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BARRIE AND I met at a Gordon Conference on Animal Cells

and Viruses in the early 1970s; he had essentially followed

me in working with Jim Rose in the Laboratory of Biology

of Viruses, NIAID. We both had an interest in the molec-

ular biology of adeno-associated virus (AAV) and subse-

quently both of our laboratories did a lot of work in parallel

on physically mapping the AAV genome using restriction

enzymes and developing a transcription map. We even

coauthored an article entitled ‘‘Genome localization of

adeno-associated virus RNA.’’1 We were both studying

AAV2 and not a lot of attention had yet been given to the

other known serotypes.

Of particular note, we both were interested in the re-

ported ability of AAV to inhibit both adenovirus and

herpesvirus cell transformation and oncogenesis. Jeff

Ostrove, Donna Duckworth, and I reported that AAV in-

fection reduced the oncogenicity of adenovirus in golden

Syrian hamsters; this was correlated with a decrease in the

expression of the adenovirus E2B oncogene.2 At the same

time, Barrie and Luis de la Maza published an article in-

dicating that AAV defective interfering (DI) particles that

contained just the ends of the AAV genome could inhibit

adenovirus oncogenicity.3

AAV has become the favorite viral vector for gene

therapy. Our laboratory has had a longstanding interest in

the AAV itr. This has proven to be fortuitous, because the

itr is the only part of the AAV genome that is required for

the prototypical AAV vector. We have long had detailed

knowledge of the sequence, structure, and biological

function. Our original data indicated that it was a natural

terminal repeat,4 whereas Jim Rose and Frank Koczot had

published data showing that the ends of AAV were an

inverted terminal repeat.5 To reconcile the two conclu-

sions, Hugh Gerry and I suggested that the terminal se-

quence was a palindrome. This model was subsequently

proven to be correct by sequence analysis, although more

complex than a simple palindrome.

The terminal 125 nucleotides were palindromic, but the

overall palindrome was interrupted by two smaller palin-

dromic sequences, one on either side of nucleotide 63 (the

axis of symmetry). When the overall 125 nucleotide se-

quence was folded on itself, a T-shaped structure formed.

Only seven nucleotides were not base paired, three T’s at

the tip of one of the cross arms and three A’s at the tip of

the other cross arm, plus either an A or T separating the

two internal palindromes. Of note, there were two se-

quences determined for the terminal 125 nucleotides.6

This was the consequence of the inversion of the itr during

DNA replication. The model for replication invoked the

formation of the hairpin structure at the 3¢ itr to serve as the

primer for DNA replication. (Initiation of DNA replication

requires a primer, which must eventually be resolved to

restore the original 5¢ terminus of the genome, lest there be

sequential shortening of the genome with each round of

replication.7)

Resolution of the now covalent hairpin linking both the

primer and progeny strands involves nicking at a point

opposite the original 3¢ terminus, with subsequent transfer

of the original 3¢ terminal sequence from the primer strand

to become the 5¢ end of the progeny strand. The gap left

at the 3¢ end of the parental strand can be filled by repair

synthesis primed by the shortened 3¢ parental strand.)

(Note: were the terminal sequence a simple palindrome,

inversion would yield a sequence identical to the origi-
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nal one; but because of the two smaller internal palin-

dromes, the inversion results in a different sequence. The

two sequence orientations are referred to as ‘‘Flip’’ and

‘‘Flop.,’’ as given in Fig. 1).

The overall itr is 145 nucleotides long. Not only does

the itr have interesting physical properties, but the itr and

nearby unique internal sequences have numerous biolog-

ical and regulatory properties, not all of which are even

now fully understood. Among these are binding sites for

several transcriptional transactivators.8–11 The itr has been

implicated as being important in both the regulation and

priming of AAV DNA replication.12,13 Conversely, in a

nonpermissive milieu the itr functions in cis as a negative

regulator of both replication and transcription.

Furthermore, the itr facilitates recombination of the

viral genome with the cellular genome. This happens at

many sites in the cellular genome in both nondividing and

dividing cells and is not dependent on the presence of the

large Rep regulatory protein. In dividing human cells in

culture, the AAV genome can integrate preferentially at a

specific site on chromosome 19q13.4.14–18 Preferential

integration requires the large Rep protein and the itr and

the entire genome and tandem repeats of the genome may

be integrated. This occurs in a nonpermissive milieu (no

helper virus coinfection). The integrated state has been

reported to persist for >100 passages in culture.19 Rescue

of the integrated genome and production of wild-type

AAV is induced by adenovirus super-infection of the la-

tently infected cell or by exposure of the cell to other

stressful conditions.

In a latently infected transformed cell line in culture, an

antibiotic resistance gene carried by the integrated AAV

genome continues to be expressed; there is no indication of

suppression of gene expression. A similar phenomenon is

observed in cells transduced by AAV vectors that persist

as extrachromosomal circles. Thus, unlike most other viral

vectors for gene therapy, transgenes in AAV vectors con-

tinue to be expressed for much longer periods of time.

What is it that differentiates AAV vectors from other vi-

ral vectors? We do not know with certainty, but a good

possibility is that the AAV itr by virtue of its very stable

potential hairpin structure is able to assume structural

conformation(s) that block protein DNA complex forma-

tion(s) that could lead to suppression of gene expression.

Figure 1. Nucleotide sequences of the inverted terminal repetition in AAV2 DNA. The second sequence (flop) represents an inversion of the first 125
nucleotides. The sequences are represented in the form that contains the maximum amount of self-base pairing.6 AAV, adeno-associated virus.
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Because the AAV itr is able to form a hairpin to serve as

the primer for DNA replication, it would seem likely, and

indeed has been shown, that replication could initiate from

either the right or left end of the duplex form of AAV

DNA. If both the left and the right itrs were in the flip

orientation, progeny genomes had itrs in both orientations

and the orientation at one end of the progeny genome did

not seem to determine the orientation of the itr at the other

end.6 One question is whether there is any biological dif-

ference between the two itrs. A series of experiments has

indicated that the left itr of the duplex form of AAV DNA

is dominant.20 Several experiments have been carried out

to see whether the absolute sequence of the itr is required

for replication. The cloned AAV genome can be trans-

fected into a permissive cell cotransfected by a helper

adenovirus; the cloned AAV genome is rescued from the

integrated state and replicated.

If one of the itrs in the cloned genome had a deletion

mutation, the mutation was rescued and repaired during

replication.21,22 In other experiments, several nucleotides

at the tip of one of the cross arms of the T were replaced by

a second sequence that maintained the palindromic nature

of the cross arm, the ability of the AAV genome to be

rescued and repaired was retained.23 However, if a non-

palindromic sequence were inserted, the genome could not

be rescued and replicated. Thus, conformation of the itr is

an important consideration. However, as might be ex-

pected, when both wild-type and a viable mutant were

simultaneously cotransfected, wild type was predominant.

A more complex result was seen when one itr in the

cloned genome had a wild-type sequence and the other had

a mutant sequence.21,22 If the left itr was wild type, all

progeny genomes had wild-type itrs at both ends. How-

ever, if the left itr was the mutant and the right was wild

type, the resulting progeny genomes had a mixture of wild

type and mutant itrs. We do not understand the molecular

basis for polar difference in the results. Clearly the mech-

anism of DNA replication and/or rescue is more complex

than current models can account for.

Forty years ago, experiments were conducted to char-

acterize nonhomologous recombination between AAV and

SV40 viruses.24 On the one hand, this was a model system

to evaluate potential recombination between SV40 and

host cell DNA using a receptor genome that could be char-

acterized by the technology available at that time (both the

SV40 and AAV genomes had just been sequenced25,26).

African Green Monkey cells were co-infected with SV40

and AAV2. After two passages, infectious centers were

assayed for cell colonies that contained AAV sequences.

Because AAV cannot independently replicate in monkey

cells, any colonies that contained detectable AAV sequences

must have contained hybrid recombinant SV40/AAV

viruses that contained the SV40 origin of DNA replication.

The hybrid SV40/AAV were further characterized to

determine which AAV sequences were present. This was

of some interest because the assay was not designed to be

selective for a particular region of the AAV genome.

Contrary to expectations (always a more interesting result),

all the AAV/SV40 hybrids were positive for sequences

from the right end of the AAV genome. Characterization of

the recombinants revealed that about half of them were

short tandem repeats of the SV40 origin of replication

and *200–400 nucleotides from the right end of AAV;

about half of the AAV sequence was just inboard from the

boundary of the right itr and the rest of the sequence extended

about half was through the itr, terminating frequently in the

region of the small internal palindromes.27 Why the left itr

was never detected in the recombinants suggested a polar

difference most likely associated with the short unique

sequence just inboard from the right itr. Further consid-

eration will be given to this issue in the next section.

In 1996, I was asked to speak with a National Institutes

of Health committee that had been established on an ad

hoc basis to consider whether knowledge about AAV was

sufficient to consider using it in clinical trials as a vector

for gene therapy. At that moment there was great enthusi-

asm for starting human trials, but I was hesitant because I

thought a lot of fundamental information was still lacking.

The information we did have was all positive; first, AAV

was not known to be the agent of any human disease; sec-

ond, we knew the genetic maps and complete DNA se-

quences, we knew that under some conditions AAV2 could

integrate in a site-specific manner into the human genome,

but that this required Rep gene expression, and we knew

that transgenes carried by AAV vectors continued to be

expressed for long periods of time (the life time of a mouse).

We also had a good idea of the requirements for AAV

replication, so that nonreplicating vectors could be con-

structed. However, very little was known about the bi-

ology of AAV after infection, either at the cellular level or

at the level of an intact host, especially a human. We did

not know critical factors about the ability of the vector

to gain entry into the nucleus, interaction of the vector

with the host immune system, or tissue specificity. Nu-

merous human serotypes had been identified and differ-

ences among the serotypes with regard to the issues listed

previously had not been defined.

Nevertheless, clinical trials with AAV vectors were be-

gun. Results were uniformly negative. Although the AAV

vectors seemed quite safe, expression of the transgenes car-

ried by the vectors occurred at disappointingly low levels.

What expression was observed was not long lived. Despite

the general notion that AAV is not highly immunogenic, it

was found that an immune response was elicited. Despite

early indications that AAV2 the prototype could infect

multiple tissues, more detailed studies revealed that different

serotypes had different tissue distributions after infection and

that the route of infection was an important consideration.

Viruses are pathogens, so an important consideration is

that the vector does not contain sequences that contribute
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to pathogenicity. In addition, for safety considerations,

generally, it is considered desirable that vectors were not

be able to replicate. Over time additional studies on the

fate of AAV and AAV vectors after infection enabled

modifications in the construction of vectors to the point

that AAV vectors have been developed that have enabled

apparent cures for several monogenic human diseases,

including a form of Leber’s disease (congenital blind-

ness),28–31 hemophilia (A and B),32–36 lipoprotein lipase

deficiency,37 and spinal muscle atrophy.38

A major reason that AAV has found favor as a vector

for human gene therapy is that until recently there has been

no known association with human disease. In recent years

this conclusion has been called into question. Any viral

DNA genome that enters the nucleus has the potential to

integrate into the host genome. Indeed, in model systems it

has been estimated that AAV vectors recombine at a fre-

quency of 2 · 10-7.39 However, no adverse consequences

have ever been noted in gene therapy trials in humans or

nonhuman primates.

There have been several reports that tumors were ob-

served in certain strains of newborn mice infected with

AAV or AAV vectors.40,41 The initial observations have

been reproduced and so additional evidence that wild-type

AAV or AAV vectors might be oncogenic has been sought.

Several years ago, a French group reported that AAV se-

quences were detectable in liver tissue from some patients

who had primary hepatic cell carcinoma that was not oth-

erwise attributable to cirrhosis or chronic infection with

hepatitis virus B or C.42 The original report was confusing

because the tumors were not clonal and, in some cases, the

AAV sequences were detected in cells apart from the tumor.

Although the original report generated a heated re-

sponse from several laboratories,43,44 who were leaders in

gene therapy and who disputed whether the data reported

supported the notion that AAV vectors might be onco-

genic, subsequent studies have supported the original re-

port. Analysis of the AAV sequences present in the liver

tissue has indicated the presence of a short sequence

(*250–400 nucleotides) from the right end of the AAV

genome. About half the sequence was derived from the itr

with a boundary in the itr in the region of the smaller

internal palindromes. The other half of the sequence ex-

tended from the boundary between the right itr and internal

unique sequences for *200–300 nucleotides.

In additional studies it was reported that this sequence

had a predilection to integrate into regulatory regions of

genes characteristically expressed in cells of primary he-

patic cell carcinoma. Insertion of the sequence into the

regulatory regions induced expression of these genes.45

Thus, it does seem likely that under the specialized con-

ditions described that AAV might indeed be oncogenic. It

should be noted that the identity of the inserted sequences

recapitulates the data we reported over 30 years; there is

something curious about the right terminus of the AAV

genome that predisposes to nonhomologous recombina-

tion, or, in other words, what goes around comes around.

At least two questions follow from the above results.

The first is a practical consideration; do the results raise

serious considerations about the safety of AAV vectors,

which up until now have appeared extremely safe? The

prototypical AAV vector contains only the AAV itr at

either end. Thus, the oncogenic concerns raised by the

findings with hepatic cell carcinoma would not seem to

be applicable to current AAV vectors. (It may well be

pertinent to vectors that contain sequences from the right

end.) Of course, the extent to which this conclusion may

be overly simplistic clearly needs to be investigated. In

cell culture, wild-type AAV infection leads to site-specific

integration in transformed cells on chromosome 19q13.4.17

Colonies with integrated AAV DNA can be detected by

expression of a selectable transgene or ability to rescue

viable AAV after super-infection with adenovirus.

Characterization of the integrated DNA has shown that

the AAV DNA is present as either a head-to-tail or head-

to-head tandem repeat. It has been hypothesized that, at the

least, slightly more than a full length genome is required

for rescue and replication.19 A functional Rep gene is required

for site-specific integration and the target sequence has been

identified.46,47 Site-specific integration occurs by nonhomol-

ogous end joining.48 Of note is the fact that the palindromic

part of the itr resembles a Holliday structure invoked as an

intermediate in recombination.49 Junctions between viral and

cellular sequences have been mapped within the itr.

A very different picture was seen if recombination be-

tween AAV and cellular DNA was assayed by screening

for AAV sequences. Integrated sequences were readily

detected, most integration did not occur at 19q13.4, but

rather at a variety of different sites on the genome, al-

though, there were some more favored sites.50,51 In some

reports, recombination into 19q13.4 had occurred, but

represented only a small fraction of the sites detected.

Significantly, integrated sequences represented only a

small part of the genome, although sequences from the itr

were usually present at the junctions with cell DNA.

Screening the fate of AAV vectors in animal models of

gene therapy revealed that integration of vector sequences

was very rare (10-7) and that most vectors were main-

tained in an extrachromosomal state.52

Of interest, there have been isolated reports that suggest

that AAV vectors used to transduce hepatic cells in vivo

seem to persist by integration into the cellular ge-

nome.53,54 This may reflect that persistent expression of

the transgene requires integration because of the relatively

rapid turnover of hepatocytes.

More recently, investigators have reported that dogs

that were injected with AAV vectors to treat hemophilia A

did express therapeutic levels of factor 8 for >9 years.55

When autopsies were performed, evidence for integration

of the vector into hepatic cell genomes was found. It is
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hypothesized that integration of the transgene vector was

necessary to maintain expression in the dividing hepatic

cells over such a prolonged time. Presumably, extrachro-

mosomal vectors would have been diluted out with time.

There was no evidence that the vector was oncogenic, but

the evidence of integration does raise the possibility that

the vector might integrate into an oncogene or its regula-

tory region with deleterious effects (Personal communica-

tion: D. Sabatino in talk given at ASH meeting 2019).55

Thus, it was suggested that patients receiving AAV-based

gene therapy be followed for an extended period of time

beyond the currently recommended 5 years. Candidly, it

seems to this author to be a good recommendation for any-

body treated with any form of gene therapy or modification.

Are the reports of integration of fragments of AAV

different or more frequent than seen with other nuclear

DNA viruses. My personal bias is that any piece of DNA,

linear, circular, single, or double stranded has a small, but

finite chance of recombining with the cellular genome.

The palindromic structure of the AAV itr may well confer

special biological properties rendering the AAV genome

particularly recombinogenic. This seems particularly proba-

ble given the results originally seen in the study of heter-

ologous recombination between AAV and SV40.

When asked in 1995 whether knowledge of AAV had

progressed to a point where human gene therapy trials

were advisable, I had some hesitancy. We have now

achieved effective clinical results using AAV vectors;

much of this success is directly attributable to fundamental

studies on the biology of AAV. What is paradoxical is that

the only component of the AAV genome required in the

vector particle is the itr, the sequence of which we have

known since 1980. Yet we still do not understand the de-

tails of its higher order structure or the full range of its

biological properties. The beauty of science is that each

advance opens up new questions to be resolved.
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