ostreococcus tauri, Euglena gracilis, Physcomitrella patens, Phytophthora infestans, Phytophthora sojae, Fusarium graminaeum, Cryptocodinium cohnii, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Thraustochytrium sp., Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricornutum, Caenorhabditis elegans or particularly advantageously from Oncorhynchus mykiss, Thalassiosira pseudonona or Crypthecodinium cohnii.

Alternatively, nucleotide sequences which code for a $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase and which advantageously hybridize under stringent conditions with a nucleotide sequence as shown in SEQ ID NO: 1, SEQ IDNO: 3, SEQIDNO: 5, SEQ IDNO: 7, SEQ IDNO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25 can be used in the process according to the invention.

The nucleic acid sequences used in the process are advantageously introduced into an expression cassette which makes possible the expression of the nucleic acids in organisms such as microorganisms or plants.

In doing so, the nucleic acid sequences which code for $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase are linked operably with one or more regulatory signals, advantageously for enhancing gene expression. These regulatory sequences are intended to make possible the specific expression of the genes and proteins. Depending on the host organism, this may mean, for example, that the gene is expressed and/or overexpressed only after induction has taken place, or else that it is expressed and/or overexpressed immediately.

For example, these regulatory sequences take the form of sequences to which inductors or repressors bind, thus controlling the expression of the nucleic acid. In addition to these novel regulatory sequences, or instead of these sequences, the natural regulation of these sequences may still be present before the actual structural genes and, if appropriate, may have been genetically modified in such a way that their natural regulation is eliminated and the expression of the genes is enhanced. However, the expression cassette (=expression construct=gene construct) can also be simpler in construction, that is to say no additional regulatory signals have been inserted before the nucleic acid sequence or its derivatives, and the natural promoter together with its regulation was not removed. Instead, the natural regulatory sequence has been mutated in such a way that regulation no longer takes place and/or gene expression is enhanced. These modified promoters can also be positioned on their own before the natural gene in the form of part-sequences (=promoter with parts of the nucleic acid sequences used in accordance with the invention) in order to enhance the activity. Moreover, the gene construct may advantageously also comprise one or more what are known as enhancer sequences in operable linkage with the promoter, which make possible an enhanced expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminator sequences, may also be inserted at the 3 ' end of the DNA sequences. The $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase genes may be present in one or more copies of the expression cassette (=gene construct). Preferably, only one copy of the genes is present in each expression cassette. This gene construct or the gene constructs can be expressed together in the host organism. In this context, the gene construct(s) can be inserted in one or more vectors and be present in the cell in free form, or else be inserted in the genome. It is advantageous for the insertion of further genes in the host genome when the genes to be expressed are present together in one gene construct.
In this context, the regulatory sequences or factors can, as described above, preferably have a positive effect on the gene expression of the genes introduced, thus enhancing it. Thus, an enhancement of the regulatory elements, advantageously at the transcriptional level, may take place by using strong transcription signals such as promoters and/or enhancers. In addition, however, enhanced translation is also possible, for example by improving the stability of the mRNA.
A further embodiment of the invention is one or more gene constructs which comprise one or more sequences which are defined by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25 or its derivatives and which code for polypeptides as shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 , SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24 or SEQ ID NO: 26. The abovementioned $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase proteins lead advantageously to a desaturation or elongation of fatty acids, the substrate advantageously having one, two, three, four, five or six double bonds and advantageously 18,20 or 22 carbon atoms in the fatty acid molecule. The same applies to their homologs, derivatives or analogs, which are linked operably with one or more regulatory signals, advantageously for enhancing gene expression.

Advantageous regulatory sequences which can be employed for the preparation of the nucleic acid sequences employed in novel process and their subsequent introduction into plants are present for example in promoters such as the cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacIq, T7, T5, T3, gal, tre, ara, SP6, λ-PR or λ-PL promoter and are advantageously employed in Gram-negative bacteria. Further advantageous regulator sequences are, for example, present in the Grampositive promoters amy and SPO2, in the yeast or fungal promoters ADC1, MF $\alpha, \mathrm{AC}, \mathrm{P}-60$, CYC1, GAPDH, TEF, rp28, ADH or in the plant promoters CaMV/35S [Franck et al., Cell 21 (1980) 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, nos or in the ubiquitin or phaseolin promoter. Advantageous in this context are also inducible promoters, such as the promoters described in EP-A-0 388186 (benzenesulfonamide-inducible), Plant J. 2, 1992:397-404 (Gatz et al., tetracycline-inducible), EP-A-0 335528 (abscissic acid-inducible) or WO 93/21334 (ethanol- or cyclohexenol-inducible) promoters. Further suitable plant promoters are the cytosolic FBPase promoter or the ST-LSI promoter of potato (Stockhaus et al., EMBO J. 8, 1989, 2445), the glycine max phosphoribosylpyrophosphate amidotransferase promoter (Genbank Accession No. U87999) or the node-specific promoter described in EP-A-0 249676 . Especially advantageous promoters are promoters which make possible the expression in tissues which are involved in the biosynthesis of fatty acids. Very especially advantageous are seed-specific promoters, such as the USP promoter as described, but also other promoters such as the LeB4, DC3, phaseolin or napin promoter. Further especially advantageous promoters are seed-specific promoters which can be used for monocotyledonous or dicotyledonous plants and which are described in U.S. Pat. No. 5,608,152 (oilseed rape napin promoter), WO 98/45461 (Arabidopsis oleosin promoter), U.S. Pat. No. 5,504,200 (Phaseolus vulgaris phaseolin promoter), WO 91/13980 (Brassica Bce4 promoter), by Baeumlein et al., Plant J., 2, 2, 1992:233-239 (LeB4 promoter from a legume), these promoters being suitable for dicots. Examples of promoters which are suitable for monocots are the barley Ipt-2 or Ipt-1 promoter (WO 95/15389 and WO 95/23230), the barley hordein promoter and other suitable promoters described in WO 99/16890.

In principle, it is possible to use all natural promoters together with their regulatory sequences, such as those mentioned above, for the novel process. It is also possible and advantageous to use synthetic promoters, either in addition or alone, in particular when they mediate seed-specific expression, such as those described in WO 99/16890.

In order to achieve a particularly high PUFA content, before in transgenic plants, the PUFA biosynthesis genes should advantageously be expressed in oil crops in a seedspecific manner. To this end, seed-specific promoters can be used, or those promoters which are active in the embryo and/or in the endosperm. In principle, seed-specific promoters can be isolated both from dicotyledonous and from monocotyledonous plants. Advantageous preferred promoters are listed hereinbelow: USP (=unknown seed protein) and vicilin (Vicia faba) [Bäumlein et al., Mol. Gen. Genet., 1991, 225 (3)], napin (oilseed rape) [U.S. Pat. No. 5,608,152], acyl carrier protein (oilseed rape) [U.S. Pat. No. 5,315,001 and WO 92/18634], oleosin (Arabidopsis thaliana) [WO 98/45461 and WO 93/20216], phaseolin (Phaseolus vulgaris) [U.S. Pat. No. 5,504,200], Bce4 [WO 91/13980], leguminous B4 (LegB4 promoter) [Bäumlein et al., Plant J., 2,2, 1992], Lpt2 and Ipt1 (barley) [WO 95/15389 and WO95/23230], seed-specific promoters from rice, maize and wheat [WO 99/16890], Amy32b, Amy 6-6 and aleurain [U.S. Pat. No.

5,677,474], Bce4 (oilseed rape) [U.S. Pat. No. 5,530,149], glycinin (soybean) [EP 571 741], phosphoenol pyruvate carboxylase (soybean) [JP 06/62870], ADR12-2 (soybean) [WO 98/08962], isocitrate lyase (oilseed rape) [U.S. Pat. No. $5,689,040]$ or α-amylase (barley) [EP 781 849].
Plant gene expression can also be facilitated via a chemically inducible promoter (see review in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemically inducible promoters are particularly suitable when it is desired that gene expression should take place in a timespecific manner. Examples of such promoters are a salicylic-acid-inducible promoter (WO 95/19443), a tetracycline-inducible promoter (Gatz et al. (1992) Plant J. 2, 397-404) and an ethanol-inducible promoter.

To ensure the stable integration of the biosynthesis genes into the transgenic plant over a plurality of generations, each of the nucleic acids which code for $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase and which are used in the process should be expressed under the control of a separate promoter, preferably a promoter which differs from the other promoters, since repeating sequence motifs can lead to instability of the T-DNA, or to recombination events. In this context, the expression cassette is advantageously constructed in such a way that a promoter is followed by a suitable cleavage site, advantageously in a polylinker, for insertion of the nucleic acid to be expressed and, if appropriate, a terminator sequence is positioned behind the polylinker. This sequence is repeated several times, preferably three, four or five times, so that up to five genes can be combined in one construct and introduced into the transgenic plant in order to be expressed. Advantageously, the sequence is repeated up to three times, or as many times as required. To express the nucleic acid sequences, the latter are inserted behind the promoter via a suitable cleavage site, for example in the polylinker. Advantageously, each nucleic acid sequence has its own promoter and, if appropriate, its own terminator sequence. Such advantageous constructs are disclosed, for example, in DE 10102 337 or DE 10102338 . However, it is also possible to insert a plurality of nucleic acid sequences behind a promoter and, if appropriate, before a terminator sequence. Here, the insertion site, or the sequence, of the inserted nucleic acids in the expression cassette is not of critical importance, that is to say a nucleic acid sequence can be inserted at the first or last position in the cassette without its expression being substantially influenced thereby. Advantageously, different promoters such as, for example, the USP, LegB4 or DC3 promoter, and different terminator sequences can be used in the expression cassette. However, it is also possible to use only one type of promoter in the cassette. This, however, may lead to undesired recombination events.

As described above, the transcription of the genes which have been introduced should advantageously be terminated by suitable terminator sequences at the 3^{\prime} end of the biosynthesis genes which have been introduced (behind the stop codon). An example of a sequence which can be used in this context is the OCS1 terminator sequence. As is the case with the promoters, different terminator sequences should be used for each gene.

As described above, the gene construct can also comprise further genes to be introduced into the organisms. It is possible and advantageous to introduce into the host plants, and to express therein, regulatory genes such as genes for inductors, repressors or enzymes which, owing to their enzyme activity, engage in the regulation of one or more genes of a biosynthesis pathway. These genes can be of heterologous or of homologous origin. Moreover, further biosynthesis genes
of the fatty acid or lipid metabolism can advantageously be present in a nucleic acid construct, or gene construct; however, these genes can also be positioned on one or more further nucleic acid constructs. Biosynthesis genes of the fatty acid or lipid metabolism which are advantageously used is a gene selected from the group consisting of acyl-CoA dehydrogenase(s), acyl-ACP [=acyl carrier protein] desaturase(s), acyl-ACP thioesterase(s), fatty acid acyltransferase(s), acyl-CoA:lysophospholipid acyltransferases, fatty acid synthase(s), fatty acid hydroxylase(s), acetyl-coenzyme A carboxylase(s), acyl-coenzyme A oxidase(s), fatty acid desaturase(s), fatty acid acetylenase(s), lipoxygenase(s), triacylglycerol lipase(s), allenoxide synthase(s), hydroperoxide lyase(s) or fatty acid elongase(s) or combinations thereof. Especially advantageous nucleic acid sequences are biosynthesis genes of the fatty acid or lipid metabolism selected from the group of the acyl-CoA:lysophospholipid acyltransferase, $\Delta 4$-desaturase, $\Delta 8$-desaturase, $\Delta 5$-elongase and/or $\Delta 9$-elongase.

In this context, the abovementioned nucleic acids or genes can be cloned into expression cassettes, like those mentioned above, in combination with other elongases and desaturases and used for transforming plants with the aid of Agrobacterium.

Here, the regulatory sequences or factors can, as described above, preferably have a positive effect on, and thus enhance, the expression of the genes which have been introduced. Thus, enhancement of the regulatory elements can advantageously take place at the transcriptional level by using strong transcription signals such as promoters and/or enhancers. However, an enhanced translation is also possible, for example by improving the stability of the mRNA. In principle, the expression cassettes can be used directly for introduction into the plants or else be introduced into a vector.

These advantageous vectors, preferably expression vectors, comprise the nucleic acids which code for the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase and which are used in the process, or else a nucleic acid construct which comprises the nucleic acid used either alone or in combination with further biosynthesis genes of the fatty acid or lipid metabolism such as the acyl-CoA:lysophospholipid acyltransferases, $\Delta 4$-desaturase, $\Delta 8$-desaturase, $\Delta 5$-elongase and/ or $\Delta 9$-elongase. As used in the present context, the term "vector" refers to a nucleic acid molecule which is capable of transporting another nucleic acid to which it is bound. One type of vector is a "plasmid", a circular double-stranded DNA loop into which additional DNA segments can be ligated. A further type of vector is a viral vector, it being possible for additional DNA segments to be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they have been introduced (for example bacterial vectors with bacterial replication origin). Other vectors are advantageously integrated into the genome of a host cell when they are introduced into the host cell, and thus replicate together with the host genome. Moreover, certain vectors can govern the expression of genes with which they are in operable linkage. These vectors are referred to in the present context as "expression vectors". Usually, expression vectors which are suitable for DNA recombination techniques take the form of plasmids. In the present description, "plasmid" and "vector" can be used exchangeably since the plasmid is the form of vector which is most frequently used. However, the invention is also intended to cover other forms of expression vectors, such as viral vectors, which exert similar functions. Furthermore, the term "vector" is also intended to encompass other vectors with which the skilled worker is
familiar, such as phages, viruses such as SV40, CMV, TMV, transposons, IS elements, phasmids, phagemids, cosmids, linear or circular DNA.

The recombinant expression vectors advantageously used in the process comprise the nucleic acids described below or the above-described gene construct in a form which is suitable for expressing the nucleic acids used in a host cell, which means that the recombinant expression vectors comprise one or more regulatory sequences, selected on the basis of the host cells used for the expression, which regulatory sequence(s) is/are linked operably with the nucleic acid sequence to be expressed. In a recombinant expression vector, "linked operably" means that the nucleotide sequence of interest is bound to the regulatory sequence(s) in such a way that the expression of the nucleotide sequence is possible and they are bound to each other in such a way that both sequences carry out the predicted function which is ascribed to the sequence (for example in an in-vitro transcription/translation system, or in a host cell if the vector is introduced into the host cell). The term "regulatory sequence" is intended to comprise promoters, enhancers and other expression control elements (for example polyadenylation signals). These regulatory sequences are described, for example, in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990), or see: Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnology, CRC Press, Boca Raton, Fla., Ed.: Glick and Thompson, Chapter 7, 89-108, including the references cited therein. Regulatory sequences comprise those which govern the constitutive expression of a nucleotide sequence in many types of host cell and those which govern the direct expression of the nucleotide sequence only in specific host cells under specific conditions. The skilled worker knows that the design of the expression vector can depend on factors such as the choice of host cell to be transformed, the expression level of the desired protein and the like.

The recombinant expression vectors used can be designed for the expression of $\Delta 6$-desaturases, $\Delta 6$-elongases, $\Delta 5$-desaturases, $\Delta 5$-elongaseas, $\Delta 4$-desaturases, $\Delta 12$-desaturases and/or $\omega 3$-desaturases in prokaryotic or eukaryotic cells. This is advantageous since intermediate steps of the vector construction are frequently carried out in microorganisms for the sake of simplicity. For example, the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase genes can be expressed in bacterial cells, insect cells (using Baculovirus expression vectors), yeast and other fungal cells (see Romanos, M. A., et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8:423-488; van den Hondel, C. A. M. J. J., et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, J. W. Bennet \& L. L. Lasure, Ed., pp. 396-428: Academic Press: San Diego; and van den Hondel, C. A. M. J. J., \& Punt, P. J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J. F., et al., Ed., pp. 1-28, Cambridge University Press: Cambridge), algae (Falciatore et al., 1999, Marine Biotechnology. 1, 3:239-251), using vectors in a transformation method as described in WO 98/01572 and, preferably, in cells of multicelled plants (see Schmidt, R. and Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep. 583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Fla., Chapter 6/7, pp. 71-119 (1993); F. F. White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, Ed.: Kung and R. Wu, Academic Press (1993),

128-43; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225 (and references cited therein)). Suitable host cells are furthermore discussed in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). As an alternative, the recombinant expression vector can be transcribed and translated in vitro, for example using T7-promoter regulatory sequences and T7-polymerase.

In most cases, the expression of proteins in prokaryotes involves the use of vectors comprising constitutive or inducible promoters which govern the expression of fusion or nonfusion proteins. Typical fusion expression vectors are, inter alia, pGEX (Pharmacia Biotech Inc; Smith, D. B., and Johnson, K. S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, Mass.) und pRIT5 (Pharmacia, Piscataway, N.J.), where glutathione S-transferase (GST), maltose-E binding protein and protein A , respectively, is fused with the recombinant target protein.

Examples of suitable inducible nonfusion E. coli expression vectors are, inter alia, pTrc (Amann et al. (1988) Gene 69:301-315) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 60-89). The target gene expression from the pTrc vector is based on the transcription from a hybrid trp-lac fusion promoter by the host RNA polymerase. The target gene expression from the vector pET 11 d is based on the transcription of a 77-gn10-lac fusion promoter, which is mediated by a viral RNA polymerase (T7 gnl), which is coexpressed. This viral polymerase is provided by the host strains BL21 (DE3) or HMS174 (DE3) from a resident λ-prophage which harbors a T 7 gn 1 gene under the transcriptional control of the lacUV 5 promoter.

Other vectors which are suitable for prokaryotic organisms are known to the skilled worker, these vectors are, for example in E. coli pLG338, pACYC184, the pBR series such as pBR322, the pUC series such as pUC18 or pUC19, the M113 mp series, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, $\lambda \mathrm{gt11}$ or pBdCI, in Streptomyces pIJ101, pIJ364, pIJ702 or pIJ361, in Bacillus pUB110, pC194 or pBD214, in Corynebacterium pSA77 or pAJ667.

In a further embodiment, the expression vector is a yeast expression vector. Examples for vectors for expression in the yeast S. cerevisiae comprise pYeDesaturasec 1 (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) and pYES2 (Invitrogen Corporation, San Diego, Calif.). Vectors and processes for the construction of vectors which are suitable for use in other fungi, such as the filamentous fungi, comprise those which are described in detail in: van den Hondel, C. A. M. J. J., \& Punt, P. J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J. F. Peberdy et al., Ed., pp. 1-28, Cambridge University Press: Cambridge, or in: More Gene Manipulations in Fungi [J. W. Bennet \& L. L. Lasure, Ed., pp. 396-428: Academic Press: San Diego]. Further suitable yeast vectors are, for example, pAG-1,YEp6, YEp 13 or pEMBLYe23.

As an alternative, $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase can be expressed in insect cells using Baculovirus expression vectors. Baculovirus vectors which are available for the expression of proteins in cultured insect cells (for example Sf9 cells) comprise the pAc series (Smith et al. (1983) Mol. Cell. Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).

The abovementioned vectors are only a small overview over suitable vectors which are possible. Further plasmids are known to the skilled worker and are described, for example, in: Cloning Vectors (Ed. Pouwels, P. H., et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0444 904018). For further suitable expression systems for prokaryotic and eukaryotic cells, see the Chapters 16 and 17 in Sambrook, J., Fritsch, E. F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

Finally, the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase gene can be expressed in plant cells or intact plants (for example spermatophytes such as arable crops). Examples of plant expression vectors comprise those which are described in detail in: Becker, D., Kemper, E., Schell, J., and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20:1195-1197; and Bevan, M. W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, Ed.: Kung and R. Wu, Academic Press, 1993, p. 15-38.

A plant expression cassette preferably comprises regulatory sequences which are capable of governing the expression of genes in plant cells and which are linked operably so that each sequence can fulfill its function, such as transcriptional termination, for example polyadenylation signals. Preferred polyadenylation signals are those which are derived from Agrobacterium tumefaciens T-DNA, such as gene 3 of the Ti plasmid pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835 et seq.), which is known as octopine synthase, or functional equivalents thereof, but all other terminator sequences which are functionally active in plants are also suitable.

Since plant gene expression is very often not limited to the transcriptional level, a plant expression cassette preferably comprises other sequences which are linked operably, such as translation enhancers, for example the overdrive sequence, which enhances the tobacco mosaic virus 5 '-untranslated leader sequence, which increases the protein/RNA ratio (Gallie et al., 1987, Nucl. Acids Research 15:8693-8711).

As described above, plant gene expression must be linked operably with a suitable promoter which triggers gene expression with the correct timing or in a cell- or tissuespecific manner. Utilizable promoters are constitutive promoters (Benfey et al., EMBO J. 8 (1989) 2195-2202), such as those which are derived from plant viruses, such as 35 S CaMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (see also U.S. Pat. No. 5,352,605 and WO 84/02913), or plant promoters, such as the promoter of the small Rubisco subunit, which is described in U.S. Pat. No. 4,962,028.

Other preferred sequences for use in operable linkage in plant gene expression cassettes are targeting sequences, which are required for steering the gene product into its corresponding cell compartment (see a review in Kermode, Crit. Rev. Plant Sci. 15, 4(1996) 285-423 and references cited therein), for example into the vacuole, into the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmid reticulum, elaioplasts, peroxisomes and other compartments of plant cells.

As described above, plant gene expression can also be facilitated via a chemically inducible promoter (see review in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89108). Chemically inducible promoters are particularly suitable when it is desired that the gene expression takes place in
a time-specific manner. Examples of such promoters are a salicylic-acid-inducible promoter (WO 95/19443), a tetracy-clin-inducible promoter (Gatz et al. (1992) Plant J. 2, 397404) and an ethanol-inducible promoter.

Promoters which respond to biotic or abiotic stress conditions are also suitable, for example the pathogen-induced PRP1 gene promoter (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), the heat-inducible tomato hsp80 promoter (U.S. Pat. No. 5,187,267), the chill-inducible potato alpha-amylase promoter (WO 96/12814) or the wound-inducible pinII promoter (EP-A-0 375 091).

Especially preferred are those promoters which bring about the gene expression in tissues and organs in which the biosynthesis of fatty acids, lipids and oils takes place, in seed cells, such as cells of the endosperm and of the developing embryo. Suitable promoters are the oilseed rape napin gene promoter (U.S. Pat. No. $5,608,152$), the Vicia faba USP promoter (Baeumlein et al., Mol Gen Genet, 1991, 225 (3):45967), the Arabidopsis oleosin promoter (WO 98/45461), the Phaseolus vulgaris phaseolin promoter (U.S. Pat. No. 5,504, 200), the Brassica Bce4 promoter (WO 91/13980) or the legumine B4 promoter (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2):233-9), and promoters which bring about the seed-specific expression in monocotyledonous plants such as maize, barley, wheat, rye, rice and the like. Suitable noteworthy promoters are the barley Ipt2 or Ipt1 gene promoter (WO 95/15389 and WO 95/23230) or the promoters from the barley hordein gene, the rice glutelin gene, the rice oryzin gene, the rice prolamin gene, the wheat gliadin gene, the wheat glutelin gene, the maize zein gene, the oat glutelin gene, the sorghum kasirin gene or the rye secalin gene, which are described in WO 99/16890.

In particular, it may be desired to bring about the multiparallel expression of the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase used in the process. Such expression cassettes can be introduced via a simultaneous transformation of a plurality of individual expression constructs or, preferably, by combining a plurality of expression cassettes on one construct. Also, a plurality of vectors can be transformed with in each case a plurality of expression cassettes and then transferred into the host cell.

Other promoters which are likewise especially suitable are those which bring about a plastid-specific expression, since plastids constitute the compartment in which the precursors and some end products of lipid biosynthesis are synthesized. Suitable promoters, such as the viral RNA polymerase promoter, are described in WO 95/16783 and WO 97/06250, and the cipP promoter from Arabidopsis, described in WO 99/46394.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. The terms "transformation" and "transfection", conjugation and transduction, as used in the present context, are intended to comprise a multiplicity of methods known in the prior art for the introduction of foreign nucleic acid (for example DNA) into a host cell, including calcium phosphate or calcium chloride coprecipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, chemically mediated transfer, electroporation or particle bombardment. Suitable methods for the transformation or transfection of host cells, including plant cells, can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) and other laboratory textbooks such as Methods in Molecular Biology,

1995, Vol. 44, Agrobacterium protocols, Ed.: Gartland and Davey, Humana Press, Totowa, N.J.

Host cells which are suitable in principle for taking up the nucleic acid according to the invention, the gene product according to the invention or the vector according to the invention are all prokaryotic or eukaryotic organisms. The host organisms which are advantageously used as intermediate hosts are microorganisms such as fungi or yeasts. Plants such as oil crop plants, which are high in lipid compounds, such as oilseed rape, evening primrose, hemp, thistle, peanut, canola, linseed, soybean, safflower, sunflower, borage, or plants such as maize, wheat, rye, oats, triticale, rice, barley, cotton, cassava, pepper, Tagetes, Solanacea plants such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa, bushy plants (coffee, cacao, tea), Salix species, trees (oil palm, coconut), and fodder crops. Especially preferred plants according to the invention are oil crop plants such as soybean, peanut, oilseed rape, canola, linseed, hemp, evening primrose, sunflower, safflower, trees (oil palm, coconut).

The invention furthermore relates to the nucleic acid sequences which are enumerated hereinbelow and which code for $\Delta 6$-desaturases, $\Delta 6$-elongases, $\Delta 5$-desaturases, $\omega 3$-desaturases and/or $\Delta 12$-desaturases.

Isolated nucleic acid sequences which code for polypeptides with $\Delta 6$-desaturase activity, selected from the group consisting of:
a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 1,
b) nucleic acid sequences which code for a protein with the sequence shown in SEQ ID NO: 2, or
c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 1 which code for polypeptides with at least 70\% identity at the amino acid level with SEQ ID NO: 2 and have a $\Delta 6$-desaturase activity.
Isolated nucleic acid sequences which code for polypeptides with $\Delta 6$-elongase activity, selected from the group consisting of:
a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7,
b) nucleic acid sequences which code for a protein with the sequence shown in SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 8 , or
c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7 which code for polypeptides with at least 70% identity at the amino acid level with SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 8 and which have a $\Delta 6$-elongase activity.
Isolated nucleic acid sequences which code for polypeptides with $\Delta 5$-desaturase activity, selected from the group consisting of:
a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 9,
b) nucleic acid sequences which code for a protein with the sequence shown in SEQ ID NO: 10, or
c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 9 which code for polypeptides with at least 40% identity at the amino acid level with SEQ ID NO: 10 and which have a $\Delta 5$-desaturase activity.
Isolated nucleic acid sequences which code for polypeptides with $\omega 3$-desaturase activity, selected from the group consisting of:
a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 23,
b) nucleic acid sequences which code for a protein with the sequence shown in SEQ ID NO: 24, or
c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 23 which code for polypeptides with at least
40% identity at the amino acid level with SEQ ID NO: 24 and which have a $\omega 3$-desaturase activity.
Isolated nucleic acid sequences which code for polypeptides with $\Delta 12$-desaturase activity, selected from the group consisting of:
a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 25 , or
b) nucleic acid sequences which code for a protein with the sequence shown in SEQ ID NO: 26, or
c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 25 which code for polypeptides with at least 40\% identity at the amino acid level with SEQ ID NO: 26 and which have a $\Delta 12$-desaturase activity.
The abovementioned nucleic acids according to the invention are derived from organisms such as fungi, plants such as algae or diatoms which are capable of synthesizing PUFAs.

The isolated abovementioned nucleic acid sequences are advantageously derived from the diatom genus Thalassiosira or from the family Prasinophyceae such as the genus Ostreococcus, from the class Euglenophyceae such as the genus Euglenia or Pythiaceae such as the genus Phytophthora.

Especially preferred nucleic acid sequences are derived from the genus and species Phytophthora sojae. In an advantageous embodiment, these nucleic acid sequences make possible the synthesis of EPA and/or ARA. The table which follows represents such advantageous nucleic acid sequences.

Gene	Enzyme function	Protein sequence	SEQ ID
D6-Des(Ps)	$\Delta 6$-desaturase	456 As	SEQ ID NO: 1
D6-Elo(Ps)	$\Delta 6$-elongase	304 As	SEQ ID NO: 3
D6-Elo(Ps)_2	$\Delta 6$-elongase	278 As	SEQ ID NO:5
D6-Elo(Ps)_3	$\Delta 6$-elongase	278 As	SEQ ID NO: 7
D5-Des(Ps)	$\Delta 5$-desaturase	498 As	SEQ ID NO:9
D12-Des(Ps)	$\Delta 12$-desaturase	398 As	SEQ ID NO: 25
O3-Des(Ps)	ω 3-desaturase	363 As	SEQ ID NO: 23

As described above, the invention furthermore relates to isolated nucleic acid sequences which code for polypeptides with $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\omega 3$-desaturase and $\Delta 12$-desaturase activity where the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\omega 3$-desaturase and/or $\Delta 12$-desaturase code ford by these nucleic acid sequences convert $\mathrm{C}_{18}-$ or C_{20}-fatty acids with one, two, three or four double bonds such as C18:1 $1^{\Delta 9}, \mathrm{C} 18: 2^{\Delta 9,12}$ or $\mathrm{C} 18: 3^{\Delta 9,12,15}$ polyunsaturated C_{20}-fatty acids with three or four double bonds such as C20:3 ${ }^{\Delta 8,11,14}$ or C20:4 $4^{\Delta 8,11,14,17}$. The fatty acids are advantageously desaturated in the phospholipids or CoA-fatty acid esters, advantageously in the CoA-fatty acid esters.

In an advantageous embodiment, the term "nucleic acid (molecule)" as used in the present context additionally comprises the untranslated sequence at the 3^{\prime} and at the 5^{\prime} end of the coding gene region: at least 500 , preferably 200 , especially preferably 100 nucleotides of the sequence upstream of the 5^{\prime} end of the coding region and at least 100 , preferably 50 , especially preferably 20 nucleotides of the sequence downstream of the 3 ' end of the coding gene region. An "isolated" nucleic acid molecule is separate from other nucleic acid molecules which are present in the natural source of the nucleic acid. An "isolated" nucleic acid preferably has no sequences which naturally flank the nucleic acid in the genomic DNA of the organism from which the nucleic acid is derived (for example sequences which are located at the 5 ' and 3 ' ends of the nucleic acid). In various embodiments, the isolated $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\omega 3$-de-
saturase and $\Delta 12$-desaturase molecule can comprise for example fewer than approximately $5 \mathrm{~kb}, 4 \mathrm{~kb}, 3 \mathrm{~kb}, 2 \mathrm{~kb}, 1 \mathrm{~kb}$, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in the genomic DNA of the cell from which the nucleic acid is derived.
The nucleic acid molecules used in the process, for example a nucleic acid molecule with a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQIDNO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25 or of a part thereof can be isolated using molecular-biological standard techniques and the sequence information provided herein. Also, for example a homologous sequence or homologous, conserved sequence regions can be identified at the DNA or amino acid level with the aid of comparative algorithms. They can be used as hybridization probe or standard hybridization techniques (such as, for example, those described in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) for isolating further nucleic acid sequences which can be used in the process. Moreover, a nucleic acid molecule comprising a complete sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25 or a part thereof can be isolated by polymerase chain reaction, where oligonucleotide primers which on the basis of this sequence or on parts thereof are used (for example a nucleic acid molecule comprising the complete sequence or part thereof can be isolated by polymerase chain reaction using oligonucleotide primers which have been generated based on this same sequence). For example, mRNA can be isolated from cells (for example by means of the guanidinium thiocyanate extraction method of Chirgwin et al. (1979) Biochemistry 18:5294-5299) and cDNA by means of reverse transcriptase (for example Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, Md., or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, Fla.). Synthetic oligonucleotide primers for the amplification by means of polymerase chain reaction can be generated based on one of the sequences shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9 , SEQ ID NO: 11 , SEQ ID NO: 13 , SEQ ID NO: 15 , SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25 with the aid of the amino acid sequences detailed in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQID NO: 22, SEQ ID NO: 24 or SEQID NO: 26. A nucleic acid according to the invention can be amplified by standard PCR amplification techniques using cDNA or, alternatively, genomic DNA as template and suitable oligonucleotide primers. The nucleic acid amplified thus can be cloned into a suitable vector and characterized by means of DNA sequence analysis. Oligonucleotides which correspond to a desaturase nucleotide sequence can be generated by standard synthetic methods, for example using an automatic DNA synthesizer.
Homologs of the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase nucleic acid sequences with the sequence SEQ ID NO: 1,SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25 means, for example, allelic variants with at least approximately 40 or 50%, preferably at least
approximately 60 or 70%, more preferably at least approximately 70 or $80 \%, 90 \%$ or 95% and even more preferably at least approximately $85 \%, 86 \%, 87 \%, 88 \%, 89 \%, 90 \%, 91 \%$, $92 \%, 93 \%, 94 \%, 95 \%, 96 \%, 97 \%, 98 \%, 99 \%$ or more identity or homology with a nucleotide sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25 or its homologs, derivatives or analogs or parts thereof. Furthermore, isolated nucleic acid molecules of a nucleotide sequence which hybridize with a nucleotide sequences shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25 or with a part thereof, for example hybridized under stringent conditions. A part thereof is understood as meaning, in accordance with the invention, that at least 25 base pairs ($=\mathrm{bp}$), $50 \mathrm{bp}, 75 \mathrm{bp}, 100 \mathrm{bp}, 125 \mathrm{bp}$ or 150 bp , preferably at least $175 \mathrm{bp}, 200 \mathrm{bp}, 225 \mathrm{bp}, 250 \mathrm{bp}, 275 \mathrm{bp}$ or 300 bp , especially preferably $350 \mathrm{bp}, 400 \mathrm{bp}, 450 \mathrm{bp}, 500 \mathrm{bp}$ or more base pairs are used for the hybridization. It is also possible and advantageous to use the full sequence. Allelic variants comprise in particular functional variants which can be obtained by deletion, insertion or substitution of nucleotides from/into the sequence detailed in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25 it being intended, however, that the enzyme activity of the resulting proteins which are synthesized is advantageously retained for the insertion of one or more genes. Proteins which retain the enzymatic activity of $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase, i.e. whose activity is essentially not reduced, means proteins with at least 10%, preferably 20%, especially preferably 30%, very especially preferably 40% of the original enzyme activity in comparison with the protein code ford by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25. The homology was calculated over the entire amino acid or nucleic acid sequence region. The skilled worker has available a series of programs which are based on various algorithms for the comparison of various sequences. Here, the algorithms of Needleman and Wunsch or Smith and Waterman give particularly reliable results. The program PileUp (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) or the programs Gap and BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) and Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], which are comprised in the GCG software packet [Genetics Computer Group, 575 Science Drive, Madison, Wis., USA 53711 (1991)], were used for the sequence alignment. The sequence homology values which are indicated above as a percentage were determined over the entire sequence region using the program GAP and the following settings: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 and Average Mismatch: 0.000 . Unless otherwise specified, these settings were always used as standard settings for the sequence alignments.

Homologs of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21 , SEQ ID NO: 23 or SEQ ID NO: 25 means for
example also bacterial, fungal and plant homologs, truncated sequences, single-stranded DNA or RNA of the coding and noncoding DNA sequence.
Homologs of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25 also means derivatives such as, for example, promoter variants. The promoters upstream of the nucleotide sequences detailed can be modified by one or more nucleotide exchanges, by insertion(s) and/or deletion(s) without the functionality or activity of the promoters being adversely affected, however. It is furthermore possible that the modification of the promoter sequence enhances their activity or that they are replaced entirely by more active promoters, including those from heterologous organisms.

Lipid synthesis can be divided into two sections: the synthesis of fatty acids and their binding to sn-glycerol-3-phosphate, and the addition or modification of a polar head group. Usual lipids which are used in membranes comprise phospholipids, glycolipids, sphingolipids and phosphoglycerides. Fatty acid synthesis starts with the conversion of acetyl-CoA into malonyl-CoA by acetyl-CoA carboxylase or into acetylACP by acetyl transacylase. After condensation reaction, these two product molecules together form acetoacetyl-ACP, which is converted via a series of condensation, reduction and dehydratization reactions so that a saturated fatty acid molecule with the desired chain length is obtained. The production of the unsaturated fatty acids from these molecules is catalyzed by specific desaturases, either aerobically by means of molecular oxygen or anaerobically (regarding the fatty acid synthesis in microorganisms, see F. C. Neidhardt et al. (1996) E. coli and Salmonella. ASM Press: Washington, D.C., pp. 612-636 and references cited therein; Lengeler et al. (Ed.) (1999) Biology of Procaryotes. Thieme: Stuttgart, N.Y., and the references therein, and Magnuson, K., et al. (1993) Microbiological Reviews 57:522-542 and the references therein). To undergo the further elongation steps, the resulting phospholipid-bound fatty acids must be returned to the fatty acid CoA ester pool. This is made possible by acyl-CoA: lysophospholipid acyltransferases. Moreover, these enzymes are capable of transferring the elongated fatty acids from the CoA esters back to the phospholipids. If appropriate, this reaction sequence can be followed repeatedly

Examples of precursors for the biosynthesis of PUFAs are oleic acid, linoleic acid and linolenic acid. The C_{18}-carbon fatty acids must be elongated to C_{20} and C_{22} in order to obtain fatty acids of the eicosa and docosa chain type. With the aid of the desaturases and/or elongases used in the process, arachidonic acid, eicosapentaenoic acid, and/or docosahexaenoic acid, advantageously eicosapentaenoic acid and/or docosahexaenoic acid, can be produced and subsequently employed in various applications regarding foodstuffs, feedstuffs, cosmetics or pharmaceuticals. C_{20} - and/or C_{22}-fatty acids with at least two, advantageously at least four, five or six, double bonds in the fatty acid molecule, preferably C_{20} - or C_{22}-fatty acids with advantageously five or six double bonds in the fatty acid molecule, can be prepared using the abovementioned enzymes. Substrates of the desaturases and elongases used in the process according to the invention are $\mathrm{C}_{16^{-}}, \mathrm{C}_{18^{-}}$or $\mathrm{C}_{20^{-}}$ fatty acids such as, for example, linoleic acid, γ-linolenic acid, α-linolenic acid, dihomo- γ-linolenic acid, eicosatetraenoic acid or stearidonic acid. Preferred substrates are linoleic acid, γ-linolenic acid and/or α-linolenic acid, dihomo- γ-linolenic acid, arachidonic acid, eicosatetraenoic acid or eicosapentaenoic acid. The synthesized $\mathrm{C}_{20^{-}}$or $\mathrm{C}_{22}{ }^{-}$ fatty acids with at least four, five or six double bonds in the
fatty acids are obtained in the process according to the invention in the form of the free fatty acid or in the form of their esters, for example in the form of their glycerides, advantageously their triglycerides.

The term "glyceride" is understood as meaning glycerol esterified with one, two or three carboxyl radicals (mono-, dior triglyceride). "Glyceride" is also understood as meaning a mixture of various glycerides. The glyceride or glyceride mixture may comprise further additions, for example free fatty acids, antioxidants, proteins, carbohydrates, vitamins and/or other substances.

For the purposes of the invention, a "glyceride" is furthermore understood as meaning glycerol derivatives. In addition to the above-described fatty acid glycerides, these also include glycerophospholipids and glyceroglycolipids. Preferred examples which may be mentioned in this context are the glycerophospholipids such as lecithin (phosphatidylcholine), cardiolipin, phosphatidylglycerol, phosphatidylserine and alkylacylglycerophospholipids.

Furthermore, fatty acids must subsequently be translocated to various modification sites and incorporated into the triacylglycerol storage lipid. A further important step in lipid synthesis is the transfer of fatty acids to the polar head groups, for example by glycerol fatty acid acyltransferase (see Frentzen, 1998, Lipid, 100(4-5):161-166).

Publications on plant fatty acid biosynthesis and on the desaturation, the lipid metabolism and the membrane transport of lipidic compounds, on beta-oxidation, fatty acid modification and cofactors, triacylglycerol storage and triacylglycerol assembly, including the references therein, see the following papers: Kinney, 1997, Genetic Engineering, Ed.: J K Setlow, 19:149-166; Ohlrogge and Browse, 1995, Plant Cell 7:957-970; Shanklin and Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:611-641; Voelker, 1996, Genetic Engineering, Ed.: J K Setlow, 18:111-13; Gerhardt, 1992, Prog. Lipid R. 31:397-417; Gühnemann-Schäfer \& Kindl, 1995, Biochim. Biophys Acta 1256:181-186; Kunau et al., 1995, Prog. Lipid Res. 34:267-342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants, Ed.: Murata and Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy \& Ross 1998, Plant Journal. 13(1):1-16.

The PUFAs produced in the process comprise a group of molecules which higher animals are no longer capable of synthesizing and must therefore take up, or which higher animals are no longer capable of synthesizing themselves in sufficient quantity and must therefore take up additional quantities, although they can be synthesized readily by other organisms such as bacteria; for example, cats are no longer capable of synthesizing arachidonic acid.

Phospholipids for the purposes of the invention are understood as meaning phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol and/or phosphatidylinositol, advantageously phosphatidylcholine. The terms production or productivity are known in the art and encompass the productivity within a plant cell or a plant, that is to say the content of the desired fatty acids produced in the process relative to the content of all fatty acids in this cell or plant. The terms biosynthesis or biosynthetic pathway are known in the art and comprise the synthesis of a compound, preferably an organic compound, by a cell from intermediates, for example in a multi-step and strongly regulated process. The terms catabolism or catabolic pathway are known in the art and comprise the cleavage of a compound, preferably of an organic compound, by a cell to give catabolites (in more general terms, smaller or less complex molecules), for example in a multi-step and strongly regulated process. The
term metabolism is known in the art and comprises the totality of the biochemical reactions which take place in an organism. The metabolism of a certain compound (for example the metabolism of a fatty acid) thus comprises the totality of the biosynthetic pathways, modification pathways and catabolic pathways of this compound in the cell which relate to this compound.

In a further embodiment, derivatives of the nucleic acid molecule according to the invention represented in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 23 or SEQ ID NO: 25 code for proteins with at least 40%, advantageously approximately 50 or 60%, advantageously at least approximately 60 or 70% and more preferably at least approximately 70 or 80%, 80 to 90%, 90 to 95% and most preferably at least approximately 96%, $97 \%, 98 \%, 99 \%$ or more homology (=identity for the purpose of the invention) with a complete amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10 , SEQ ID NO: 24 or SEQ ID NO: 26. The homology was calculated over the entire amino acid or nucleic acid sequence region. The program PileUp (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) or the programs Gap and BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) and Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], which are comprised in the GCG software packet [Genetics Computer Group, 575 Science Drive, Madison, Wis., USA 53711 (1991)], were used for the sequence alignment. The sequence homology values which are indicated above as a percentage were determined over the entire sequence region using the program BestFit and the following settings: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 and Average Mismatch: 0.000 . Unless otherwise specified, these settings were always used as standard settings for the sequence alignments.
Moreover, the invention comprises nucleic acid molecules which differ from one of the nucleotide sequences shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 23 or SEQ ID NO: 25 (and parts thereof) owing to the degeneracy of the genetic code and which thus code for the same $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\omega 3$-desaturase or $\Delta 12$-desaturase activity as those code ford by the nucleotide sequences shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 23 or SEQ ID NO: 25.
In addition to the $\Delta 6$-desaturases, $\Delta 6$-elongases, $\Delta 5$-desaturases, $\omega 3$-desaturases or $\Delta 12$-desaturases shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 23 or SEQ ID NO: 25 the skilled worker will recognize that DNA sequence polymorphisms which lead to changes in the amino acid sequences of the $\Delta 6$-desaturases, $\Delta 6$-elongases, $\Delta 5$-desaturases, $\omega 3$-desaturases and/or $\Delta 12$-desaturases may exist within a population. These genetic polymorphisms in the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\omega 3$-desaturase and/or $\Delta 12$-desaturase gene may exist between individuals within a population owing to natural variation. These natural variants usually bring about a variance of 1 to 5% in the nucleotide sequence of the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\omega 3$-desaturase and/or $\Delta 12$-desaturase gene. Each and every one of these nucleotide variations and resulting amino acid polymorphisms in the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\omega 3$-desaturase and/or $\Delta 12$-desaturase which are the result of natural variation and do not modify the functional activity are to be encompassed by the invention.
Owing to their homology to the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase nucleic acids disclosed here,
nucleic acid molecules which are advantageous for the process according to the invention can be isolated following standard hybridization techniques under stringent hybridization conditions, using the sequences or part thereof as hybridization probe. In this context it is possible, for example, to use isolated nucleic acid molecules which are at least 15 nucleotides in length and which hybridize under stringent conditions with the nucleic acid molecules which comprise a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25 . Nucleic acids with at least $25,50,100,250$ or more nucleotides can also be used. The term "hybridizes under stringent conditions" as used in the present context is intended to describe hybridization and washing conditions under which nucleotide sequences with at least 60% homology to one another usually remain hybridized with one another. Conditions are preferably such that sequences with at least approximately 65%, preferably at least approximately 70% and especially preferably at least approximately 75% or more homology to one another usually remain hybridized to one another. These stringent conditions are known to the skilled worker and described in Current Protocols in Molecular Biology, John Wiley \& Sons, N.Y. (1989), 6.3.1-6.3.6. A preferred nonlimiting example of stringent hybridization conditions is hybridizations in $6 \times$ sodium chloride/sodium citrate ($=\mathrm{SSC}$) at approximately $45^{\circ} \mathrm{C}$., followed by one or more washing steps in $0.2 \times \mathrm{SSC}, 0.1 \% \mathrm{SDS}$ at 50 to $65^{\circ} \mathrm{C}$. The skilled worker knows that these hybridization conditions differ depending on the type of nucleic acid and, for example when organic solvents are present, regarding temperature and buffer concentration. Under "standard hybridization conditions", for example, the hybridization temperature is, depending on the type of nucleic acid, between $42^{\circ} \mathrm{C}$. and $58^{\circ} \mathrm{C}$. in aqueous buffer with a concentration of 0.1 to $5 \times \mathrm{SSC}(\mathrm{pH} 7.2)$. If organic solvents, for example 50% formamide, are present in the abovementioned buffer, the temperature under standard conditions is approximately $42^{\circ} \mathrm{C}$. The hybridization conditions for DNA:DNA hybrids, for example, are preferably $0.1 \times$ SSC and $20^{\circ} \mathrm{C}$. to $45^{\circ} \mathrm{C}$., preferably $30^{\circ} \mathrm{C}$. to $45^{\circ} \mathrm{C}$. The hybridization conditions for DNA:RNA hybrids are, for example, preferably $0.1 \times$ SSC and $30^{\circ} \mathrm{C}$. to $55^{\circ} \mathrm{C}$., preferably $45^{\circ} \mathrm{C}$. to $55^{\circ} \mathrm{C}$. The abovementioned hybridization conditions are determined by way of example for a nucleic acid with approximately 100 bp (=base pairs) in length and with a $\mathrm{G}+\mathrm{C}$ content of 50% in the absence of formamide. The skilled worker knows how to determine the required hybridization conditions on the basis of the abovementioned textbooks or textbooks such as Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989; Hames and Higgins (Ed.) 1985, "Nucleic Acids Hybridization: A Practical Approach", IRL Press at Oxford University Press, Oxford; Brown (Ed.) 1991, "Essential Molecular Biology: A Practical Approach", IRL Press at Oxford University Press, Oxford.

In order to determine the percentage of homology (=identity) of two amino acid sequences (for example one of the sequences of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24 or SEQ ID NO: 26) or of two nucleic acids (for example SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15 , SEQ ID NO: 17 , SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25) the sequences are written one under the other for an optimal comparison (for example, gaps may be introduced
into the sequence of a protein or of a nucleic acid in order to generate an optimal alignment with the other protein or the other nucleic acid). Then, the amino acid residue or nucleotides at the corresponding amino acid positions or nucleotide positions are compared. If a position in a sequence is occupied by the same amino acid residue or the same nucleotide as the corresponding position in the other sequence, then the molecules are homologous at this position (i.e. amino acid or nucleic acid "homology" as used in the present context corresponds to amino acid or nucleic acid "identity"). The percentage of homology between the two sequences is a function of the number of identical positions which the sequences share (i.e. \% homology=number of identical positions/total number of positions $\times 100$). The terms homology and identity are therefore to be considered as synonymous. The programs and algorithms used are described above.

An isolated nucleic acid molecule which codes for a $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase which is homologous to a protein sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24 or SEQ ID NO: 26 can be generated by introducing one or more nucleotide substitutions, additions or deletions in/into a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25 so that one or more amino acid substitutions, additions or deletions are introduced in/into the protein which is code ford. Mutations in one of the sequences of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21 , SEQ ID NO: 23 or SEQ ID NO: 25 can be introduced by standard techniques such as site-specific mutagenesis and PCR-mediated mutagenesis. It is preferred to generate conservative amino acid substitutions in one or more of the predicted nonessential amino acid residues. In a "conservative amino acid substitution", the amino acid residue is replaced by an amino acid residue with a similar side chain. Families of amino acid residues with similar side chains have been defined in the art. These families comprise amino acids with basic side chains (for example lysine, arginine, histidine), acidic side chains (for example aspartic acid, glutamic acid), uncharged polar side chains (for example glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), unpolar side chains (for example alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (for example threonine, valine, isoleucine) and aromatic side chains (for example tyrosine, phenylalanine, tryptophan, histidine). A predicted nonessential amino acid residue in a $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase or $\omega 3$-desaturase is thus preferably replaced by another amino acid residue from the same family of side chains. In another embodiment, the mutations can, alternatively, be introduced randomly over all or part of the sequence encoding the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase or $\omega 3$-desaturase, for example by saturation mutagenesis, and the resulting mutants can be screened for the herein-described $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase activity in order to identify mutants which have retained the $\Delta 6$-desaturase, $\Delta 6$-elongase, $\Delta 5$-desaturase, $\Delta 5$-elongase, $\Delta 4$-desaturase, $\Delta 12$-desaturase and/or $\omega 3$-desaturase activity. Following the
mutagenesis of one of the sequences SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 or SEQ ID NO: 25 , the protein which is code ford can be expressed recombinantly, and the activity of the protein can be determined, for example using the tests described in the present text.

The invention furthermore relates to a transgenic nonhuman organism, preferably a transgenic plant, which comprises the nucleic acids SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 23 or SEQ ID NO: 25 according to the invention or a gene construct or a vector which comprise these nucleic acid sequences according to the invention.

The present invention is illustrated in greater detail by the examples which follow, which are not to be construed as limiting.

EXAMPLES

Example 1

General Cloning Methods

The cloning methods such as, for example, restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linkage of DNA fragments, transformation of E. coli cells, bacterial cultures and the sequence analysis of recombinant DNA were carried out as described by Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6).

Example 2

Sequence Analysis of Recombinant DNA

Recombinant DNA molecules were sequenced with an ABI laser fluorescence DNA sequencer by the method of Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA74, 5463-5467). Fragments obtained by polymerase chain reaction were sequenced and verified to avoid polymerase errors in constructs to be expressed.

Example 3

Cloning of PUFA-specific Desaturases and Elongases from Phytophthora sojae

In order to search for novel genes with $\Delta 6-, \Delta 5-, \Delta 12-$, $\omega 3$-desaturase and $\Delta 6$-elongase activity, a genomic database
of Phytophthora sojae (http:/genome.jgi-psf.org/sojae/ sojae1.home.html). This database contains crude sequences which cover approximately 90% of the genomic DNA of the organism. Putative candidate genes were found for all the searched-for activities. By preparing and characterizing cDNA of these candidate genes, their correct coding open reading frames were found and the amino acid sequence was derived. It is as follows:

Gene	Enzyme function	Protein sequence	SEQ ID
D6-Des(Ps)	$\Delta 6$-desaturase	456 As	SEQ ID NO: 1
D6-Elo(Ps)	$\Delta 6$-elongase	304 As	SEQ ID NO: 3
D6-Elo(Ps)_2	$\Delta 6$-elongase	278 As	SEQ ID NO:5
D6-Elo(Ps)_3	$\Delta 6$-elongase	278 As	SEQ ID NO: 7
D5-Des(Ps)	$\Delta 5$-desaturase	498 As	SEQ ID NO:9
D12-Des(Ps)	$\Delta 12$-desaturase	398 As	SEQ ID NO: 25
O3-Des (Ps)	$\omega 3$-desaturase	363 As	SEQ ID NO: 23

To prepare cDNA, total RNA of Phytophthora sojae was isolated with the aid of the RNAeasy kit from Qiagen (Valencia, Calif., US). Poly-A+ RNA (mRNA) was isolated from the total RNA with the aid of oligo-dT cellulose (Sambrook et al., 1989). The RNA was subjected to reverse transcription using the Reverse Transcription System kit from Promega, and the synthesized cDNA was cloned into the lambda ZAP vector (lambda ZAP Gold, Stratagene). The cDNA was depackaged to give plasmid DNA, following the manufacturer's instructions. Then, the plasmid library was screened for the corresponding putative candidate genes (hybridization of bacterial clones, Sambrook et al. 1989), and positive clones were sequenced. The corresponding cDNA clones was then used for the PCR for cloning expression plasmids.

Example 4

Cloning of Expression Plasmids for the Heterologous Expression of Phytophthora sojae Genes in Yeasts

For the heterologous expression in yeasts, the corresponding sequences are amplified via PCR with corresponding specific primers and cloned into the yeast expression vector pYES2.1-TOPO (Invitrogen) following the manufacturer's instructions. Here, only those open reading frames of the genes are amplified which code for the PUFA proteins. In addition, a Kozak sequence (Cell 1986, 44:283-292) is attached at 5^{\prime} :

Gene	Base pairs	Primer	SEQ ID
D5-Des (Ps)	1497 bp	Fwd: gccatggcecccatcgagaccgac	SEQ ID NO:27
		Rvs: ttagcccatgtggacggaca	SEQ ID NO:28
D6-Des (Ps)	1371 bp	Fwd: accatggtggatggccccaagacca	SEQ ID NO: 29
		Rvs: ttacatggccgggaactcgagcagg	SEQ ID NO:30
D12-Des (Ps)	1197 bp	Fwd: gccatggegatcctgaaccegg	SEQ ID NO:31
		Rvs: tagagettgttcttgtaga	SEQ ID NO:32
O3-Des (Ps)	1092 bp	Fwd: gccatggcgtccaagcaggagca	SEQ ID NO:33
		Rvs: tcagttggecttagtcttggtcgec	SEQ ID NO:34

-continued

Gene	Base pairs	Primer	SEQ	
D6-Elo(Ps)	915 bp	Fwd: aagatggagacgacettcgcgegc	SEQ	ID NO:35
		Rvs: ttactgcgtcttcttggcgaccgcagcg	SEQ	ID NO:36
D6-Elo (Ps)_2	837 bp	Fwd: gccatggegtcggagctgctgca	SEQ	ID NO:37
		Rvs: ttagaggttcttcttggcegg	SEQ	ID NO:38
D6-Elo(Ps) 3	837 bp	Fwd: accatgteggcegacctgctgc	SEQ	ID NO:39
		Rvs: ttagagcttcttcttggc		ID NO:40

Composition of the PCR Mix ($50 \mu 1$):
$5.00 \mu \mathrm{l}$ template cDNA
$5.00 \mu 110 \times$ buffer (Advantage polymerase) $+25 \mathrm{mM} \mathrm{MgCl}_{2}$ $5.00 \mu 12 \mathrm{mM}$ dNTP
$1.25 \mu 1$ of each primer $\left(10 \mu \mathrm{~mol} / \mu \mathrm{l}\right.$ of the $5^{\prime}-\mathrm{ATG}$ and of the 3'-stop primer)
$0.50 \mu 1$ Advantage polymerase
The Advantage polymerase from Clontech is employed.
PCR Reaction Conditions:
Annealing temperature: $1 \mathrm{~min} 55^{\circ} \mathrm{C}$.
Denaturation temperature: $1 \mathrm{~min} 94^{\circ} \mathrm{C}$.
Elongation temperature: $2 \mathrm{~min} 72^{\circ} \mathrm{C}$.
Number of cycles: 35
The PCR products are incubated with the plasmid pYES2.1-TOPO (Invitrogen) following the manufacturer's instructions. Then, the incubation reactions are transformed into E. coli $\mathrm{DH} 5 \alpha-$ cells (Invitrogen), following the manufacturer's instructions. Positive clones are identified by PCR (see reaction above), and the plasmid DNA is isolated (Qiagen Dneasy). The plasmids formed are verified by sequencing and transformed by electroporation (1500 V) into the Saccharomyces strain INVSc1 (invitrogen). As a control, pYES2.1 (blank vector) is transformed in parallel. The selection of the transformed yeast is carried out on Uracil drop out complete minimal medium (CMdum) agar plates with 2% glucose. After the selection, in each case three transformants are selected for the further functional expression.

To express the genes from Phytophthora sojae, precultures of in each case 5 ml Uracil drop out CMdum liquid medium
with $2 \%(\mathrm{w} / \mathrm{v})$ raffinose are first inoculated with the selected transformants and incubated for 2 days at $30^{\circ} \mathrm{C}$., 200 rpm . Then, 5 ml CMdum liquid medium (without Uracil) with 2% raffinose and $300 \mu \mathrm{M}$ various fatty acids are inoculated with the precultures to an OD_{600} of 0.05 . Expression is induced by the addition of $2 \%(\mathrm{w} / \mathrm{v})$ galactose. The cultures are incubated for a further 96 h at $20^{\circ} \mathrm{C}$.

Example 5

Cloning of Expression Plasmids for the Seed-Specific Expression in Plants

To transform plants, further transformation vectors based on pSUN -USP were generated. To this end, NotI cleavage sites were inserted at the 5^{\prime} and 3^{\prime} end of the coding sequences, using the following primer pairs (see the following table). Composition of the PCR Mix ($50 \mu 1$):
$5.00 \mu 1$ template cDNA
$5.00 \mu 110 \times$ buffer (Advantage polymerase) $+25 \mathrm{mM} \mathrm{MgCl}_{2}$ $5.00 \mu 12 \mathrm{mM}$ dNTP
$1.25 \mu \mathrm{l}$ of each primer $(10 \mu \mathrm{~mol} / \mu \mathrm{l})$
$0.50 \mu 1$ Advantage polymerase
The Advantage polymerase from Clontech was employed. PCR Reaction Conditions:
Annealing temperature: $1 \mathrm{~min} 55^{\circ} \mathrm{C}$.
denaturing temperature: $1 \mathrm{~min} 94^{\circ} \mathrm{C}$.
Elongation temperature: $2 \min 72^{\circ} \mathrm{C}$.
Number of cycles: 35

The PCR products are incubated with the restriction enzyme NotI for 4 hours at $37^{\circ} \mathrm{C}$. The plant expression vector pSUN300-USP is incubated in the same manner. Thereafter, the PCR products and the vector, which is 7624 bp in size, are separated by agarose gel electrophoresis and the corresponding DNA fragments are excised. The DNA is purified by means of the Qiagen Gel Purification Kit following the manufacturer's instructions. Thereafter, vector and PCR products are ligated. The Rapid Ligation Kit from Roche is used for this purpose. The resulting plasmids are verified by sequencing.
pSUN300 is a derivative of plasmid pPZP (Hajdukiewicz, P, Svab, Z, Maliga, P., (1994). The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP originated from pSUN300, by inserting a USP promoter into pSUN300 in the form of an EcoRI fragment. The polyadenylation signal is that of the Ostreococcus gene from the A. tumefaciens Ti plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-code ford octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). The USP promoter corresponds to nucleotides 1 to 684 (Genbank Accession X56240), where part of the noncoding region of the USP gene is comprised in the promoter. The promoter fragment which is 684 base pairs in size was amplified by a PCR reaction following standard methods with the aid of a synthesized primer and by means of a commercially available T7 standard primer (Stratagene). (Primer sequence:
were separated on a DB- 23 capillary column ($30 \mathrm{~m}, 0.25 \mathrm{~mm}$, $0.25 \mu \mathrm{~m}$, Agilent) in a Hewlett-Packard 6850 gas chromatograph equipped with flame ionization detector. The conditions for the GLC analysis were as follows: the oven temperature was programmed from $50^{\circ} \mathrm{C}$. to $250^{\circ} \mathrm{C}$. with a rate of 5° $\mathrm{C} . / \mathrm{min}$ and finally 10 min at $250^{\circ} \mathrm{C}$. (holding).

The signals were identified by comparing the retention times with corresponding fatty acid standards (Sigma). The methodology is described for example in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293298 and Michaelson et al., 1998, FEBS Letters. 439(3):215218.

Example 7
 Functional Characterization of Phytophthora sojae Genes

The activity and substrate specificity of the individual genes can be determined after expression and feeding of various fatty acids. The substrates fed are present in large amounts in all transgenic yeasts, which demonstrate the uptake of these fatty acids into the yeasts. The transgenic yeasts reveal the synthesis of novel fatty acids, the products of the genes. This means that the genes from Phytophtora sojae can be expressed functionally.

The substrate specificity of desaturases and elongases can be determined after expression in yeast by feeding by means
$5^{\prime}-$ GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCCGGATCTGCTGGCTATGAA-3'). [SEQ ID NO:55]

The PCR fragment was recut with EcoRI/SalI and inserted into the vector pSUN 300 with OCS terminator. This gave rise to the plasmid with the name pSUN-USP, which can be employed for the transformation of plants by means of Agrobacterium tumefaciens.

Example 6

Expression of Phytophthora sojae Genes in Yeasts
Yeasts which had been transformed with the plasmid pYES2.1 or the plasmids pYES-d4Des(Ps), pYES-d5Des (Ps), pYES-d6Des(Ps), pYES-d12Des(Ps), pYES-o3Des (Ps), pYES-d6Elo(Ps), pYES-d6Elo-2(Ps) and pYES-d6Elo3(Ps) as described in Example 4 were analyzed as follows:

The yeast cells from the main cultures were harvested by centrifugation ($100 \times \mathrm{g}, 5 \mathrm{~min}, 20^{\circ} \mathrm{C}$.) and washed with 100 $\mathrm{mM} \mathrm{NaHCO} 3, \mathrm{pH} 8.0$ to remove residual medium and fatty acids. Starting with the yeast cell sediments, fatty acid methyl esters (FAMEs) were prepared by acid methanolysis. To this end, the cell sediments were incubated for one hour at $80^{\circ} \mathrm{C}$. together with 2 ml of 1 N methanolic sulfuric acid and 2% (v / v) of dimethoxypropane. The FAMEs were extracted twice with petroleum ether (PE). To remove nonderivatized fatty acids, the organic phases were washed in each case once with 2 ml of $100 \mathrm{mM} \mathrm{NaHCO}_{3}, \mathrm{pH} 8.0$ and 2 ml of distilled water. Thereafter, the PE phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated under argon and taken up in $100 \mu 1$ of PE. The samples
of various yeasts. Descriptions for the determination of the individual activities can be found in WO 93/11245 for o3-de40 saturases, WO 94/11516 for $\Delta 12$-desaturases, WO 93/06712, U.S. Pat. No. 5,614,393, U.S. Pat. No. 5,614,393, WO 96/21022, WO0021557 and WO 99/27111 for $\Delta 6$-desaturases, Qiu et al. 2001, J. Biol. Chem. 276, 31561-31566 for $\Delta 4$-desaturases, Hong et al. 2002, Lipids 37, 863-868 for $\Delta 5$-desaturases, for elongases in Zank, T. K. et al. Plant Journal 31:255-268, 2002.

The activity of the individual desaturases and elongases is calculated from the conversion rate using the formula [sub-
colony in Murashige-Skoog medium (Murashige and Skoog 1962 Physiol. Plant. 15, 473) supplemented with 3\% sucrose (3MS medium) is used. Petioles or hypocotyls of freshly germinated sterile oilseed rape plants (in each case approx. 1 cm^{2}) were incubated with a 1:50 agrobacterial dilution for $5-10$ minutes in a Petri dish. This is followed by 3 days of coincubation in the dark at $25^{\circ} \mathrm{C}$. on 3MS medium supplemented with 0.8% Bacto agar. The cultures were then grown on for 3 days at 16 hours light/ 8 hours dark, and then grown on in a weekly rhythm on MS medium supplemented with 500 $\mathrm{mg} / 1$ Claforan (cefotaxim sodium), $50 \mathrm{mg} / 1$ kanamycin, 20 $\mu \mathrm{M}$ benzylaminopurine (BAP), now supplemented with 1.6 $\mathrm{g} / 1$ of glucose. Growing shoots were transferred to MS medium supplemented with 2% sucrose, $250 \mathrm{mg} / 1$ Claforan and 0.8% Bacto agar. If no roots had developed after three weeks, 2 -indolebutyric acid was added to the medium as growth hormone for rooting.

Regenerated shoots were obtained on 2 MS medium supplemented with kanamycin and Claforan; after rooting, they were transferred to compost and, after growing on for two weeks in a controlled-environment cabinet or in the greenhouse, allowed to flower, and mature seeds were harvested and analyzed by lipid analysis for expression of the desaturase and/or elongase genes as described, for example, by Qiu et al. 2001, J. Biol. Chem. 276, 31561-31566.

b) Generation of Transgenic Linseed Plants

Transgenic linseed plants can be generated for example by the method of Bell et al., 1999, In Vitro Cell. Dev. Biol.-Plant. 35(6):456-465 by means of particle bombardment. Agrobac-teria-mediated transformations can be generated for example by the method of Mlynarova et al. (1994), Plant Cell Report 13: 282-285.

Example 9

Lipid Extraction from Seeds

The effect of the genetic modification in plants, fungi, algae, ciliates or on the production of a desired compound (such as a fatty acid) can be determined by growing the modified microorganisms or the modified plant under suitable conditions (such as those described above) and analyzing the medium and/or the cellular components for the elevated production of desired product (i.e. of the lipids or a fatty acid). These analytical techniques are known to the skilled worker and comprise spectroscopy, thin-layer chromatography, various types of staining methods, enzymatic and microbiological methods and analytical chromatography such as highperformance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, Chapter III: "Product recovery and purification", p. 469-714, VCH: Weinheim; Belter, P. A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J. F., and Cabral, J. M. S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J. A., and Henry, J. D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3;

Chapter 11, p. 1-27, VCH: Weinheim; and Dechow, F. J. (1989) Separation and purification techniques in biotechnology, Noyes Publications).

In addition to the abovementioned processes, plant lipids are extracted from plant material as described by Cahoon et al. (1999) Proc. Natl. Acad. Sci. USA 96 (22):12935-12940 and Browse et al. (1986) Analytic Biochemistry 152:141145. The qualitative and quantitative analysis of lipids or fatty acids is described by Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide-Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 pp. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952)-16 (1977) under the title: Progress in the Chemistry of Fats and Other Lipids CODEN.

In addition to measuring the end product of the fermentation, it is also possible to analyze other components of the metabolic pathways which are used for the production of the desired compound, such as intermediates and by-products, in order to determine the overall production efficiency of the compound. The analytical methods comprise measuring the amount of nutrients in the medium (for example sugars, hydrocarbons, nitrogen sources, phosphate and other ions), measuring the biomass composition and the growth, analyzing the production of conventional metabolites of biosynthetic pathways and measuring gases which are generated during the fermentation. Standard methods for these measurements are described in Applied Microbial Physiology; A Practical Approach, P. M. Rhodes and P. F. Stanbury, Ed., IRL Press, p. 103-129; 131-163 and 165-192 (ISBN: 0199635773) and references cited therein.

One example is the analysis of fatty acids (abbreviations: FAME, fatty acid methyl ester; GC-MS, gas liquid chromatography/mass spectrometry; TAG, triacylglycerol; TLC, thin-layer chromatography).

The unambiguous detection for the presence of fatty acid products can be obtained by analyzing recombinant organisms using analytical standard methods: GC, GC-MS or TLC, as described on several occasions by Christie and the references therein (1997, in: Advances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren [Gas chromatography/mass spectrometric methods], Lipide 33:343-353).

The material to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grinding or via other applicable methods. After disruption, the material must be centrifuged. The sediment is resuspended in distilled water, heated for 10 minutes at $100^{\circ} \mathrm{C}$., cooled on ice and recentrifuged, followed by extraction for one hour at $90^{\circ} \mathrm{C}$. in 0.5 M sulfuric acid in methanol with 2% dimethoxypropane, which leads to hydrolyzed oil and lipid compounds, which give transmethylated lipids. These fatty acid methyl esters are extracted in petroleum ether and finally subjected to a GC analysis using a capillary column (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, $25 \mu \mathrm{~m}, 0.32 \mathrm{~mm}$) at a temperature gradient of between $170^{\circ} \mathrm{C}$. and $240^{\circ} \mathrm{C}$. for 20 minutes and 5 minutes at $240^{\circ} \mathrm{C}$. The identity of the resulting fatty acid methyl esters must be defined using standards which are available from commercial sources (i.e. Sigma).

Plant material is initially homogenized mechanically by comminuting in a pestle and mortar to make it more amenable to extraction.

This is followed by heating at $100^{\circ} \mathrm{C}$. for 10 minutes and, after cooling on ice, by resedimentation. The cell sediment is hydrolyzed for one hour at $90^{\circ} \mathrm{C}$. with 1 M methanolic sulfuric acid and 2% dimethoxypropane, and the lipids are transmethylated. The resulting fatty acid methyl esters (FAMEs) are extracted in petroleum ether. The extracted FAMEs are analyzed by gas liquid chromatography using a capillary column (Chrompack, WCOT Fused Silica, CP-Wax- $52 \mathrm{CB}, 25 \mathrm{~m}, 0.32 \mathrm{~mm}$) and a temperature gradient of from $170^{\circ} \mathrm{C}$. to $240^{\circ} \mathrm{C}$. in 20 minutes and 5 minutes at 240° tures, for example to give 4,4-dimethoxyoxazoline derivatives (Christie, 1998) by means of GC-MS.

EQUIVALENTS

C. The identity of the fatty acid methyl esters is confirmed by comparison with corresponding FAME standards (Sigma). The identity and position of the double bond can be analyzed further by suitable chemical derivatization of the FAME mix-

Many equivalents of the specific embodiments according to the invention described herein can be identified or found by the skilled worker resorting simply to routine experiments. These equivalents are intended to be within the scope of the patent claims.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 55
<210> SEQ ID NO 1
<211> LENGTH: 1371
<212> TYPE: DNA
<213> ORGANISM: Phytophthora sojae
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1) . (1371)
<223> OTHER INFORMATION: Delta-6 desaturase
<400> SEQUENCE: 1
```

atg gtg gat ggc ccc aag acc aag cge ctc atc teg tgg cag gag atc
Met Val Asp Gly Pro Lys Thr Lys Arg Leu Ile Ser Trp Gln Glu Ile
$\begin{array}{llll}1 & 5 & 10 & 15\end{array}$
cag cag cac tcg acg tac gcc aac gcg tgg atc gtc atc cac cac aag
Gln Gln His Ser Thr Tyr Ala Asn Ala Trp Ile Val Ile His His Lys
gtc tac gac atc tcc aag tgg gac tog cac cog ggc ggc atg gtc atg
$\begin{array}{cc}\text { Val Tyr Asp Ile Ser Lys Trp Asp Ser His Pro Gly Gly Met Val Met } \\ 35 & 40\end{array}$
ctc tog cag gec ggc gag gac gec acc gac atc ttc acc gtg tgc cac
Leu Ser Gln Ala Gly Glu Asp Ala Thr Asp Ile Phe Thr Val Cys His
505560
ccg acg agc tcc tgg aag etg ctg gag cag ttc tac atc ggc gac gtg 240
$\begin{array}{ll}\text { Pro Thr Ser Ser Trp Lys Leu Leu Glu Gln Phe Tyr Ile Gly Asp Val } \\ 65 & 70\end{array}$
$\begin{array}{ll}\text { Pro Thr Ser Ser Trp Lys Leu Leu Glu Gln Phe Tyr Ile Gly Asp Val } \\ 65 & 70 \\ & 75\end{array}$
gac gag agc acg gcc ccg ggc acg acc ggc ctc teg gag gag cag aag
Asp Glu Ser Thr Ala Pro Gly Thr Thr Gly Leu Ser Glu Glu Gln Lys
Asp Glu Ser Thr Ala Pro Gly Thr Thr Gly Leu ser Glu Glu Gln Lys
gcc aag aag gcc aag acg aac gag ttc atc agc gcc tac cgc cgc ctg
Ala Lys Lys Ala Lys Thr Asn Glu Phe Ile Ser Ala Tyr Arg Arg Leu
Ala Lys Lys Ala Lys Thr Asn Glu Phe Ile Ser Ala Tyr Arg Arg Leu
cgc atc aag atc aag ggc atg ggc ctc tac gac gcg tcc atg gtc tac
Arg Ile Lys Ile Lys Gly Met Gly Leu Tyr Asp Ala Ser Met Val Tyr
$115120 \quad 125$
tac gcg tgg aag atc ctc agc acc ttc ggc att tgg atg gcc tcc gtg
288432
Tyr Ala Trp Lys Ile Leu Ser Thr Phe Gly Ile Trp Met Ala Ser Val
140
gcg atc tgc tac cac ttc gac agc tgg ccc atg tac atg ctc gcg gcc
Ala Ile Cys Tyr His Phe Asp Ser Trp Pro Met Tyr Met Leu Ala Ala
$145 r 150 \quad 155 \begin{array}{ll}160\end{array}$
tgc gtc atg $g g g$ ctc ttc tgg cag cag tog ggc tgg ctc gcg cac gac
528
Cys Val Met Gly Leu Phe Trp Gln Gln Ser Gly Trp Leu Ala His Asp
$165 \therefore 170 \quad 175$
gtg etg cac cac caa gtg tgg gac aac cac atg atc ggc aac gtc atg


```
<210> SEQ ID NO 2
<211> LENGTH: 456
<212> TYPE: PRT
<213> ORGANISM: Phytophthora sojae
<400> SEQUENCE: 2
```

Met Val Asp Gly Pro Lys Thr Lys Arg Leu Ile Ser Trp Gln Glu Ile

Arg Gly Leu Val Glu Val Val Asp Glu Leu Ala Asp Ile Ser Lys Glu
435
440
Phe Leu Leu Glu Phe Pro Ala Met
450
455
$<210>$ SEQ ID NO 3
$<211>$ LENGTH: 915
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Phytophthora sojae
$<220>$ FEATURE:
$<221>$ NAME/KEY: CDS
$<222>$ LOCATION: (1) .. 915$)$
$<223>$ OTHER INFORMATION: Delta-6 elongase
$<400>$ SEQUENCE: 3
atg gag acg acc ttc gcg cgc acg ccc aag ctg cac gac gag gtg ccg Met Glu Thr Thr Phe Ala Arg Thr Pro Lys Leu His Asp Glu Val Pro geg etg cgc tgg atg tac ceg tcc cag tac gag cge gac tgg cta cacAla Leu Arg Trp Met Tyr Pro Ser Gln Tyr Glu Arg Asp Trp Leu His$2025 \quad 30$
tat gcc tgg aac cga cgg ccc act ace ttc tct cgt atc ttc cgc cag 144 Tyr Ala Trp Asn Arg Arg Pro Thr Asn Phe Ser Arg Ile Phe Arg Gln 35 40 45
gcc atc tog tgg gag ecg ggc ttc tgc atg gag tog ctg ccc atg gcc
Ala Ile Ser Trp Glu Pro Gly Phe Cys Met Glu Ser Leu Pro Met Ala 505560
gtg gcg etg tgc gcc gce tac tge gtg ctg tgc ttc gcc gge cgc egc Val Ala Leu Cys Ala Ala Tyr Cys Val Leu Cys Phe Ala Gly Arg Arg $65 \quad 70 \quad 7580$
gtc atg cgc gac ctc aag ccc ttc aac ctc aaa gtc ccg ctc gcg ctc Val Met Arg Asp Leu Lys Pro Phe Asn Leu Lys Val Pro Leu Ala Leu 859095
tgg aac ctg gcg ctg gcc acg ttc agc gcc atc ggc gcc tcc agg acg $\begin{aligned} & \operatorname{Trp} \text { Asn Leu Ala Leu Ala Thr Phe Ser Ala Ile Gly Ala Ser Arg Thr } \\ & 100 \\ & 105\end{aligned}$
gtg ccc ttc ctc atc aac acc gtc tac cgc cgc ggc gtg tac cac tcg 384 $\begin{array}{rl}\text { Val Pro Phe Leu Ile Asn Thr Val Tyr Arg Arg Gly Val Tyr His Ser } \\ 115 & 120\end{array}$
gtg tge gcg ccg ccc acg ceg cac tac ggc cac gge ccc gtg geg ctc 432 Val Cys Ala Pro Pro Thr Pro His Tyr Gly His Gly Pro Val Ala Leu 130135140
tgg gtc atg ctc ttc atc ttc tcc aag gtg ccg gag ctc gtg gac acg $\begin{array}{lr}\text { Trp Val Met Leu Phe Ile Phe Ser Lys Val Pro Glu Leu Val Asp Thr } \\ 145 & 150 \\ 155 & 160\end{array}$ gec ttc atc gtg etg cgc aag aag ceg ctc atc ttc ctg cac tgg tac 528 $\begin{array}{rl}\text { Ala Phe Ile Val Leu Arg Lys Lys Pro Leu Ile Phe Leu His Trp Tyr } \\ 165 & 170\end{array}$ cac cac atc acc gtg ctg ctc ttc tgc tgg cac geg ttc gce acg ctc 576 His His Ile Thr Val Leu Leu Phe Cys Trp His Ala Phe Ala Thr Leu
tcg gct agc ggc ctg tac ttc gtg gcc atg aac tac tcg gtg cac gcc 195200205
atc atg tac ttc tac tac ttc ctg acg gcg tge ggc tac cga ceg cgc
210215220
tgg gct cgc ctc gtg acg atc ttc cag ctg agc cag atg ggc gtg ggc Trp Ala Arg Leu Val Thr Ile Phe Gln Leu Ser Gln Met Gly Val Gly 225230235240
gtc gce gtg tgc ggc ctc aac gtg tac tac atg aag cag ggc gcc acg Val Ala Val Cys Gly Leu Asn Val Tyr Tyr Met Lys Gln Gly Ala Thr


```
<210> SEQ ID NO 5
<211> LENGTH: }83
<212> TYPE: DNA
<213> ORGANISM: Phytophthora sojae
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1) . (837)
<223> OTHER INFORMATION: Delta-6 elongase
<400> SEQUENCE: 5
```

cac cec atg geg gac tac cog ctc gec aac ttc gec agc gtg ttc gccHis Pro Met Ala Asp Tyr Pro Leu Ala Asn Phe Ala Ser Val Phe Ala354045
atc tgc gtc ggc tac ctg ctc ttc gtc atc ttc ggc acg gcc ctg atg
Ile cys Val Gly Tyr Leu Leu Phe Val Ile Phe Gly Thr Ala Leu Met192
505560
aag atg ggc atc ccc gcc atc aag acg agc ccc atc cag ttc atc tac

Lys Met Gly Ile Pro Ala Ile Lys Thr Ser Pro Ile Gln Phe Ile Tyr	
65	70
75	80

aac ccc atc cag gtc atc gec tgc tec tac atg ttc gtg gag acc gcc
aac ccc atc cag gtc atc gcc tgc tcc tac atg ttc gtg gag acc gcc
Asn Pro Ile Gln Val Ile Ala Cys Ser Tyr Met Phe Val Glu Thr Ala

85
atc cag gcc tac egc aat ggg tac teg cca get cog tgc aac gcc ttc
100105110
Lys Thr Asp Ala Pro Val Met Gly Asn Val Leu Tyr Leu Phe Tyr Leu
$115120 \quad 125$
Ser Lys Met Leu Asp Leu Cys Asp Thr Phe Phe Ile Val Val Gly Lys
130135140
aaa tgg cgc cag ctc teg ttc ctg cac gtg tac cac cac ctc tog gtg
Lys Trp Arg Gln Leu Ser Phe Leu His Val Tyr His His Leu Ser Val
145150155160
ctg ctc atg tac tac atc gtc ttc cge gtg geg cag gac gge gac tcg
Leu Leu Met Tyr Tyr Ile Val Phe Arg Val Ala Gln Asp Gly Asp Ser
$165170 \quad 175$
tac gcg tcc gtc gtg ctc aac ggc ttc gtg cac acc atc atg tac acg
tac tac ttc gtg agc gcg cac acg cgg gac att tgg tgg aag cgc tac624
ctg acg ctc att cag ttg gtg cag ttc gtg acc atg aac gtg cag ggc
Tyr Leu Met Tyr Ser Arg Gln Cys Pro Gly Met Pro Pro Lys Ile Pro
$225 \quad 230$ Aln Cys Pro Gly Met Pro Pro Lys 11e Pror 240
atg gcg tcg gag ctg ctg cag agt tac tac gag tgg gcg aat gcc acc
Met Ala Ser Glu Leu Leu Gln Ser Tyr Tyr Glu Trp Ala Asn Ala Thr
$\begin{array}{lll}\text { Met Ala ser Glu Leu Leu Gln Ser Tyr Tyr Glu Trp Ala Asn Ala } \\ 1 & 5 & 10\end{array}$
gag atc aag gtg ctc gac tgg gtg gac ccc gaa ggc ggc tgg aag gtc
Glu Ile Lys Val Leu Asp Trp Val Asp Pro Glu Gly Gly Trp Lys Val
20
25
30 Met Ala Ser Glu Leu Leu Gln Ser Tyr Tyr Glu Trp Ala Asn Ala Thr $\begin{array}{llll}1 & 5 & 10 & 15\end{array}$
gag atc aag gtg ctc gac tgg gtg gac ccc gaa ggc ggc tgg aag gtc Glu Ile Lys Val Leu Asp Trp Val Asp Pro Glu Gly Gly Trp Lys Val 20 25
cac cec atg geg gac tac cog ctc gec aac ttc gec agc gtg ttc gcc

35	40
atc tgc gtc ggc tac etg ctc ttc gtc atc ttc ggc acg gcc etg atg	

240 240
288
336

Ile Gln Ala Tyr Arg Asn Gly Tyr Ser Pro Ala Pro Cys Asn Ala Phe Ile Gln Ala Tyr Arg Asn Gly Tyr Ser Pro Ala Pro Cys Asn Ala Phe100105110

aag acg gac geg ccc gtc atg ggc aac gtg ctc tac ctg ttc tac ctg Lys Thr Asp Ala Pro Val Met Gly Asn Val Leu Tyr Leu Phe Tyr Leu115120125

tcc aag atg ctg gac ctg tgc gac acc ttc ttc atc gtc gtg ggc aagSer Lys Met Leu Asp Leu Cys Asp Thr Phe Phe Ile Val Val Gly Lys432384480Lys Trp Arg Gln Leu Ser Phe Leu His Val Tyr His His Leu Ser Val145150155160ctg ctc atg tac tac atc gtc ttc egc gtg geg cag gac ggc gac tcg528Leu Leu Met Tyr Tyr Ile Val Phe Arg Val Ala Gln Asp Gly Asp Ser165170175tac gcg tcc gtc gtg ctc aac ggc ttc gtg cac acc atc atg tac acg576

Tyr Ala Ser Val Val Leu Asn Gly Phe Val His Thr Ile Met Tyr Thr

 \(180 \quad 185\) 190
 $\begin{array}{rrr}\text { Tyr Ala Ser Val Val Leu Asn Gly Phe val His Thr Ile Met } \\ 180 & 185 & 190\end{array}$tac tac ttc gtg agc gcg cac acg cgg gac att tgg tgg aag cgc tac

tac tac te gtg agc gcg cac acg cgg gac att tgg tgg aag cgc tac
Tyr Tyr Phe Val Ser Ala His Thr Arg Asp Ile Trp Trp Lys Arg Tyr

 \(195200 \quad 205\)
 $\begin{array}{rl}\text { Tyr Tyr Phe Val Ser Ala His Thr Arg Asp Ile Trp Trp Lys Arg Tyr } \\ 195 & 200\end{array}$ctg acg ctc att cag ttg gtg cag ttc gtg acc atg aac gtg cag ggc672

Leu Thr Leu Ile Gln Leu Val Gln Phe Val Thr Met Asn Val Gln Gly

 210

 215

 220 210 215 220
 tac ctc atg tac tcg cge cag tgc cca ggc atg cog ccc aag atc cog
tac ctc atg tac tcg cgc cag tgc cca ggc atg cog ccc aag atc cog 720

ctc atc tat etg gcc tac gtg cag teg ctc ttc tgg ctg ttc gtc aac
ctc atc tat etg gec tac gtg cag tog ctc ttc tgg ctg ttc gtc aac 768Leu Ile Tyr Leu Ala Tyr Val Gln Ser Leu Phe Trp Leu Phe Val Asn $\begin{array}{r}250 \\ 245\end{array}$ttc tac gtg egc tcg tac gtg ctc gec ccc aag aag acc aag gcg tcc816Phe Tyr Val Arg Ser Tyr Val Leu Ala Pro Lys Lys Thr Lys Ala Ser$260265 \quad 270$270

ccg gec aag aag aac ctc taa	837
Pro Ala Lys Lys Asn Leu	
275	

$<210>$ SEQ ID NO 6
$<211>$ LENGTH: 278
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Phytophthora sojae
$<400>$ SEQUENCE: 6


```
<210> SEQ ID NO 7
<211> LENGTH: }83
<212> TYPE: DNA
<213> ORGANISM: Phytophthora sojae
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1) . (837)
<223> OTHER INFORMATION: Delta-6 elongase
<400> SEQUENCE:7
```

atg teg gcc gac etg ctg cag agc tac tac gac tgg acc aac gcc acc

$<210>$ SEQ ID NO 8
$<211>$ LENGTH: 278
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Phytophthora sojae
$<400>$ SEQUENCE: 8


```
<210> SEQ ID NO 9
<211> LENGTH: 1497
<212> TYPE: DNA
<213> ORGANISM: Phytophthora sojae
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1) . (1497)
<223> OTHER INFORMATION: Delta-5 desaturase
<400> SEQUENCE: 9
```

atg gec ccc atc gag acc gac aag gec gtg agt gec aac gag gge ctg
Met Ala Pro Ile Glu Thr Asp Lys Ala Val Ser Ala Asn Glu Gly Leu
$\begin{array}{llll}1 & 5 & 10 & 15\end{array}$
cac cag cge aag ggc gec gcc tog gcc gac aag gac gcc acc tac acg
His Gln Arg Lys Gly Ala Ala Ser Ala Asp Lys Asp Ala Thr Tyr Thr
tgg cag gac gtg gcc aag cac aac acg gec aag agc gcc tgg gtc atc354045
atc cge gge gtc gtc tac gac gtc act gat act ctg aaa aca ccc caa
192
Ile Arg Gly Val Val Tyr Asp Val Thr Asp Thr Leu Lys Thr Pro Gln
505560

$<210>$ SEQ ID NO 10
$<211>$ LENGTH: 498
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Phytophthora sojae
$<400>$ SEQUENCE: 10

$<210>$ SEQ ID NO 12
$<211>$ LENGTH: 300
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Ostreococcus tauri
$<400>$ SEQUENCE: 12


```
<210> SEQ ID NO 13
<211> LENGTH: 903
<212> TYPE: DNA
<213> ORGANISM: Ostreococcus tauri
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1) .. (903)
<223> OTHER INFORMATION: Delta-5 elongase
<400> SEOUENCE: 13
```

Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met
$65 \quad 70 \quad 7580$
atg agc gcc tcc ggt gcg etg ctg cec gcg atc geg ttc gcc gcg tac
Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr
$\begin{array}{llll}1 & 5 & 10 & 15\end{array}$
geg tac gcg acg tac gcc tac gcc ttt gag tgg tog cac gcg aat ggc
Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly
$2025 \quad 30$
atc gac aac gtc gac gcg cgc gag tgg atc ggt gcg ctg tcg ttg agg
Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg
$35440 \quad 45$
ctc cog gcg atc gcg acg acg atg tac ctg ttg ttc tgc ctg gtc gga
Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly
505560
ccg agg ttg atg gcg aag cgc gag gcg ttc gac ccg aag ggg ttc atg

Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly 202530
atc gac aac gtc gac gcg cgc gag tgg atc ggt gcg ctg tcg ttg agg 144 Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 3540

45
ctc cog gcg atc gcg acg acg atg tac ctg ttg ttc tgc ctg gtc gga 192

$<210>$ SEQ ID NO 14
$<211>$ LENGTH: 300
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Ostreococcus tauri
$<400>$ SEQUENCE: 14

				85					90				95	
Met		Ala	$\begin{aligned} & \text { Arg } \\ & 100 \end{aligned}$	Glu	Ile		Gly	$\begin{aligned} & \text { Leu } \\ & 105 \end{aligned}$	Gly	Gln	Pro Val	$\begin{aligned} & \text { Trp } \\ & 110 \end{aligned}$	Gly	Ser
Thr	Met	$\begin{aligned} & \text { Pro } \\ & 115 \end{aligned}$	Trp	Ser	Asp	Arg	$\begin{aligned} & \text { Lys } \\ & 120 \end{aligned}$	Ser	Phe	Lys	$\begin{aligned} & \text { Ile Leu } \\ & 125 \end{aligned}$	Leu		Val
Trp	$\begin{aligned} & \text { Leu } \\ & 130 \end{aligned}$	His	Tyr	sn	Asn	$\begin{aligned} & \text { Lys } \\ & 135 \end{aligned}$	Tyr	Leu	Glu	Leu	$\begin{aligned} & \text { Leu Asp } \\ & 140 \end{aligned}$	Thr		Phe
Met	Val	Ala	Arg	Lys	Lys	Thr	Ly	Gln	Leu	Ser	Phe Leu	His	Va	Tyr
145					150									
His	His	Ala	Leu	$\begin{aligned} & \text { Leu } \\ & 165 \end{aligned}$	Ile	Trp	Ala	Trp	$\begin{aligned} & \operatorname{Trp} \\ & 170 \end{aligned}$	Leu	Val Cys	His	$\begin{aligned} & \text { Leu } \\ & 175 \end{aligned}$	Met
Ala	Thr	Asn	$\begin{aligned} & \text { Asp } \\ & 180 \end{aligned}$	Cys	Ile	Asp	Ala	$\begin{aligned} & \text { Tyr } \\ & 185 \end{aligned}$	Phe	Gly	Ala Ala	$\begin{aligned} & \text { Cys } \\ & 190 \end{aligned}$	Asn	Ser
Phe	Ile	His 195	Ile	Val	Met	Tyr	$\begin{aligned} & \text { Ser } \\ & 200 \end{aligned}$	Tyr	Tyr	Leu	$\begin{array}{r} \text { Met Ser } \\ 205 \end{array}$	Ala	Leu	Gly
Ile	$\begin{aligned} & \text { Arg } \\ & 210 \end{aligned}$	Cys	Pro	rp	LYs	$\begin{aligned} & \text { Arg } \\ & 215 \end{aligned}$	Tyr	Ile	Thr	Gln	$\begin{aligned} & \text { Ala Gln } \\ & 220 \end{aligned}$	Met		Gln
$\begin{aligned} & \text { Phe } \\ & 225 \end{aligned}$	Val	Ile	Val	Phe	$\begin{aligned} & \text { Ala } \\ & 230 \end{aligned}$	His	Ala	Val	Phe	$\begin{aligned} & \text { Val } \\ & 235 \end{aligned}$	Leu Arg	Gln	Lys	$\begin{aligned} & \mathrm{His} \\ & 240 \end{aligned}$
Cys	Pro	Val	Thr	$\begin{aligned} & \text { Leu } \\ & 245 \end{aligned}$	Pro	Trp	Ala	Gln	$\begin{aligned} & \text { Met } \\ & 250 \end{aligned}$	Phe	Val Met	Thr	$\begin{aligned} & \text { Asn } \\ & 255 \end{aligned}$	Met
Leu	Val	Leu	$\begin{aligned} & \text { Phe } \\ & 260 \end{aligned}$	Gly	Asn	Phe	Tyr	$\begin{aligned} & \text { Leu } \\ & 265 \end{aligned}$	Lys	Ala	Tyr Ser	$\begin{aligned} & \text { Asn } \\ & 270 \end{aligned}$		Ser
Arg	Gly	$\begin{aligned} & \text { Asp } \\ & 275 \end{aligned}$	Gly	Ala	ser	Ser	$\begin{aligned} & \text { Val } \\ & 280 \end{aligned}$	Lys	Pro	Ala	$\begin{aligned} \text { Glu Thr } \\ 285 \end{aligned}$	Thr	Arg	Ala
Pro	$\begin{aligned} & \text { Ser } \\ & 290 \end{aligned}$	Val	Arg	Arg	Thr	$\begin{aligned} & \text { Arg } \\ & 295 \end{aligned}$	Ser	Arg	Lys	Ile	$\begin{aligned} & \text { Asp } \\ & 300 \end{aligned}$			

$<210>$ SEQ ID NO 15
$<211>$ LENGTH: 1512
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Thalassiosira pseudonana
$<220>$ FEATURE:
$<221>$ NAME/KEY: CDS
$<222>$ LOCATION: (1)..(1512)
$<223>$ OTHER INFORMATION: Delta-4 desaturase
$<400>$ SEQUENCE: 15
atg tgc aac ggc aac ctc cca gca tcc acc gca cag ctc aag tcc acc
Met Cys Asn Gly Asn Leu Pro Ala Ser Thr Ala Gln Leu Lys Ser Thr $\begin{array}{lccccc}\text { Met Cys Asn Gly Asn Leu Pro Ala ser Thr Ala Gln Leu Lys Ser } \\ 1 & 5 & 10 & 15\end{array}$
tcg aag ccc cag cag caa cat gag cat cgc acc atc tcc aag tcc gag Ser Lys Pro Gln Gln Gln His Glu His Arg Thr Ile Ser Lys Ser Glu
ctc gcc caa cac aac acg ccc aaa tca gca tgg tgt gcc gtc cac tcc Leu Ala Gln His Asn Thr Pro Lys Ser Ala Trp Cys Ala Val His ser act cec gcc acc gac cea tec cac tcc aac aac aaa caa cac gea cac $\begin{array}{cc}\text { Thr Pro Ala Thr Asp Pro Ser His Ser Asn Asn Lys Gln His Ala His } \\ 50 & 55 \\ 60\end{array}$
cta gtc ctc gac att acc gac ttt geg tcc cge cat cca ggg gga gac
Leu Val Leu Asp Ile Thr Asp Phe Ala Ser Arg His Pro Gly Gly Asp 65
ctc atc ctc ctc get tcc ggc aaa gac gcc tog gtg ctg ttt gaa aca$\begin{array}{cc}\text { Leu Ile Leu Leu Ala Ser Gly Lys Asp Ala Ser Val Leu Phe Glu Thr } \\ 85 & 90\end{array}$
tac cat cca cgt gga gtt cog acg tet ctc att caa ag ctg cag att
336
Tyr His Pro Arg Gly Val Pro Thr Ser Leu Ile Gln Lys Leu Gln Ile
100105110

$<210>$ SEQ ID NO 16
$<211>$ LENGTH: 503
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Thalassiosira pseudonana
$<400>$ SEQUENCE: 16

$\begin{aligned} & \text { Met } \\ & 1 \end{aligned}$	Cys	Asn	Gly A	Asn 5	Leu		Ala	Ser	$\begin{aligned} & \text { Thr } \\ & 10 \end{aligned}$	Ala G	$\mathrm{Gln} \mathrm{~L}$	Leu L	Lys	$\begin{aligned} & \text { Ser Thr } \\ & 15 \end{aligned}$
Ser	Lys	$\text { Pro } \begin{array}{r} G \\ 2 \end{array}$	$\begin{aligned} & \mathrm{Gln} G \\ & 20 \end{aligned}$	Gln	Gln	His	$\text { Glu } \mathrm{F}$	His A 25	Arg	Thr I	Ile	er L	$\begin{aligned} & \text { Lys } \\ & 30 \end{aligned}$	Ser Glu
Leu	Ala	$\begin{aligned} & \mathrm{Gln} H \\ & 35 \end{aligned}$	His A	Asn	Thr	Pro	$\begin{aligned} & \text { Lys } \\ & 40 \end{aligned}$	Ser	Ala	$\operatorname{Trp} C$		$\begin{aligned} & \text { Ala V } \\ & 45 \end{aligned}$	Val	His Ser
Thr	$\begin{aligned} & \text { Pro } \\ & 50 \end{aligned}$	Ala	Thr A	Asp	Pro	$\begin{aligned} & \text { Ser } \\ & 55 \end{aligned}$	His	Ser	Asn	Asn $\frac{L}{6}$	$\begin{aligned} & \text { Lys } \\ & 60 \end{aligned}$	$\text { Gln } H$	His	Ala His
Leu 65	Val L	Leu A	Asp I:	Ile	$\begin{aligned} & \text { Thr } \\ & 70 \end{aligned}$	Asp	Phe	Ala	Ser	$\begin{aligned} & \text { Arg } \mathrm{H} \\ & 75 \end{aligned}$	His P	Pro	Gly	$\begin{aligned} & \text { Gly } \text { Asp } \\ & 80 \end{aligned}$
Leu	Ile L	Leu L	Leu A 8	$\begin{aligned} & \text { Ala } \\ & 85 \end{aligned}$	Ser	Gly	Lys	Asp	$\begin{aligned} & \text { Ala } \\ & 90 \end{aligned}$	Ser V	Val L	Leu	Phe	$\begin{aligned} & \text { Glu Thr } \\ & 95 \end{aligned}$
TYr	His P	Pro A	$\begin{aligned} & \text { Arg } \\ & 100 \end{aligned}$	Gly	Val	ro	$h r$	$\begin{aligned} & \text { Ser I } \\ & 105 \end{aligned}$	Leu.	Ile G	$\text { Gln } L$	$\begin{array}{r} \mathrm{Y} \\ \hline \end{array}$	$\begin{aligned} & \text { Leu } \\ & 110 \end{aligned}$	Gln Ile
Gly	Val	$\begin{aligned} & \text { Met } \\ & 115 \end{aligned}$	Glu G	Glu	Glu	Ala	$\begin{aligned} & \text { Phe } \\ & 120 \end{aligned}$	Arg	Asp	Ser	$\begin{array}{r} \text { he } \\ 1 \\ 1 \end{array}$	$\begin{aligned} & \text { Tyr } \\ & 125 \end{aligned}$	Ser	Trp Thr
Asp	$\begin{aligned} & \text { Ser } \\ & 130 \end{aligned}$	$\text { Asp } F$	Phe T	Tyr	Thr	$\begin{aligned} & \text { Val } \\ & 135 \end{aligned}$	Leu	Lys	Arg	$\begin{aligned} \text { Arg } V \\ 1 \end{aligned}$	$\begin{aligned} & \text { Val } \\ & 140 \end{aligned}$	Val	Glu	Arg Leu
$\begin{aligned} & \text { Glu } \\ & 145 \end{aligned}$	Glu	Arg G	Gly L	Leu	$\begin{aligned} & \text { Asp } \\ & 150 \end{aligned}$	Arg	Arg	Gly	Ser	$\begin{aligned} & \text { Lys G } \\ & 155 \end{aligned}$	Glu	Ile	Trp	$\begin{array}{r} \text { Ile Lys } \\ 160 \end{array}$
Ala	Leu P	Phe L	Leu $\begin{array}{r}\text { L } \\ 1\end{array}$	$\begin{aligned} & \text { Leu } \\ & 165 \end{aligned}$	Val	Gly	Phe	Trp	$\begin{aligned} & \text { Tyr } \\ & 170 \end{aligned}$	Cys L	Leu T	Tyr	Lys	$\begin{aligned} & \text { Met Tyr } \\ & 175 \end{aligned}$
Thr	Thr S	Ser $\begin{array}{r}\text { A }\end{array}$	$\begin{aligned} & \text { Asp I } \\ & 180 \end{aligned}$	Ile	Asp	Gln	TYr	$\begin{aligned} & \text { Gly } \\ & 185 \end{aligned}$	Ile	Ala	$1 e$		$\begin{aligned} & \text { Tyr } \\ & 190 \end{aligned}$	Ser Ile
Gly	Met	$\begin{aligned} & \text { Gly T } \\ & 195 \end{aligned}$	Thr Pl	Phe	Ala	la	Phe 200	Ile	Gly	Thr	$\begin{array}{r} \mathrm{y} \\ \hline \end{array}$	Ile 205	Gln	His Asp
Gly	$\begin{aligned} & \text { Asn } \\ & 210 \end{aligned}$	His	Gly A	Ala	Phe	$\begin{gathered} \text { Ala } \\ 215 \end{gathered}$	Gln	Asn	Lys	Leu 2	$\begin{aligned} & \text { Leu } \\ & 220 \end{aligned}$	Asn	Lys	Leu Ala
$\begin{aligned} & \text { Gly } \\ & 225 \end{aligned}$	Trp	Thr L	Leu A	Asp	$\begin{aligned} & \text { Met } \\ & 230 \end{aligned}$	Ile	Gly	Ala	Ser	$\begin{aligned} & \text { Ala P } \\ & 235 \end{aligned}$	Phe	Thr	Trp	$\begin{aligned} & \text { Glu } \text { Leu } \\ & 240 \end{aligned}$
Gln	His	Met L	Leu 24	$\begin{aligned} & \text { Gly } \\ & 245 \end{aligned}$	His	His	Pro	Tyr	$\begin{aligned} & \text { Thr } \\ & 250 \end{aligned}$	Asn V	Val	Leu A	Asp	$\begin{aligned} & \text { Gly Val } \\ & 255 \end{aligned}$
Glu	Glu	Glu	$\begin{aligned} & \text { Arg L } \\ & 260 \end{aligned}$	Lys	Glu		Gly	$\begin{aligned} & \text { Glu } \\ & 265 \end{aligned}$	Asp	Val A	Ala	Leu	$\begin{aligned} & \text { Glu } \\ & 270 \end{aligned}$	Glu Lys

Asp	$\operatorname{Gln} \begin{array}{r} A \\ 2 \end{array}$	$\begin{aligned} & \text { Asp } \\ & 275 \end{aligned}$	Phe			Ala	$\begin{aligned} & \text { Thr } \\ & 280 \end{aligned}$	Ser	Gly	Arg I	Leu	$\begin{aligned} & \text { Tyr } \\ & 285 \end{aligned}$	His		
Ala	$\begin{aligned} & \text { Asn V } \\ & 290 \end{aligned}$	Val	$\text { Arg } \mathrm{T}$	Tyr	Gly	$\begin{aligned} & \text { Ser } \\ & 295 \end{aligned}$	Val	Trp	Asn	Val	$\begin{aligned} & \text { Met } \\ & 300 \end{aligned}$	Arg	Phe	Trp	Ala
$\begin{aligned} & \text { Met } \\ & 305 \end{aligned}$	Lys V	Val	Ile T	Thr	$\begin{aligned} & \text { Met } \\ & 310 \end{aligned}$	Gly	Tyr	Met	Met	$\begin{aligned} & \text { Gly I } \\ & 315 \end{aligned}$	Leu	Pro	Ile	Tyr	$\begin{aligned} & \text { Phe } \\ & 320 \end{aligned}$
His	Gly V	Val	Leu A	$\begin{aligned} & \text { Arg } \\ & 325 \end{aligned}$	Gly	Val	Gly	Leu	$\begin{aligned} & \text { Phe } \\ & 330 \end{aligned}$	Val	Ile	Gly	His	$\begin{aligned} & \text { Leu } \\ & 335 \end{aligned}$	Ala
Cys	Gly G	Glu	$\begin{aligned} & \text { Leu L } \\ & 340 \end{aligned}$	Leu	Ala	Thr	Met	Phe 345	Ile	Val A	Asn	His	$\begin{aligned} & \text { Val } \\ & 350 \end{aligned}$	Ile	Glu
Gly	Val	$\begin{aligned} & \text { Ser } \\ & 355 \end{aligned}$	Tyr G	Gly	Thr	Lys	$\begin{aligned} & \text { Asp } \\ & 360 \end{aligned}$	Leu	Val	Gly	Gly	$\begin{aligned} & \text { Ala } \\ & 365 \end{aligned}$		His	Val
Asp	$\begin{aligned} & \text { Glu L } \\ & 370 \end{aligned}$	Lys	Lys I	Ile	Val	$\begin{aligned} & \text { Lys } \\ & 375 \end{aligned}$	Pro	Thr	Thr	Val	$\begin{aligned} & \text { Leu } \\ & 380 \end{aligned}$	Gly	Asp	Thr	Pro
$\begin{aligned} & \text { Met } \\ & 385 \end{aligned}$	Val L	Lys	Thr A	Arg	$\begin{aligned} & \text { Glu } \\ & 390 \end{aligned}$	Glu	Ala	Leu	Lys	$\begin{aligned} & \text { Ser A } \\ & 395 \end{aligned}$	Asn	Ser	Asn	Asn	$\begin{aligned} & \text { Asn } \\ & 400 \end{aligned}$
Lys	Lys L	Lys	Gly	$\begin{aligned} & \text { Glu } \\ & 405 \end{aligned}$	Lys	Asn	Ser	Val	$\begin{aligned} & \text { Pro } \\ & 410 \end{aligned}$	Ser	Val	Pro	Phe	$\begin{aligned} & \text { Asn } \\ & 415 \end{aligned}$	Asp
Trp	Ala A	Ala	Val 420	Gln	Cys	Gln	Thr	$\begin{aligned} & \text { Ser } \\ & 425 \end{aligned}$	Val	$\text { Asn } 1$	Trp	Ser	$\begin{aligned} & \text { Pro } \\ & 430 \end{aligned}$	Gly	Ser
Trp	Phe	$\begin{aligned} & \text { Trp } \\ & 435 \end{aligned}$	Asn H	His	Phe	Ser	$\begin{aligned} & \mathrm{Gly} \\ & 440 \end{aligned}$	Gly	Leu	Ser	His	$\begin{aligned} & \text { Gln } \\ & 445 \end{aligned}$	Ile	Glu	His
His	$\begin{aligned} & \text { Leu P } \\ & 450 \end{aligned}$	Phe	Pro S	Ser	Ile	$\begin{aligned} & \text { Cys } \\ & 455 \end{aligned}$	His	Thr	Asn	$\begin{array}{rr} \text { Tyr } \\ 4 \end{array}$	$\begin{aligned} & \text { Cys } \\ & 460 \end{aligned}$	His	Ile	Gln	Asp
$\begin{aligned} & \text { Val } \\ & 465 \end{aligned}$	Val	Glu	Ser T	Thr	$\begin{aligned} & \text { Cys } \\ & 470 \end{aligned}$	Ala	Glu	Tyr	Gly	$\begin{aligned} & \text { Val E } \\ & 475 \end{aligned}$	Pro	Tyr	Gln	Ser	$\begin{aligned} & \text { Glu } \\ & 480 \end{aligned}$
Ser	Asn L	Leu	Phe V	$\begin{aligned} & \mathrm{Val} \\ & 485 \end{aligned}$	Ala	TYr	Gly	Lys	$\begin{aligned} & \text { Met } \\ & 490 \end{aligned}$	Ile S	Ser	His	Leu	$\begin{aligned} & \text { Lys } \\ & 495 \end{aligned}$	Phe
Leu	Gly L	Lys	$\begin{aligned} & \text { Ala L } \\ & 500 \end{aligned}$	Lys	CYs	Glu									

```
<210> SEQ ID NO 17
<211> LENGTH: 1611
<212> TYPE: DNA
<213> ORGANISM: Ostreococcus tauri
<220> FEATURE.
<221> NAME/KEY: CDS
<222> LOCATION: (1) ..(1611)
<223> OTHER INFORMATION: Delta-4 desaturase
<400> SEQUENCE: 17
```

atg tac ctc gga cgc ggc cgt ctc gag agc ggg acg acg cga ggg atg
Met Tyr Leu Gly Arg Gly Arg Leu Glu Ser Gly Thr Thr Arg Gly Met
1 5 10 15
atg cgg acg cac gcg cgg cga ccg tcg acg acg tcg aat ccg tgc gcg
Met Arg Thr His Ala Arg Arg Pro Ser Thr Thr Ser Asn Pro Cys Ala
cgg tca cgc gtg cgt aag acg acg gag cga tcg ctc gcg cga gtg cga
Arg Ser Arg Val Arg Lys Thr Thr Glu Arg Ser Leu Ala Arg Val Arg
cga tog acg agt gag aag gga agc geg ctc gtg ctc gag cga gag agc

Arg Ser Thr Ser Glu Lys | Gly |
| :---: |
| 50 |

gaa cgg gag aag gag gag gga ggg aa gcg cga gcg gag gga ttg cga240$\begin{array}{lll}\text { Glu Arg Glu Lys Glu Glu Gly Gly Lys Ala Arg Ala Glu Gly Leu Arg } \\ 65 & 70 & 75\end{array}$
ttc caa cge cog gac gtc gec geg cog ggg gga geg gat cet tgg aac Phe Gln Arg Pro Asp Val Ala Ala Pro Gly Gly Ala Asp Pro Trp Asn 859095

$<210>$ SEQ ID NO 18
$<211>$ LENGTH: 536
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Ostreococcus tauri
$<400>$ SEQUENCE: 18

Asp	$\begin{gathered} \text { Gly } \\ 210 \end{gathered}$	Asp	Asp	Ser	Gly	$\begin{aligned} & \text { Phe } \\ & 215 \end{aligned}$	Arg A	Arg	Leu	Leu	$\begin{aligned} & \text { Leu } \\ & 220 \end{aligned}$	Met			Thr
$\begin{aligned} & \text { TYr } \\ & 225 \end{aligned}$	Ser	Leu	Pro	Gly	$\begin{aligned} & \mathrm{Val} \\ & 230 \end{aligned}$	Pro	Phe	Arg	Leu	$\begin{aligned} & \text { Pro } \\ & 235 \end{aligned}$	Pro	Arg	Val	Ser	$\begin{aligned} & \text { Arg } \\ & 240 \end{aligned}$
Gly	Arg	Gly	Leu	$\begin{aligned} & \text { Val } \\ & 245 \end{aligned}$	Ser	Arg	he A	Arg	$\begin{aligned} & \mathrm{His} \\ & 250 \end{aligned}$	Cys	la	sn	His	$\begin{aligned} & \text { Gly } \\ & 255 \end{aligned}$	Ala
Met	Ser	Pro	$\begin{aligned} & \text { Ser } \\ & 260 \end{aligned}$	Pro	Ala	Val	sn 2	$\begin{aligned} & \text { Gly } \\ & 265 \end{aligned}$	Val	eu	Gly	Leu	$\begin{aligned} & \text { Thr } \\ & 270 \end{aligned}$	Asn	Asp
Leu	Ile	$\begin{array}{ll} \mathrm{Gly} \\ 275 \end{array}$	Gly	Ser	er	Leu	$\begin{aligned} & \text { Met } \\ & 280 \end{aligned}$	Trp	$A r g$	Tyr	is	$\begin{gathered} \text { His } \\ 285 \end{gathered}$	Gln	Val	Ser
His	$\begin{aligned} & \mathrm{His} \\ & 290 \end{aligned}$	Ile	is	Cys	sn	$\begin{aligned} & \text { Asp } \\ & 295 \end{aligned}$	Asn A	Ala	et	Asp	$\begin{aligned} & G \ln F \\ & 300 \end{aligned}$	Asp	Val	Tyr	Thr
$\begin{aligned} & \text { Ala } \\ & 305 \end{aligned}$	Met	Pro	Leu	Leu	$\begin{gathered} \text { Arg } \\ 310 \end{gathered}$	Phe	$\text { Asp } A$	Ala	Arg	$\begin{aligned} & \text { Arg } \\ & 315 \end{aligned}$	Pro	Lys	Ser	$\operatorname{Tr} p$	$\begin{aligned} & \text { Tyr } \\ & 320 \end{aligned}$
His	Arg	Phe	Gln	$\begin{aligned} & \text { Gln } \\ & 325 \end{aligned}$	Trp	Tyr	et	Phe	$\begin{aligned} & \text { Leu } \\ & 330 \end{aligned}$	Ala	Phe	Pro	Leu	$\begin{aligned} & \text { Leu } \\ & 335 \end{aligned}$	Gln
Val	Ala	Phe	$\begin{aligned} & \mathrm{Gln} \\ & 340 \end{aligned}$	Val	1 l	Asp	$\text { Ile } \begin{array}{r} \mathrm{A} \\ 3 \end{array}$	$\begin{aligned} & \text { Ala } \\ & 345 \end{aligned}$	Ala	u	Phe	'hr	$\begin{aligned} & \text { Arg } \\ & 350 \end{aligned}$	Asp	Thr
Glu	Gly	$\begin{aligned} & \text { Ala } \\ & 355 \end{aligned}$	Lys	Leu	is	Gly	$\begin{aligned} & \text { Ala T } \\ & 360 \end{aligned}$	Thr	Thr	$r p$	Glu	$\begin{aligned} & \text { Leu } \\ & 365 \end{aligned}$	Thr	Thr	Val
Val	$\begin{aligned} & \text { Leu } \\ & 370 \end{aligned}$	Gly L	Lys		1	$\begin{aligned} & \text { His I } \\ & 375 \end{aligned}$	Phe	Gly	Leu	Leu	$\begin{aligned} & \text { Leu } \\ & 380 \end{aligned}$	$1 Y$	Pro	Leu	Met
$\begin{aligned} & \text { Asn } \\ & 385 \end{aligned}$	His	Ala	1		$\begin{aligned} & \text { Ser } \\ & 390 \end{aligned}$	Val	Leu L	Leu	Gly	$\begin{aligned} & \text { Ile } \\ & 395 \end{aligned}$	Val	Gly	Phe	Met	$\begin{aligned} & \text { Ala } \\ & 400 \end{aligned}$
Cys	Gln	Gly	Ile	$\begin{aligned} & \mathrm{Val} \\ & 405 \end{aligned}$	Leu	Ala	Cys	Thr	Phe 410	Ala	Val	Ser	His	$\begin{aligned} & \text { Asn } \\ & 415 \end{aligned}$	Val
Ala	Glu	Ala	$\begin{aligned} & \text { Lys } \\ & 420 \end{aligned}$	Ile	Pro	Glu	$\begin{array}{ll} \text { Asp } & T \\ 4 \end{array}$	$\begin{aligned} & \text { Thr } \\ & 425 \end{aligned}$	Gly	Gly	Glu	Ala	$\begin{aligned} & \text { Trp } \\ & 430 \end{aligned}$	Glu	Arg
Asp	Trp	$\begin{aligned} & \text { Gly } \\ & 435 \end{aligned}$	Val	Gln	$1 n$	Leu	$\begin{aligned} & \text { Val } \\ & 440 \end{aligned}$	Thr	Ser	Ala	Asp	$\begin{aligned} & \operatorname{Trp} \\ & 445 \end{aligned}$	Gly	Gly	Lys
Ile	$\begin{aligned} & \text { Gly } \\ & 450 \end{aligned}$	Asn	Phe	e	hr	$\begin{aligned} & \text { Gly } \\ & 455 \end{aligned}$	Gly L	Leu	Asn	Leu	$\begin{aligned} & \mathrm{Gln} \\ & 460 \end{aligned}$	Val	Glu	His	His
$\begin{aligned} & \text { Leu } \\ & 465 \end{aligned}$	Phe	ro	$1 a$	Ile	$\begin{aligned} & \text { Cys } \\ & 470 \end{aligned}$	Phe	al	His	Tyr	$\begin{aligned} & \text { Pro } \\ & 475 \end{aligned}$	Asp	Ile	Ala	Lys	$\begin{aligned} & \text { Ile } \\ & 480 \end{aligned}$
Val	Lys	Glu	Glu	$\begin{aligned} & \text { Ala } \\ & 485 \end{aligned}$	Ala	Lys	Leu A	Asn	$\begin{aligned} & \text { Ile } \\ & 490 \end{aligned}$	Pro	Tyr	Ala	Ser	$\begin{aligned} & \text { Tyr } \\ & 495 \end{aligned}$	Arg
Thr	Leu	Pro	$\begin{aligned} & \text { Gly } \\ & 500 \end{aligned}$	Ile	Phe	Val	Gln	Phe 505	Trp	Arg	Phe	Met	$\begin{aligned} & \text { Lys } \\ & 510 \end{aligned}$	Asp	Met
Gly	Thr	$\begin{aligned} & \text { Ala } \\ & 515 \end{aligned}$	Glu	Gln	Ile	Gly	$\begin{aligned} & \mathrm{Glu} \\ & 520 \end{aligned}$	Val	Pro	Leu	Pro	$\begin{aligned} & \text { Lys } \\ & 525 \end{aligned}$	Ile		Asn
Pro	$\begin{gathered} \mathrm{Gln} \\ 530 \end{gathered}$	Leu	Ala	Pro	Lys	$\begin{aligned} & \text { Leu } \\ & 535 \end{aligned}$									

$<210>$ SEQ ID NO 19
$<211>$ LENGTH: 1548
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Thraustochytrium
$<220>$ FEATURE:
$<221>$ NAME/KEY: CDS
$<222>$ LOCATION: (1) .. (1548)
$<223>$ OTHER INFORMATION: Delta-4 desaturase
$<400>$ SEQUENCE: 19
atg acg gtc ggg ttt gac gaa acg gtg act atg gac acg gtc cgc aac
Met Thr Val Gly Phe Asp Glu Thr Val Thr Met Asp Thr Val Arg Asn $1 \begin{array}{llll}1 & 5 & 10 & 15\end{array}$
cac aac atg cog gac gac gcc tgg tge geg atc cac ggc acc gtg tac

$<210>$ SEQ ID NO 20
$<211>$ LENGTH: 515
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Thraustochytrium
$<400>$ SEQUENCE : 20


```
<210> SEQ ID NO 21
<211> LENGTH: 1626
<212> TYPE: DNA
<213> ORGANISM: Euglena gracilis
<220> FEATURE:
```



```
<210> SEQ ID NO 23
<211> LENGTH: 1092
<212> TYPE: DNA
<213> ORGANISM: Phytophthora sojae
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1) .. (1092)
<223> OTHER INFORMATION: Omega-3 desaturase
<400> SEQUENCE: 23
```

atg geg tcc aag cag gag cag cog tac cag ttc cog acg ctg acg gag
Met Ala Ser Lys gln Glu Gln Pro Tyr Gln Phe Pro Thr Leu Thr Glu
$\begin{array}{lllll}1 & 5 & 10 & 15\end{array}$
atc aag cgc teg etg cec agc gag tgt ttc gag geg tcc gtg ceg ctc
Ile Lys Arg Ser Leu Pro Ser Glu Cys Phe Glu Ala Ser Val Pro Leu
20 25 20
tcg ctc tac tac acg gtg cgc tgc etg gtg atc gec gtg tcg ctg gcc
Ser Leu Tyr Tyr Thr Val Arg Cys Leu Val Ile Ala Val Ser Leu Ala
354045
Phe Gly Leu His His Ala Arg ser Leu Pro Val Val Glu Gly Leu Trp
505560
gcg ctg gac gce gcg ctc tgc acg ggc tac gtg ctg ctg cag ggc atc
Ala Leu Asp Ala Ala Leu Cys Thr Gly Tyr Val Leu Leu Gln Gly Ile
$65 \quad 70 \quad 7580$Ile Lys Arg Ser Leu Pro Ser Glu Cys Phe Glu Ala Ser Val Pro Leu
20Ser Leu Tyr Tyr Thr Val Arg Cys Leu Val Ile Ala Val ser Leu Ala

ttc ggg ctc cac cac geg cgc tcg ctg ccc gtg gtc gag ggc ctc tggttc ggg ctc cac cac gcg cgc tcg ctg ccc gtg gtc gag ggc ctc tgg
Phe Gly Leu His His Ala Arg Ser Leu Pro Val Val Glu Gly Leu Trp505560240

gtg ttc tgg ggc ttc ttc acc gtg ggc cat gac gcc ggc cac ggc gcc
gtg ttc tgg ggc ttc ttc acc gtg ggc cat gac gec ggc cac ggc gcc 288
Val Phe Trp Gly Phe Phe Thr Val Gly His Asp Ala Gly His Gly Ala
85
ttc teg cgc tac cac ctg ctc aac ttc gtg atc ggc acc ttc atc cacPhe Ser Arg Tyr His Leu Leu Asn Phe Val Ile Gly Thr Phe Ile His100105110tcg ctc atc ctg acg cec ttc gag teg tgg aag ctc acg cac cgc cacSer Leu Ile Leu Thr Pro Phe Glu Ser Trp Lys Leu Thr His Arg His$115120 \quad 125$
cac cac aag aac acg ggc aac atc gac cgc gac gag atc ttc tac cogHis His Lys Asn Thr Gly Asn Ile Asp Arg Asp Glu Ile Phe Tyr Pro130135140
cag cgc aag gec gac gac cac cog ctc teg cgt aac ctc atc ctg gegGln Arg Lys Ala Asp Asp His Pro Leu Ser Arg Asn Leu Ile Leu Ala$145 r 150 \quad 155 \quad 160$ctg ggc gcc geg tgg ttc gcc tac etg gtc gag ggc ttc ecg ceg cgcLeu Gly Ala Ala Trp Phe Ala Tyr Leu Val Glu Gly Phe Pro Pro Arg$\begin{array}{rrr}165 & 170 & 175\end{array}$
aag gtc aac cac ttc aac ccg ttc gag ccg ctg ttc gtc cgc cag gtg576
Lys Val Asn His Phe Asn Pro Phe Glu Pro Leu Phe Val Arg Gln Val 180185190tce gcc gtg gtc atc teg ctg gcc gcg cac ttc ggc gtg gcc gcg ctg624
Ser Ala Val Val Ile ser Leu Ala Ala His Phe Gly Val Ala Ala Leu195200205
tcc atc tac ctg agc ctg cag ttc ggc ttc aag acc atg gct atc tacSer Ile Tyr Leu Ser Leu Gln Phe Gly Phe Lys Thr Met Ala Ile Tyr210 215 220672

$<210>$ SEQ ID NO 24
$<211>$ LENGTH: 363
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Phytophthora sojae
$<400>$ SEQUENCE: 24


```
<210> SEQ ID NO 25
<211> LENGTH: 1197
<212> TYPE: DNA
<213> ORGANISM: Phytophthora sojae
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1) .. (1197)
<223> OTHER INFORMATION: Delta-12 desaturase
<400> SEQUENCE: 25
```

atg gcg atc ctg aac ceg gag gcc gac tcg gcc gec aat ctg gcc acc
Met Ala Ile Leu Asn Pro Glu Ala Asp Ser Ala Ala Asn Leu Ala Thr
1501015
gac agc gag gec aag cag cgc cag ctc gcg gag gec ggc tac acg cac
Asp Ser Glu Ala Lys Gln Arg Gln Leu Ala Glu Ala Gly Tyr Thr His
$20 \quad 25 \quad 30$
gtg gag ggc gcg cog geg cea ctg cog ctg gag etg ccg cac ttc tcg 144
Val Glu Gly Ala Pro Ala Pro Leu Pro Leu Glu Leu Pro His Phe Ser
$35840 \quad 45$
ctg cgc gac etg cgc gcc gcc atc ccc aag cac tgc ttc gag cgc tog
$\begin{array}{cc}\text { Leu Arg Asp Leu Arg Ala Ala Ile Pro Lys His Cys Phe Glu Arg Ser } \\ 50 & 55 \\ 60\end{array}$
ttc gtc acg tcc acg tac tac atg atc aag aac gtg ctc acg tgc gcc
$\begin{array}{ll}\text { Phe Val Thr Ser Thr Tyr Tyr Met Ile Lys Asn Val Leu Thr Cys Ala } \\ 65 & 70 \\ 75 & 75\end{array}$
geg etc ttc tac geg gec acc ttc atc gac cge geg ggc gec gcc gcc
$\begin{array}{rc}\text { Ala Leu Phe Tyr Ala Ala Thr Phe Ile Asp Arg Ala Gly Ala Ala Ala } \\ 85 & 90\end{array}$
tac gtg ctg tgg cec gtg tac tgg ttc ttc cag ggc agc tac ctc acg
Tyr val Leu Trp Pro val Tyr Trp Phe Phe Gln Gly Ser Tyr Leu Thr192$\begin{array}{cc}\text { Leu Arg Asp Leu Arg Ala Ala Ile Pro Lys His Cys Phe Glu Arg Ser } \\ 50 & 55 \\ 60\end{array}$240Phe Val Thr Ser Thr Tyr Tyr Met Ile Lys Asn Val Leu Thr Cys Ala
65
70288
Ala Leu Phe Tyr Ala Ala Thr Phe Ile Asp Arg Ala Gly Ala Ala Ala
85tac gtg ctg tgg cec gtg tac tgg ttc ttc cag ggc agc tac ctc acg336

ggc gtc tgg gtc atc geg cac gag tgt ggc cac cag gcc tac tgc tog
ggc gtc tgg gtc atc geg cac gag tgt ggc cac cag gcc tac tgc tog 384
Gly Val Trp Val Ile Ala His Glu Cys Gly His Gln Ala Tyr Cys Ser

agc gag gtc gtc aac aac ctc atc ggc ctc gta etg cac teg gcg ctg 432Ser Glu Val Val Asn Asn Leu Ile Gly Leu Val Leu His Ser Ala Leu

$<210>$ SEQ ID NO 26
$<211>$ LENGTH: 398
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Phytophthora sojae
$<400>$ SEQUENCE: 26

		35				40					45			
Leu	$\begin{aligned} & \text { Arg } \\ & 50 \end{aligned}$	Asp	Leu Arg	Ala	$\begin{aligned} & \text { Ala } \\ & 55 \end{aligned}$	Ile	Pro	Lys	Hi	$\begin{aligned} & \text { Cys } \\ & 60 \end{aligned}$	Phe		Arg	Ser
Phe 65	Val	Thr	Ser Thr	$\begin{aligned} & \text { Tyr } \\ & 70 \end{aligned}$	Tyr	Met	Ile	Lys	$\begin{aligned} & \text { Asr } \\ & 75 \end{aligned}$	Val	Leu	Thr	Cys	Ala 80
Ala	Leu	Phe	$\begin{gathered} \text { Tyr Ala } \\ 85 \end{gathered}$	Ala	Thr	Phe		$\text { Asp } A$ 90		Ala	Gly	Ala	$\begin{aligned} & \text { Ala } \\ & 95 \end{aligned}$	Ala
Tyr	Val	eu	$\begin{aligned} & \text { Trp Pro } \\ & 100 \end{aligned}$	Val	Tyr	$\operatorname{Tr} p$	$\begin{aligned} & \text { Phe } \\ & 105 \end{aligned}$	Phe		Gly	Ser	$\begin{aligned} & \text { Tyr } \\ & 110 \end{aligned}$	Leu	Thr
Gly	Val	$\begin{aligned} & \operatorname{Trp} \\ & 115 \end{aligned}$	Val Ile	Ala	His	$\begin{aligned} & \text { Glu } \\ & 120 \end{aligned}$	Cys	Gly	H	Gln	$\begin{aligned} & \text { Ala } \\ & 125 \end{aligned}$	TYr	Cy	Ser
Ser	$\begin{aligned} & \text { Glu } \\ & 130 \end{aligned}$	al	Val Asn	Asn	$\begin{aligned} & \text { Leu } \\ & 135 \end{aligned}$	Ile	Gly	eu	Va	$\begin{aligned} & \text { Leu } \\ & 140 \end{aligned}$	His		Al	Leu
$\begin{aligned} & \text { Leu } \\ & 145 \end{aligned}$	Val	Pro	Tyr His	$\begin{aligned} & \text { ser } \\ & 150 \end{aligned}$	Trp	Arg	Ile	Ser	$\begin{aligned} & \text { His } \\ & 159 \end{aligned}$	Arg	LYs	His	His	$\begin{aligned} & \text { Ser } \\ & 160 \end{aligned}$
Asn	Thr	Gly	$\begin{array}{r} \text { Ser Cys } \\ 165 \end{array}$	Glu	Asn	Asp	Glu	$\begin{aligned} & \text { Val F } \\ & 170 \end{aligned}$	Ph	Val	Pro	Val	$\begin{aligned} & \text { Thr } \\ & 175 \end{aligned}$	Arg
Ser	Val	eu	$\begin{aligned} & \text { Ala Ser } \\ & 180 \end{aligned}$	Ser	Trp	Asn	$\begin{aligned} & \text { Glu } \\ & 185 \end{aligned}$	Thr	Le	Glu	Asp	$\begin{aligned} & \text { Ser } \\ & 190 \end{aligned}$	Pr	Leu
Tyr	Gln	$\begin{aligned} & \text { Leu } \\ & 195 \end{aligned}$	Tyr Arg	Ile	al	$\begin{aligned} & \text { Tyr } \\ & 200 \end{aligned}$	Met	Leu		Va	$\begin{aligned} & \text { Gly } \\ & 205 \end{aligned}$	Trp	Met	Pro
Gly	$\begin{aligned} & \text { Tyr } \\ & 210 \end{aligned}$	Leu	Phe Phe	Asn	$\begin{gathered} \text { Ala } \\ 215 \end{gathered}$	Thr	Gly	Pro T	Th	$\begin{aligned} & \text { Lys } \\ & 220 \end{aligned}$	TYr	Trp	Gly	LYs
$\begin{aligned} & \text { Ser } \\ & 225 \end{aligned}$	Arg	Ser	His Phe	$\begin{aligned} & \text { Asn } \\ & 230 \end{aligned}$	Pro	TYr	Ser	$1 \mathrm{a}$	$\begin{aligned} & \text { Il } \\ & 235 \end{aligned}$	Tyr	Ala	Asp	Arg	$\begin{aligned} & \text { Glu } \\ & 240 \end{aligned}$
Arg	Trp	Met	$\begin{array}{r} \text { Ile Val } \\ 245 \end{array}$	Leu	Ser	Asp		$\begin{aligned} & \text { Phe } \\ & 250 \end{aligned}$		Val	Ala	Met	$\begin{aligned} & \text { Leu } \\ & 255 \end{aligned}$	Ala
Val	Leu	Ala	$\begin{aligned} & \text { Ala Leu } \\ & 260 \end{aligned}$	Val	His	Thr	$\begin{aligned} & \text { Phe } \\ & 265 \end{aligned}$	Ser	Phe	Asn	Thr	$\begin{aligned} & \text { Met } \\ & 270 \end{aligned}$	Val	Lys
Phe	Tyr	$\begin{aligned} & \text { Val } \\ & 275 \end{aligned}$	Val Pro	Tyr	Phe	$\begin{aligned} & \text { Ile } \\ & 280 \end{aligned}$	Val	Asn	Ala	Tyr	$\begin{aligned} & \text { Leu } \\ & 285 \end{aligned}$	Val	Leu	Ile
Thr	$\begin{aligned} & \text { Tyr } \\ & 290 \end{aligned}$	Leu	Gln His	Thr	$\begin{aligned} & \text { Asp } \\ & 295 \end{aligned}$	Thr	Tyr	Ile	Pr	$\begin{aligned} & \text { His } \\ & 300 \end{aligned}$	Phe	Arg	Glu	Gly
$\begin{aligned} & \mathrm{Glu} \\ & 305 \end{aligned}$	Trp	sn	Trp Leu	$\begin{aligned} & \text { Arg } \\ & 310 \end{aligned}$	Gly	Ala	Leu	Cys	$\begin{aligned} & \text { Thr } \\ & 315 \end{aligned}$	Val	Asp	Arg		Phe 320
Gly	Pro	Phe	$\begin{array}{r} \text { Leu Asp } \\ 325 \end{array}$	Ser V	Val	Val	His	$\begin{aligned} & \text { Arg } \\ & 330 \end{aligned}$	II	Val	Asp	Thr	$\begin{aligned} & \text { His } \\ & 335 \end{aligned}$	Val
Cys	His	His	$\begin{aligned} & \text { Ile Phe } \\ & 340 \end{aligned}$	Ser	Lys	Met	$\begin{aligned} & \text { Pro } \\ & 345 \end{aligned}$	Phe	TYr	His	Cys	$\begin{aligned} & \text { Glu } \\ & 350 \end{aligned}$	Glu	Ala
Thr	Asn	$\begin{aligned} & \text { Ala } \\ & 355 \end{aligned}$	Ile Lys	Pro	Leu	$\begin{aligned} & \text { Leu } \\ & 360 \end{aligned}$	Gly	Lys	Phe	Tyr	$\begin{aligned} & \text { Leu } \\ & 365 \end{aligned}$	Lys	Asp	Thr
Thr	$\begin{aligned} & \text { Pro } \\ & 370 \end{aligned}$	Val	Pro Val	Ala	Leu 375	Trp	Arg	Ser	TY	$\begin{aligned} & \text { Thr } \\ & 380 \end{aligned}$	His	Cys	Lys	Phe
$\begin{aligned} & \text { Val } \\ & 385 \end{aligned}$	Glu	Asp	Asp Gly L	$\begin{aligned} & \text { Lys } \\ & 390 \end{aligned}$	Val	Val	Phe	Tyr	Lys 395	Asn	Lys	Leu		

```
<210> SEQ ID NO 27
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) .. (24)
<223> OTHER INFORMATION: primer
```

```
<400> SEQUENCE: 27
gccatggcec ccatcgagac cgac 24
\(<210>\) SEQ ID NO 28
\(<211>\) LENGTH: 20
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: unknown
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: artificial sequence
\(<400>\) SEQUENCE: 28
```

ttagcccatg tggacggaca

```
<210> SEQ ID NO 29
<211> LENGTH: }2
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) .. (25)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 29
```

accatggtgg atggceccaa gacca 25
$<210>S E Q$ ID NO 30
<211> LENGTH: 25
$<212>$ TYPE: DNA
$<213>$ ORGANISM: unknown
<220> FEATURE:
$<223>$ OTHER INFORMATION: artificial sequence
<220> FEATURE
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (1) .. (25)
<223> OTHER INFORMATION: primer
$<400>$ SEQUENCE: 30
ttacatggcc gggaactcga gcagg
25
$<210>$ SEQ ID NO 31
$<211>$ LENGTH: 22
$<212>$ TYPE: DNA
$<213>$ ORGANISM: unknown
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: artificial sequence
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (1).. (22)
$<223>$ OTHER INFORMATION: primer
$<400>$ SEQUENCE: 31
gccatggcga tcctgaaccc gg
<210> SEQ ID NO 32
<211> LENGTH: 19
$<212>$ TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 < LOCATION: (1) .. (19)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 32

```
<210> SEQ ID NO 33
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) .. (23)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 33
```

gccatggcgt ccaagcagga gca

```
<210> SEQ ID NO 34
<211> LENGTH: }2
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) .. (25)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 34
```

teagttggce ttagtcttgg tcgcc 25
$<210>S E Q$ ID NO 35
<211> LENGTH: 24
$<212>$ TYPE: DNA
$<213>$ ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (1) .. (24)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 35
aagatggaga cgaccttcgc gcgc

```
<210> SEQ ID NO 36
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) .. (28)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 36
```

ttactgcgtc ttcttggcga cegcagcg
$<210>$ SEQ ID NO 37
$<211>$ LENGTH: 23
$<212>$ TYPE : DNA
$<213>$ ORGANISM: unknOWn
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: artificial sequence
$<220>$ FEATURE:
$<221>$ NAME/KEY: misc_feature
$<222>$ LOCATION: (1) .. (23)
$<223>$ OTHER INFORMATION: primer
$<400>$ SEQUENCE: 37
$<400>$ SEQUENCE: 37

```
<210> SEQ ID NO 38
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) .. (21)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 38
```

ttagaggttc ttcttggccg 9

```
<210> SEQ ID NO 39
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) .. (22)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 39
```

accatgtcgg cegacetgct gc 22
$<210>S E Q$ ID NO 40
<211> LENGTH: 18
$<212>$ TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (1) .. (18)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 40
ttagagcttc ttcttggc

```
<210> SEQ ID NO 41
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) .. (32)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 41
```

gcggccgcgc catggccccc atcgagaccg ac
$<210>$ SEQ ID NO 42
<211> LENGTH: 28
$<212>$ TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222 > LOCATION: (1) .. (28)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 42

```
<210> SEQ ID NO 4.3
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) .. (33)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 43
```

gcggccgcac catggtggat ggccccaaga cca

```
<210> SEQ ID NO 44
<211> LENGTH: }3
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) .. (33)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 44
```

geggcegctt acatggcegg gaactcgagc agg
$<210>$ SEQ ID NO 45
<211> LENGTH: 30
$<212>$ TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (1) .. (30)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 45
gcggccgcgc catggcgatc ctgaacccgg

```
<210> SEQ ID NO 46
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) .. (27)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 46
```

gcggcegcta gagcttgttc ttgtaga
$<210\rangle$ SEQ ID NO 47
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (1) .. (31)
$<223>$ OTHER INFORMATION: primer
<400> SEQUENCE: 47

```
<210> SEQ ID NO 48
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) .. (33)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 48
```

gcggcegctc agttggcctt agtcttggtc gcc

```
<210> SEQ ID NO 49
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) .. (32)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 49
```

gcggcegcaa gatggagacg accttcgcge gc
$<210\rangle$ SEQ ID NO 50
<211> LENGTH: 36
$<212>$ TYPE: DNA
$<213>$ ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (1) . (36)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 50
gcggccgctt actgcgtctt cttggcgacc gcagcg

```
<210> SEQ ID NO 51
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1)..(31)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 51
```

gcggccgcgc catggcgtcg gagctgctgc a
$<210>S E Q$ ID NO 52
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (1) .. (29)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 52

```
<210> SEQ ID NO 53
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1) .. (30)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 53
```

gcggccgcac catgtcggcc gacctgctgc30

```
<210> SEQ ID NO 54
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: unknown
<220> FEATURE:
<223> OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1).. (26)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 54
```

geggecgett agagcttctt cttggc 26
<210> SEQ ID NO 55
<211> LENGTH: 60
<212> TYPE: DNA
$<213>$ ORGANISM: unknown
<220> FEATURE:
$<223>$ OTHER INFORMATION: artificial sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
$<222>$ LOCATION: (1) .. (60)
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 55
gtcgacccgc ggactagtgg gccetctaga cccgggggat ccggatctgc tggctatgaa

We claim:

1. A process for the production of polyunsaturated $\mathrm{C}_{20^{-}}$or C_{22}-fatty acids with at least four double bonds in transgenic plants with a content of at least 15% by weight based on the total triglyceride content of the transgenic plants comprising:
a) introducing, into the transgenic plant, a nucleic acid construct which comprises nucleic acid sequences which code for a $\Delta 6$-desaturase, a $\Delta 6$-elongase and a $\Delta 5$-desaturase, or
b) introducing, into the transgenic plant, a nucleic acid construct which comprises nucleic acid sequences which code for a $\Delta 6$-desaturase, a $\Delta 6$-elongase, a $\Delta 5$-desaturase, a $\Delta 12$-desaturase and $\omega 3$-desaturase, or
c) introducing, into the transgenic plant, a nucleic acid construct which comprises nucleic acid sequences which code for a $\Delta 6$-desaturase, a $\Delta 6$-elongase, a $\Delta 5$-desaturase, a $\Delta 5$-elongase and $\Delta 4$-desaturase, or
d) introducing, into the transgenic plant, a nucleic acid construct which comprises nucleic acid sequences which code for a $\Delta 6$-desaturase, a $\Delta 6$-elongase, a $\Delta 5$-desaturase, a $\Delta 5$-elongase, $\Delta 4$-desaturase, a $\Delta 12$-desaturase and $\omega 3$-desaturase, and
e) obtaining the oils or lipids from the plants, wherein the oils or lipids comprise polyunsaturated C_{20} - or C_{22}-fatty
acids with at least four double bonds with a content of at least 15% by weight based on the total triglyceride content; and
wherein the nucleic acid construct comprises a nucleic acid sequence which comprises the sequence of SEQ ID NO: 25 or a nucleic acid sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 26 or a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence having at least 95% sequence identity with the sequence of SEQ ID NO: 26.
2. The process according to claim 1, wherein the nucleic acid construct comprises a nucleic acid sequence which comprises the sequence of SEQ ID NO: 25 or a nucleic acid sequence encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 26 .
3. The process according to claim 1 , wherein the polyunsaturated C_{20} - or C_{22}-fatty acid with at least four double bonds is arachidonic acid, eicosapentaenoic acid or docosahexaenoic acid.
4. The process according to claim 1 , wherein the polyunsaturated C_{20} - or C_{22}-fatty acid with at least four double bonds is arachidonic acid.
5. The process according to claim 1, wherein the polyunsaturated C_{20} - or C_{22}-fatty acid with at least four double bonds is eicosapentaenoic acid or docosahexaenoic acid.
6. The process of claim 3, wherein the arachidonic acid or eicosapentaenoic acid is present in the transgenic plant with a content of at least 15% by weight based on the total triglyceride content.
7. The process according to claim 3 , wherein the docosahexaenoic acid with a content of at least 4% by weight based on the total triglyceride content is present in the transgenic plant.
8. The process according to claim 1, wherein a polyunsaturated fatty acid selected from the group consisting of C22: $4^{\Delta 7,10,13,16}$-, C22:5 $5^{\Delta 4,7,10,13,16}$ - or C22:5 $5^{\Delta 7,10,13,16,19}$-fatty acid is present in the triglycerides in an amount of less than 0.5% by weight based on the total fatty acid content of the triglycerides.
9. The process according to claim 1, wherein the transgenic plant is an oil crop plant or useful plant.
10. The process according to claim 1 , wherein the transgenic plant is selected from the group consisting of peanut, oilseed rape, canola, sunflower, safflower, Carthamus tinctoria, poppy, mustard, hemp, castor-oil plant, olive, sesame, Calendula, Punica, evening primrose, verbascum, thistle, hazelnut, almond, macadamia, avocado, bay, pumpkin, linseed, soya, pistachios, borage, oil palm, coconut, walnut, maize, wheat, rye, oats, triticale, rice, barley, cotton, cassava or pepper.
11. The process according to claim $\mathbf{1}$, wherein the polyunsaturated $\mathrm{C}_{20}-$ or C_{22}-fatty acids with at least four double bonds are isolated from the oils or lipids in the form of the free fatty acids.
12. An isolated nucleic acid comprising a nucleotide sequence selected from the group consisting of:
a) the nucleotide sequence shown in SEQ ID NO: 25,
b) a nucleotide sequence which encodes a protein comprising the polypeptide sequence shown in SEQ ID NO: 26, and
c) a nucleotide sequence which encodes a polypeptide having at least 95% sequence identity at the amino acid level with SEQ ID NO: 26 and which has a $\Delta 12$-desaturase activity.
13. The isolated nucleic acid according to claim 12, where the nucleotide sequence is derived from a microorganism or a plant.
14. A gene construct comprising the isolated nucleic acid according to claim 12, wherein the nucleic acid is linked operably with one or more regulatory signals.
15. The gene construct according to claim $\mathbf{1 4}$, wherein the nucleic acid construct comprises additional biosynthesis genes of fatty acid or lipid metabolism selected from the group acyl-CoA dehydrogenase(s), acyl-ACP [=acyl carrier protein] desaturase(s), acyl-ACP thioesterase(s), fatty acid acyltransferase(s), acyl-CoA:lysophospholipid acyltransferase(s), fatty acid synthase(s), fatty acid hydroxylase(s), acetyl-coenzyme A carboxylase(s), acyl-coenzyme A oxidase(s), fatty acid desaturase(s), fatty acid acetylenases, lipoxygenases, triacylglycerol lipases, allenoxide synthases, hydroperoxide lyases or fatty acid elongase(s).
16. The gene construct as claimed in claim 14 , wherein the nucleic acid construct comprises additional biosynthesis genes of fatty acid or lipid metabolism selected from the group of the $\Delta 4$-desaturases, $\Delta 5$-desaturases, $\Delta 6$-desaturases, $\Delta 8$-desaturases, $\Delta 12$-desaturases or $\Delta 9$-elongases.
17. A vector comprising the nucleic acid according to claim 12 or a gene construct comprising the nucleic acid.
18. A transgenic nonhuman organism, comprising at least one nucleic acid according to claim 12, a gene construct
comprising the nucleic acid, or a vector comprising the nucleic acid, wherein the organism is a microorganism or a plant or part thereof.
19. The transgenic nonhuman organism according to claim 18, which organism is a plant.
20. An isolated nucleic acid comprising the nucleotide sequence shown in SEQ ID NO: 25 , or a nucleotide sequence which encodes a protein comprising the polypeptide sequence of SEQ ID NO: 26.
21. A transgenic plant cell, plant or part thereof, comprising at least one isolated nucleic acid of claim 12 or a gene construct comprising said nucleic acid.
22. A transgenic plant cell, plant or part thereof, comprising at least one isolated nucleic acid of claim 20 or a gene construct comprising said nucleic acid.
23. The process of claim 1 , wherein
a) the nucleic acid sequence which codes for a $\Delta 6$-desaturase comprises the nucleic acid sequence of SEQ ID NO: 1 , or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 2, or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 2;
b) the nucleic acid sequence which codes for a $\Delta 6$-elongase comprises the nucleic acid sequence of SEQ ID NO: 3, SEQ ID NO: 5, or SEQ ID NO: 7, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 4, SEQ ID NO: 6, or SEQ ID NO: 8, or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 4, SEQ ID NO: 6, or SEQ ID NO: 8 ;
c) the nucleic acid sequence which codes for a $\Delta 5$-desaturase comprises the nucleic acid sequence of SEQ ID NO: 9 , or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 10, or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 10; and/or
d) the nucleic acid sequence which codes for a $\omega 3$-desaturase comprises the nucleic acid sequence of SEQ ID NO: 23, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 24 , or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 24.
24. The process of claim 1 , wherein
a) the nucleic acid sequence which codes for a $\Delta 6$-desaturase comprises the nucleic acid sequence of SEQID NO: 1 , or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 2;
b) the nucleic acid sequence which codes for a $\Delta 6$-elongase comprises the nucleic acid sequence of SEQ ID NO: 3, SEQ ID NO: 5, or SEQ ID NO: 7, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 4, SEQ ID NO: 6, or SEQ ID NO: 8;
c) the nucleic acid sequence which codes for a $\Delta 5$-desaturase comprises the nucleic acid sequence of SEQID NO: 9 , or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 10; and/or
d) the nucleic acid sequence which codes for a $\omega 3$-desaturase comprises the nucleic acid sequence of SEQ ID NO: 23, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 24.
25. The gene construct of claim 14, further comprising one or more nucleic acid comprising
a) a nucleic acid sequence which codes for a $\Delta 6$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 1, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 2, or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 2 ;
b) a nucleic acid sequence which codes for a $\Delta 6$-elongase which comprises the nucleic acid sequence of SEQ ID NO: 3, SEQ ID NO: 5 , or SEQ ID NO: 7, or a nucleic
acid sequence encoding the polypeptide of SEQ ID NO: 4, SEQ ID NO: 6, or SEQ ID NO: 8, or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 4 , SEQ ID NO: 6 , or SEQ ID NO: 8 ;
c) a nucleic acid sequence which codes for a $\Delta 5$-desaturase which comprises the nucleic acid sequence of SEQ ID $\mathrm{NO}: 9$, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 10 , or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 10; and/or
d) a nucleic acid sequence which codes for a $\omega 3$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 23, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 24 , or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 24.
26. The gene construct of claim 14, further comprising one or more nucleic acid comprising
a) a nucleic acid sequence which codes for a $\Delta 6$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 1 , or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 2;
b) a nucleic acid sequence which codes for a $\Delta 6$-elongase which comprises the nucleic acid sequence of SEQ ID NO: 3, SEQ ID NO: 5 , or SEQ ID NO: 7, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 4, SEQ ID NO: 6, or SEQ ID NO: 8;
c) a nucleic acid sequence which codes for a $\Delta 5$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 9 , or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 10; and/or
d) a nucleic acid sequence which codes for a $\omega 3$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 23, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 24.
27. The transgenic plant cell, plant or part thereof of claim 21, further comprising one or more nucleic acid comprising
a) a nucleic acid sequence which codes for a $\Delta 6$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 1 , or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 2, or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 2;
b) a nucleic acid sequence which codes for a $\Delta 6$-elongase which comprises the nucleic acid sequence of SEQ ID NO: 3, SEQ ID NO: 5 , or SEQ ID NO: 7, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 4, SEQ ID NO: 6 , or SEQ ID NO: 8 , or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 4, SEQ ID NO: 6 , or SEQ ID NO: 8 ;
c) a nucleic acid sequence which codes for a $\Delta 5$-desaturase which comprises the nucleic acid sequence of SEQ ID $\mathrm{NO}: 9$, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 10, or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 10; and/or
d) a nucleic acid sequence which codes for a $\omega 3$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 23, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 24, or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 24.
28. The transgenic plant cell, plant or part thereof of claim 21, further comprising one or more nucleic acid comprising
a) a nucleic acid sequence which codes for a $\Delta 6$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 1,or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 2;
b) a nucleic acid sequence which codes for a $\Delta 6$-elongase which comprises the nucleic acid sequence of SEQ ID NO: 3, SEQ ID NO: 5, or SEQ ID NO: 7, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO 4, SEQ ID NO: 6,or SEQ ID NO: 8;
c) a nucleic acid sequence which codes tor a $\Delta 5$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 9 , or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 10; and/or
d) a nucleic acid sequence which codes for a $\omega 3$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 23, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 24.
29. The transgenic plant cell, plant or part thereof of claim 22, further comprising one or more nucleic acid comprising
a) a nucleic acid sequence which codes for a $\Delta 6$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 1, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 2, or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 2;
b) a nucleic acid sequence which codes for a $\Delta 6$-elongase which comprises the nucleic acid sequence of SEQ ID NO: 3, SEQ ID NO: 5, or SEQ ID NO: 7, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 4, SEQ ID NO: 6 , or SEQ ID NO: 8 , or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 4, SEQ ID NO: 6, or SEQ ID NO: 8;
c) a nucleic acid sequence which codes for a $\Delta 6$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 9 , or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 10, or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 10; and/or
d) a nucleic acid sequence which codes for a $\omega 3$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 23, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 24 , or a nucleic acid having at least 95% identity at the amino acid level with SEQ ID NO: 24.
30. The transgenic plant cell, plant or part thereof of claim 22, further comprising one or more nucleic acid comprising
a) a nucleic acid sequence which codes for a $\Delta 6$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 1 , or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 2;
b) a nucleic acid sequence which codes for a $\Delta 6$-elongase which comprises the nucleic acid sequence of SEQ ID NO: 3, SEQ ID NO: 5, or SEQ ID NO: 7, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 4, SEQ ID NO: 6, or SEQ ID NO: 8;
c) a nucleic acid sequence which codes for a $\Delta 5$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 9 , or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 10; and/or
d) a nucleic acid sequence which codes for a $\omega 3$-desaturase which comprises the nucleic acid sequence of SEQ ID NO: 23, or a nucleic acid sequence encoding the polypeptide of SEQ ID NO: 24.
[^1]
UNITED STATES PATENT AND TRADEMARK OFFICE
 CERTIFICATE OF CORRECTION

PATENT NO.	$: 8,049,064 \mathrm{~B} 2$	Page 1 of 1
APPLICATION NO.	$: 11 / 886857$	
DATED	$:$ November 1,2011	
INVENTOR(S)	$:$ Petra Cirpus et al.	

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In claim 29, at column 130 , line number $32, ~ " c$) a nucleic acid sequence which codes for a $\Delta 6$-desaturase" should read -- c) a nucleic acid sequence which codes for a $\Delta 5$-desaturase --

Signed and Sealed this
Thirteenth Day of March, 2012
Daid $5 . K_{\text {M }}$

[^0]: 20:5 $5^{\Delta 5,8,11,14,17}$

[^1]: * * * * *

