
Drivers of Rift Valley fever epidemics in Madagascar
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Rift Valley fever (RVF) is a vector-borne viral disease widespread
in Africa. The primary cycle involves mosquitoes and wild and
domestic ruminant hosts. Humans are usually contaminated after
contact with infected ruminants. As many environmental, agricul-
tural, epidemiological, and anthropogenic factors are implicated
in RVF spread, the multidisciplinary One Health approach was
needed to identify the drivers of RVF epidemics in Madagascar.
We examined the environmental patterns associated with these
epidemics, comparing human and ruminant serological data with
environmental and cattle-trade data. In contrast to East Africa,
environmental drivers did not trigger the epidemics: They only
modulated local Rift Valley fever virus (RVFV) transmission in
ruminants. Instead, RVFV was introduced through ruminant trade
and subsequent movement of cattle between trade hubs caused
its long-distance spread within the country. Contact with cat-
tle brought in from infected districts was associated with higher
infection risk in slaughterhouse workers. The finding that anthro-
pogenic rather than environmental factors are the main drivers of
RVF infection in humans can be used to design better prevention
and early detection in the case of RVF resurgence in the region.

vector-borne infection | zoonosis | El Niño | cattle trade | One Health

R ift Valley fever (RVF) is a vector-borne infection caused by
the RVF virus (RVFV). Mosquito species from the Aedes,

Culex, and Mansonia genera are the main RVFV vectors (1). The
virus persists in the environment either by vertical transmission
occurring in some Aedes species or by an enzootic cycle involv-
ing ruminants and mosquitoes. When environmental conditions
are favorable to mosquito proliferation, this cycle is amplified by
Culex populations, leading to RVF epidemics (2). In the Horn
of Africa, these circumstances are met during the warm phases
of El Niño southern oscillation (ENSO) and the Indian Ocean
dipole zonal mode: Warm sea-surface temperatures in the equa-
torial eastern-central Pacific Ocean and the western equatorial
Indian Ocean result in heavy autumn rainfall and subsequent
greening of the vegetation (3–5). The latter can be monitored
by the remotely sensed normalized difference vegetation index
(NDVI). Besides these environmental conditions triggering epi-
demics, long-distance RVFV dissemination is often related to
ruminant trade (6), as reported in Madagascar and Saudi Ara-
bia (7–9).

In domestic ruminants, the RVFV causes mass abortions and
high neonatal mortality (10). Humans may get infected after the
bites of infected mosquitoes or the consumption of raw milk.
However, most clinical cases occur after contact with blood,
aborted fetuses, and placenta of viremic animals. Farmers, vet-
erinarians, slaughterhouse workers, and butchers are thus the
most exposed to the risk of RVF, as well as any people attending

the slaughtering of viremic animals (11): Blood aerosol produced
on this occasion is highly infectious (12). The virus is not trans-
mitted from person to person.

In Madagascar, the first known RVF epidemic occurred in
1990–1991 on the East Coast and in the central highlands (7).
A second epidemic occurred in 2008–2009 with official reports
suggesting at least 700 suspected cases and 26 RVFV laboratory-
confirmed fatalities. However, due to underreporting, an excess
of 10,000 human cases was estimated (13–15).

Madagascar is one of the poorest countries in the World, with
90% of the population living with less than USD 1.5 inhab.−1·d−1

(16). Because public health resources are limited in such a set-
ting, it is crucial to identify the most exposed populations, based
on scientific evidence. To this end, we aimed at understanding
the circumstances in which RVF epidemics occurred. We first
assessed the risk of RVFV introduction to ruminants via live-
stock trade. Then, we described the environmental conditions
associated with the start of the 1990 and 2008 epidemics and with
local RVFV transmission. We then aimed to build risk indexes
of RVFV human infection related to the local environment
(local risk) and cattle trade (remote risk), assess their relative
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importance, identify and map high-risk areas, and assess the con-
sequences for human health.

Results
Risk of Virus Introduction by Livestock Trade. Queries in the United
Nations (UN) ComTrade database did not reveal direct impor-
tations of live ruminants from mainland Africa to Madagascar.
However, they highlighted several official importations from the
Union of Comoros in 2005–2007 (Table 1). Although the num-
bers are small, they confirmed the risk of RVFV introduction in
Madagascar from an infected country, via livestock trade.

In addition to this official trade, illegal cattle movements
between the Comoros Archipelago and Madagascar were proba-
bly much more frequent. Informal surveys conducted in 2009 and
2010 in the main Comoros harbors and in the northwest of Mada-
gascar (Mahajanga and Antsiranana) revealed the frequent pres-
ence of cattle and small ruminants on board freighters and
botry (dhows) traveling from the Comoros Islands to Madagas-
car and from port to port. This coastal navigation is widespread
in Madagascar, given the weakness of the terrestrial-road net-
work (Fig. S1). Therefore, RVFV could have been introduced
to Madagascar through ruminant trade from Comoros Islands—
which were previously infected (17, 18)—and further dissemi-
nated through coastal navigation between Malagasy sea ports.

Environmental Conditions and RVFV Epidemics.
Triggering RVF epidemics. Conditions at the start of the two RVF
epidemics in humans (March 1990 and January 2008) are shown
on Fig. 1. For the three indicators [southern oscillation index
(SOI), rainfall, and NDVI] and three biomes (Fig. S2A), the two
epidemics did not occur in typical RVF conditions according to
the eastern African standards (14). In March 1990, a marked
negative anomaly was observed for SOI, one of the main indi-
cators of ENSO (Fig. 1A). Rainfall was lower than normal in
all three biomes (Fig. 1B). March 1990 was also at the end of
a period of positive NDVI anomalies and before a short period
of negative anomalies for the dry forest and xeric shrubland. The
NDVI pattern was not clear for the moist forest where the epi-
demics started (Fig. 1C). Conditions during the 2008 epidemic
were almost the reverse as it occurred during a cold (positive)
anomaly of SOI, when rainfall was close to normal in the moist
forest and somewhat higher than normal in the two other biomes.

These general impressions were corroborated by the results
of partial triadic analysis and hierarchical clustering (Fig. S3):
The environmental conditions of RVF epidemics fell into quite
different clusters in 1990–1991 and in 2008–2009: With a three-
class partition, the 1990 epidemics occurred in a category of rainy
seasons with close-to-normal mean values for SOI (0.01), rainfall
(0.16), and NDVI (−0.11). In 2008, the epidemic fell into a cat-
egory with a high mean SOI (1.38) and close-to-normal mean
values for NDVI (0.07) and rainfall (−0.16).
RVFV spread at the end of 2008 epidemic. We modeled the sero-
prevalence rate of immunoglobulins of type G (IgG) in rumi-

Table 1. Importation of live ruminants in Madagascar from the
Union of Comoros between 2005 and 2007 (source: UN ComTrade)

Year Species Quantity, head

2005 Cattle 30*
Goats 9*

2006 Goats 14*
2007 Cattle 7

Goats 88
Sheep 47

*Estimated number from the reported financial value. No imports of live
ruminants were reported from the Union of Comoros in 2003 and 2004.
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Fig. 1. Environmental conditions (monthly average) in the main Mala-
gasy biomes with respect to the 1990–1991 and 2008–2009 RVF epidemics.
(A) Standardized southern oscillation index (19). (B) Standardized rain-
fall anomalies. Source: National Oceanic and Atmospheric Administration
(NOAA)’s precipitation reconstruction over Land (PREC/L) provided by the
NOAA/Office of Oceanic and Atmospheric Research/Earth Sciences Research
Laboratory - Physical Sciences Divisions, Boulder, CO. (C) Standardized
NDVI anomalies. Source: Global Inventory Modeling and Mapping Studies
(GIMMS), Advanced Very High Resolution Radiometer (AVHRR) NDVI version
3 (20). On each plot, favorable conditions for RVF are shown in red.

nant sera collected at the end of the 2008 epidemic to assess
the role of environmental conditions in RVF spread in livestock.
The subset of plausible models according to the available data
is shown in Table S1. The importance of environmental predic-
tors with respect to the selected subset of plausible models is dis-
played in Table S2. Multimodel averaged coefficients are shown
in Table S3. Higher rainfall, municipalities within 50 km from
a sea port, and lower altitude were associated with higher sero-
prevalence rate in ruminants. See SI Results and Figs. S4 and S5
for details on exploratory data analysis.

The receiver operating characteristic (ROC) curve for the
averaged model had an area under the curve of 74%. The map
of predicted sero-prevalence rate showed high-risk areas on
the northwestern and northeastern coasts (lowlands). Southern
regions and highlands were less affected with the exception of
sea-port municipalities (Fig. 2). See SI Results for details.

The Cattle Trade Network and RVFV Dissemination. Cattle trade
data were collected monthly from 2007 to 2011, with large varia-
tions in numbers across the years. The overall network activity
is presented in Fig. S6A: Each segment corresponds to a link
between two nodes; a segment is drawn if at least one move-
ment has been recorded along that link on a given month; its
color is related to its recorded frequency during the 5-y survey.
To assess the influence of the cattle trade network on the risk of
RVFV in humans, we quantified the trade flows using the most

Lancelot et al. PNAS | January 31, 2017 | vol. 114 | no. 5 | 939
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Fig. 2. Sero-prevalence rate of anti-RVFV IgG in ruminants (Madagascar)
predicted by the averaged beta-binomial logistic regression model: (A) pre-
dicted rate and (B) coefficient of variation.

comprehensive dataset, collected in 2010. This network had the
largest number of nodes (257 farms, markets, and slaughter-
houses) and links (346). We could distinguish two sets of links:
those active throughout the year (56% of the links) constituting
the backbone of the network and those occasional links active for
1 mo or 2 mo. Despite their large number, only a small volume
(3%) of animals was traded on these occasional links. Most of the
backbone nodes and links active in 2010 were already present in
the previous year.

To assess the role of the occasional links on RVFV spread,
we considered separate monthly network snapshots and we eval-
uated the corresponding epidemic threshold q (21), which pro-
vides an estimate of the critical probability for the virus to spread
through the network: The lower its value is, the higher the risk
of spread. The backbone network was the smallest in January
(rainy season) and then increased until reaching its plateau size
in April (early dry season) (Fig. S6B). The number of occasional
links peaked in May and October. Despite these large variations,
q was slightly affected by the presence of these occasional links.
Conversely, it was strongly influenced by the variations of trade
volume in the backbone network. The whole network was prone
to the diffusion of RVFV: The average epidemic threshold was
¯̂q ' 2.1%, the period of maximum risk from March to May, with
q̂ ' 1.5%, and the minimum risk (q̂ ' 3.9%) in January.

The distribution of in/out degrees (number of incoming/
outgoing links for a given node) matched a power-law distribu-
tion. Only a few nodes (Ihosy, Tsiroanomandy, Ambalavao, and
Mampikony) were highly connected hubs and also had the highest
betweenness. The four network hubs belonged to three different
giant strong components (GSC)—Ambalavao and Ihosy were in
the same one. Nodes belonging to these GSC were strongly con-
nected between themselves, thus increasing the risk of infection
for other locations in their neighborhood (22). These hubs were
also cut points in the network: Their removal would disrupt the
network connectedness and thus limit the diffusion of an infec-
tious agent like RVFV.

The pastoral areas of southwest and northwest of Mada-
gascar were the major sources of the traded cattle (Fig. 3A)

and were characterized by high cattle density and low human
density. The great majority of markets had a negative balance
in cattle flows: They were sources in the network, with low local
consumption (Fig. 3B). On the other hand, two hubs (Ambalavao
and Tsiroanomandy) had a large, positive balance. Further infor-
mation is provided on Fig. 3C: Cattle were collected in the mar-
kets of Tsiroanomandy and Ihosy and then sent to Ambalavao
for slaughtering, Tsiroanomandy also being a consumption cen-
ter. In addition, a close examination of these four hubs showed
that many small, outgoing flows offered numerous opportunities
for long-distance RVFV spread.
Cattle Trade and the Risk of RVFV Infection in Humans. The coef-
ficient for the local, environment-related index of RVFV trans-
mission to humans was not significant, in contrast to the coef-
ficient for the remote, cattle trade-related index (Table S4 and
Fig. S7). The odds ratio (OR) for the latter was ORC = 1.7 (95%
confidence interval (CI): [1.1; 2.7]). The risk of humans getting
infected with RVFV increased with the intensity of cattle trade
from areas with infected livestock.

The map of predicted sero-prevalence rate in humans (Fig. 4)
and the plot of random variations (Fig. S8) both highlighted
large spatial variations in the infection rate, with a clear spatial
pattern. The highest sero-prevalence rates were encountered in
the densely populated areas of central highlands. This pattern is
emphasized in Fig. S8B: A strong additional risk (with respect to
cattle trade-related risk) was found in the regions of Antsirabe
and Lake Alaotra. See SI Results for details.

Discussion
Cattle Trade and the Risk of RVFV Introduction. Imports of live
ruminants from Comoros were the main driver for RVFV intro-
duction to Madagascar livestock and subsequent trade-related
movements of cattle led to its spread to humans, at least in 2008.
Phylogenetic studies showing that Malagasy RVFV were closely
related to viruses previously circulating in mainland Africa (15)
suggest that RVFV was probably introduced into the Comoros
Islands through cattle trade with East Africa (23). The existence
of illegal livestock importation from the Comoros Islands pro-
vided opportunities for the introduction of RVFV in Madagas-
car. Preventing such introductions is therefore essential to avoid
further RVF epidemics in Madagascar. In practice, strengthen-
ing communication between African, Comoros, and Malagasy
public health and veterinary services would be important to share
early detection in the event of new RVFV circulation. Also, quar-
antine measures should be reinforced for ruminants exported
from continental Africa to the Comoros Islands.

Environmental Conditions and RVF Epidemics. Anyamba et al. (14)
has already pointed out the contrasting behavior of the disease
in Madagascar and East and South Africa. Prolonged heavy
rainfall and positive NDVI anomalies occurred after the first
known epidemics of 1990, e.g., in 1994 with the occurrence
of the Geralda cyclone (24). More recently, torrential rainfall
occurred in February–March 2015 in Madagascar, related to
the strong El Niño conditions (25). No RVF outbreak could be
detected despite specific surveillance measures in 1994 (shortly
after the 1990–1991 RVF epidemic) and strengthened national
and regional surveillance in 2015 (26, 27).

RVF epidemics usually start in the arid environments of dam-
bos (East Africa) and/or pans (southern Africa) (1), which are
similar to ecosystems in the Toliara region of southwest Mada-
gascar that are covered by xeric shrublands (Fig. S2A). Although
this sea-port municipality was hit by RVF, the sero-prevalence
rate in ruminants was low in the neighboring municipalities
(Fig. 2), probably because the virus was introduced in subopti-
mal conditions for the vectors (no heavy rainfall, no flooding).
Conversely, high sero-prevalence rates were observed in cattle in
the northwest of the island, covered by the dry forest. Moreover,

940 | www.pnas.org/cgi/doi/10.1073/pnas.1607948114 Lancelot et al.
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A B C

Fig. 3. Cattle flows in the Malagasy cattle trade network, 2010. (A) Municipality of origin (number of flows). (B) Balance in cattle flows at the municipality
level (number of heads). (C) Directed flows (number of heads).

in East Africa, Aedes mosquitoes are the primary RVFV vec-
tors (1): Their biology and ecology are well adapted to arid envi-
ronments. Regarding Madagascar, 23 mosquito species might be
considered as potential RVFV vectors, including no floodwater
Aedes mosquito species (28–30). A single species, Culex antenna-
tus, meets all criteria for formal classification as an RVFV vec-
tor (31). This mosquito is widespread in Madagascar (except in
the North), including in rice paddies that cover large areas of
the island. The introduction of infected animals in conjunction
with Culex hatching, during a standard rainy season profile, might
have amplified the outbreak locally, in many places.

Two major differences are thus highlighted between Madagas-
car and East Africa: (i) the lack of connection between the start
of 1990–1991 and 2008–2009 RVF epidemics and El Niño events
and, more generally, with anomalous heavy rainfall and (ii) no
obvious role of Aedes mosquitoes in the primary RVFV trans-
mission cycle, as well as the wide distribution of Culex (and other
mosquito species).

Apparently, the climatic conditions observed during the two
epidemics are common in Madagascar: The drivers triggering
RVFV epidemics must therefore be sought elsewhere. Neverthe-
less, these climatic conditions remain important for the amplifi-
cation of the primary epidemiological cycle between mosquitoes
and ruminants (Table S2).

Cattle Trade as a Driver of RVF Epidemics. The Malagasy popu-
lation is growing fast, from 16 million to 24 million between
2000 and 2015 (16), and is concentrating in Antananarivo and
other large cities (Fig. S2B). Cattle are omnipresent in Malagasy
agriculture, economy, and culture. This leads to an ever-growing
demand for cattle meat and draught power for crops. Conse-
quently, the increasing cattle trade provides more opportuni-
ties for RVF epidemics to spread (7, 8). Our description of
the national cattle trade network strongly supports this assump-
tion and further extends a previous analysis in the North of

Madagascar (8). The connectedness of the cattle trade net-
work and its low percolation threshold make the risk of seeding
epidemics high.

Lake Alaotra and Antsirabe (Fig. S2A) are two major crop
and livestock farming regions. The former is the largest rice-
production basin in Madagascar, with many paddies and swamps

A B

Fig. 4. Sero-prevalence rate in humans predicted by a mixed-effect bino-
mial logistic regression model: (A) predicted rate and (B) coefficient of vari-
ation. In A, numbers were placed at the centroid of districts with the highest
predicted rates (10th decile): 1, Ambohidratrimo; 2, Antananarivo Renivohi-
tra; 3, Antananarivo-Sud; 4, Antsirabe Rural; 5, Antsirabe Urban; 6, Betafo;
7, Faratsiho; 8, Ambatondrazaka; 9, Amparafaravola; 10, Anosibe; and 11,
Moramanga.

Lancelot et al. PNAS | January 31, 2017 | vol. 114 | no. 5 | 941
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favorable to mosquito proliferation. The two regions are densely
populated, with cities harboring big livestock markets and
slaughterhouses to match local red meat needs. Therefore, there
are many opportunities for human exposure to the RVFV when
viremic animals are slaughtered.

Additionally, using the network of markets, butcheries, and
hotely (cheap restaurants for travelers), farmers try to sell their
sick animals at the first clinical sign of any disease, to mitigate
economic losses. When they do not succeed, they slaughter them
and eat their meat (32). This practice was probably at the ori-
gin of many unreported human infections during the 2008–2009
RVF epidemics in Madagascar.

More collaboration with sociologists and anthropologists is
needed to decipher farmers’ perceptions of animal diseases and
to assess the social acceptability of prevention, surveillance, and
control measures, such as cattle vaccination to protect peo-
ple (should enough vaccine be available) or cattle movement
restrictions to avoid RVFV spread through hubs in the cattle
trade network (33). If RVFV introduction into Malagasy live-
stock continues, targeted (risk-based) vaccination campaigns of
ruminants might be organized to protect human populations.
Individual protection measures, such as vaccination when the
human vaccine becomes available or wearing personal protec-
tive equipment such as gowns, gloves, safety glasses, and masks
when slaughtering ruminants would also be important to imple-
ment in the most exposed categories of people (34, 35), together
with dissemination and training programs. This implementa-
tion of coordinated actions between Public Health and Veteri-
nary Services would represent an important advance in the so-
called “One Health” joint approach of human and animal health
(27, 36).

Materials and Methods
To assess the risk of RVFV introduction, we scanned national and interna-
tional databases on sea trade from 2003 to 2008. We also implemented
informal surveys in harbors of the Comoros Islands and northwestern Mada-
gascar during and after this epidemic (up to 2010).

To describe the environmental conditions of the past RVF epidemics, we
used global datasets available as long-term time series: (i) the SOI as a main
indicator of ENSO of major importance for the climatic conditions in East
Africa and the southwest tropical Indian Ocean (3); (ii) rainfall data, of cru-
cial importance for the epidemiology of vector-borne diseases (37); and (iii)
the NDVI as an indicator of rainfall impact on the vegetation (38): forage
resources for ruminants and resting sites for mosquitoes. These indicators
were averaged over the main biomes (SI Materials and Methods). First, we
plotted the time series for each biome. Second, we selected data from the
dry-forest biome where the highest sero-prevalence rate was observed in
cattle in 2008 (39). We then used partial triadic analysis (PTA), a multitable
version of principal component analysis (PCA) (40), to identify common or
contrasted patterns in rainy seasons (November to March) from 1983 to
2011 (28 y).

To assess the risks of RVFV spread within Madagascar, we used two
types of data: (i) environmental data selected among the factors of inter-

est for mosquito-borne infections, i.e., related to the availability of rest-
ing or breeding sites or the seasonal changes in conditions favoring the
development of their immature stage, etc. (37) (see the list in SI Materials
and Methods), which were obtained from international databases and pro-
cessed using standard methodology; and (ii) cattle trade data collected dur-
ing repeated nationwide surveys in livestock markets and slaughterhouses,
implemented from 2007 to 2011 for the purpose of this study.

Environmental data were used in beta-binomial logistic regression (BBLR)
models to predict the RVFV sero-prevalence rate for cattle at the munici-
pality level. The serological data were collected after the 2008 epidemics
and published (39). Sera were tested for the presence of anti-RVFV IgG. We
adopted a multimodel inference approach to select the best predictors. A
set of plausible models was kept for model averaging and prediction of
sero-prevalence rate in cattle at the municipality level.

Cattle trade data were used (i) to assess the risk of RVFV spread through
the network and (ii) to assess the risk of human infection with RVFV. Farms,
markets, and slaughterhouses were the nodes of a directed cattle trade net-
work. A link between two nodes corresponded to a trade movement of
animals. The direction indicated the origin and destination places, and the
volume was the number of traded animals.

We assessed the risk of RVFV infection in humans, using sera collected
during a nationwide survey of slaughterhouse workers performed in 2008
and 2009. The study was approved by the Malagasy National Ethical Com-
mittee. Participants were included if they gave written informed consent.
Sera were tested for the presence of anti-RVFV IgM, indicating a recent
infection, and the results were published (13). We defined two indexes
for the risk of RVFV infection in humans: (i) We created an index of local
RVFV transmission risk, defined by the product of local predicted sero-
prevalence rate in cattle and cattle density. This index was built to cap-
ture the risk associated with the primary RVFV epidemiological cycle involv-
ing mosquitoes and domestic ruminants, in the absence of known wild
hosts for RVFV in Madagascar (41, 42). Humans are not involved in this
cycle. Therefore, their density was not considered in the index. (ii) We
created an index of RVFV transmission risk related to cattle trade. It was
defined as the product of cattle incoming flow (number of head), predicted
sero-prevalence rate in cattle at the origin, and local human density. This
latter variable was included because meat consumption is proportionally
higher in urban than in rural areas (43), with higher densities of slaughter-
houses, butchers, and meat markets. Consequently, the risk of RVFV infec-
tion related to cattle trade should be positively correlated with human
density.

The effect of these two indexes on human sero-prevalence rate was
assessed with a BBLR model. Finally, a mixed-effect binomial logistic regres-
sion model was used to study the local variations of sero-prevalence rate
in humans, with the administrative district and region as the nested ran-
dom effects associated with the intercept. See SI Materials and Methods for
detailed information on data sources and statistical methods, as well as links
to download the datasets used in the analyses.
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