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ABSTRACT The piggyBac transposon was originally isolated
from the cabbage looper moth, Trichoplusia ni, in the 1980s.
Despite its early discovery and dissimilarity to the other DNA
transposon families, the piggyBac transposon was not
recognized as a member of a large transposon superfamily
for a long time. Initially, the piggyBac transposon was thought
to be a rare transposon. This view, however, has now been
completely revised as a number of fully sequenced genomes
have revealed the presence of piggyBac-like repetitive elements.
The isolation of active copies of the piggyBac-like elements
from several distinct species further supported this revision.
This includes the first isolation of an active mammalian DNA
transposon identified in the bat genome. To date, the piggyBac
transposon has been deeply characterized and it represents a
number of unique characteristics. In general, all members of the
piggyBac superfamily use TTAA as their integration target sites.
In addition, the piggyBac transposon shows precise excision,
i.e., restoring the sequence to its preintegration state, and can
transpose in a variety of organisms such as yeasts, malaria
parasites, insects, mammals, and even in plants. Biochemical
analysis of the chemical steps of transposition revealed that
piggyBac does not require DNA synthesis during the actual
transposition event. The broad host range has attracted
researchers from many different fields, and the piggyBac
transposon is currently the most widely used transposon
system for genetic manipulations.

INTRODUCTION
The piggyBac transposon superfamily is a relatively re-
cently recognized transposon superfamily. The original
piggyBac transposon was isolated from the genome of
the cabbage looper moth, Trichoplusia ni in the 1980s.
However, the second member of the piggyBac-like ele-
ment superfamily was not identified until 2000. It was
not described as a transposon superfamily in the previ-
ous edition of Mobile DNA. In the last decade or so,
a number of sequenced genomes have revealed that
piggyBac-like elements are actually widespread DNA
transposons. Active copies of the transposon have also

been identified from another moth species, from frogs,
and for the first time, from a mammal. Moreover, be-
cause the piggyBac transposon has a broad host spec-
trum from yeast to mammals, this mobile element has
been widely used for a variety of applications in a
diverse range of organisms. In this chapter, we will
describe the discovery and diversity of the piggyBac
transposon, its mechanism of transposition, and its ap-
plication as a genetic tool. We will also provide two
examples of genetic screening that the piggyBac trans-
poson has enabled.

DISCOVERY OF THE
piggyBac TRANSPOSON
It was known in the late 1970s that when insect DNA
viruses, namely Galleria mellonella or Autographa cali-
fornica nuclear polyhedrosis viruses (species of Bacu-
lovirus), were serially passaged in T. ni cell line TN-368,
mutant viruses that showed the Few Polyhedra (FP)
plaque morphology phenotype appeared spontaneously
but reproducibly (1, 2, 3). Analyses of these mutant vi-
ruses revealed that the host cell DNA had inserted into
the viral genome, resulting in the loss of the 25 KDa viral
protein (2). These mutant viruses could revert to the
wild-type by serial passage in the TN-368 cell line. This
was associated with the loss of the inserted DNAs in the
revertant viral genome (2). The sizes of these inserted
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fragments varied between 0.5 and 2.8 kb (2). One of the
most frequently inserted fragments was 2.5 kb in size
and was present as multiple copies in the T. ni genome
(2). These observations strongly indicated that the in-
sertions in the viral genome are mobile elements that
reside in the T. ni genome. Sequencing analyses of the
inserted DNA revealed that the integration sites had
typical DNA transposon signatures such as perfect du-
plication of the 4-bp viral DNA (TTAA) and terminal
inverted repeats (TIRs) within the inserted fragments (4).
In 1989, the entire sequence of the inserted DNA was
reported, revealing the structure of the piggyBac trans-
poson for the first time (5).

The T. ni piggyBac transposon is a 2,475-bp-long
autonomous mobile element (GenBank Accession num-
ber. J04364.2; Fig. 1). It has 13-bp TIRs located at both
ends and 19-bp subterminal inverted repeats located
3-bp and 31-bp 5′ and 3′ internally from the TIRs, re-
spectively. Between the subterminal inverted repeats,
there is a single 1.8-kb open reading frame, which en-
codes the 594-amino acid piggyBac transposase with a
molecular weight of 64 kDa. The functionality of the
coded protein as a transposase was first confirmed in
1996 with the successful mobilization of a nonautono-
mous piggyBac element (6).

DIVERSITY AND DOMESTICATION OF THE
piggyBac SUPERFAMILY TRANSPOSONS
Since its discovery in 1989, T. ni piggyBac had for a long
time remained the only member of the currently-known
piggyBac superfamily. However, this view has now
changed completely owing to the discovery of a number
of piggyBac-like elements in a variety of organisms. The
piggyBac transposon superfamily is now recognized as a
widespread DNA transposon superfamily. Surprisingly,
a currently active copy of the piggyBac transposon was
recently isolated from mammals. Furthermore, genome
sequencing has revealed many genes that were derived
from transposable elements. It has been shown that
domesticated piggyBac transposases play an essential

role in cellular functions in ciliates (7, 8). This section
describes the diversity of the piggyBac transposon and
the domestication of piggyBac transposases.

piggyBac Transposable Elements
In the 1980s and 1990s, several genomic DNA segments
were observed to contain target site duplication of the
tetranucleotide TTAA and an addition of 2-to-3 Cs.
These included Tx1 derived from Xenopus (9, 10) and
TFP3 (4, 11) from T ni., Pokey from Daphnia, and host
DNA integration into the genome ofAutographa califor-
nica nuclear polyhedrosis virus passaged in a Spodoptera
frugiperda cell line (12, 13, 14). All these elements were
nonautonomous and the transposases responsible for
the mobilization of these nonautonomous elements
could not be identified. It was thus not clear whether
these TTAA-specific transposons shared molecular char-
acteristics with T. ni piggyBac and belonged to the same
transposon superfamily.

In the mid-1990s, transgenesis of nondrosophilid in-
sects using T. ni piggyBac transposon-based vectors was
successful, which popularized the approach (13, 14).
Detection and genetic stability of the integrated trans-
poson were often examined by Southern blot analysis.
None of the early transgenesis work identified genetic
elements that cross-hybridized with the T. ni piggyBac
transposon in the test insects’ genomes (15, 16), sug-
gesting that piggyBac might be restricted in T. ni. How-
ever, surprising results were reported in 2000 in a paper
describing the transgenesis of the Oriental fruit fly, Bac-
trocera dorsalis (17). The genome of the Oriental fruit
fly contains sequences, some of which are apparently
full-length elements, that cross-hybridized with T. ni
piggyBac. Sequencing analysis of a transposase-coding
region revealed that the cross-hybridizing elements are
indeedpiggyBac-like elementswith 95%nucleotide iden-
tity to T. ni piggyBac (17). This remarkable similarity
and the absence of the piggyBac-like elements in another
bactrocerid species, B. cucuribitae, or Mediterranean
fruit fly, Ceratitis capitata, suggested a very recent hor-
izontal transmission between T. ni and B. dorsalis; this

FIGURE 1 Structure of the T. ni piggyBac
transposon (GenBank accession number
J04364.2). TIR, terminal inverted repeat.
The minimum TIR sequences are based on
ref. (61). doi:10.1128/microbiolspec.MDNA3
-0028-2014.f1
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was probably via one or more intermediate species since
these species are geographically distinct (17).

In the following several years,whole genome sequences
were published for human (18), pufferfish Fugu rubripes
(19), and the African malaria mosquito Anopheles gam-
biae (20). Analyses of these genome sequences revealed a
number of piggyBac-like repetitive sequences. Further-
more, the full-length transposase-coding sequence of the
Pokey element was isolated in 2002 and showed a clear
similarity to T. ni piggyBac transposase (21). Thus far,
piggyBac-like sequences have been found in the genomes
of a wide range of organisms including fungi, plants, in-
sects, crustaceans, urochordates, amphibians, fishes, and
mammals (22). In addition, active or apparently intact
full-length piggyBac-like transposons have been identified
in another moth Macdunnoughia crassisigna (23), silk-
worm (24), ants (25), Xenopus (26), and the bat Myotis
lucifugus (27).

piggyBat, The First Active DNA Transposon
Isolated from Mammals
Around 35 to 50% of the mammalian genome is re-
petitive elements and a few percent typically comprise
fossil DNA transposons derived from various transpo-
son superfamilies (18, 28, 29, 30, 31, 32). A detailed
analysis of the evolutionary history of DNA transposons
found in the human genome revealed that DNA trans-
posons were active during early primate evolution (ap-
proximately 80 to 40 million years ago); however, all
these elements are now extinct and there is no evidence
of transposition in the last 40 million years (33). A sim-
ilar trend is also observed in the mouse genome (28).
Like other organisms, the M. lucifugus genome contains
numerous DNA transposons derived from almost every
transposon superfamily (34). However, the DNA trans-
posons in theM. lucifugus genome have clear differences
from those found in the human genome. Firstly, the
sequences of the bat DNA transposons are minimally
diverged from their consensus sequence. Secondly, the
bat genome contains potentially functional full-length
hAT and piggyBac transposons (34). Finally, preintegra-
tion sites have also been identified in a related species
M. austroriparius (34, 35), which separated from M. lu-
cifugus approximately 6 million years ago. This strongly
suggests that the bat genome was recently invaded by the
DNA transposons. Among these transposons, piggyBac-
like elements are markedly young. For example, a large
fraction of the nonautonomous piggyBac1_ML element
(npiggy_156 and npiggy_239) is identical in sequence
(34). Thirty-four full-length copies of the piggyBac1_ML
element identified in the M. lucifugus genome show

>99% nucleotide identity (27). Recently, the full-length
piggyBac1_ML element was cloned and tested for its
transposition activity. Similar to T. ni piggyBac, the bat-
derived piggyBac transposon (named piggyBat) is able
to transpose in yeast, bat, and human cells, albeit at a
2-to-10 times lower frequency than T. ni piggyBac (27).
Cloning of the piggyBat element represented the first
isolation of mammalian piggyBac derivative. Further
analysis of this activemammalian transposonwould give
us deeper insight into how these parasitic genetic ele-
ments contribute to the diversity and evolution of the
host species.

Domesticated piggyBac Transposases
Various organisms have occasionally utilized transposase
genes to create new genes with beneficial cellular func-
tions. This is called “domestication” of transposases, the
process of which is well exemplified by RAG1 in V(D)J
recombination (derived from Transib transposases [36,
37]) and the CENPB centromere protein (derived from
pogo transposases [38]). The genome sequences of vari-
ous species have also revealed a number of previously
unrecognized genes that were derived from various
transposable elements including piggyBac transposases
(18, 22). For example, the human genome contains 5
genes that were apparently derived from piggyBac trans-
posases, PGBD1-5.While piggyBac-derived sequences in
PGBD1-4 are found in one coding exon, those ofPGBD5
are separated by multiple introns. Furthermore, PGBD5
can be found in all vertebrates including the lamprey
Petromyzon marinus and also in the lancelet Branchi-
ostoma floridae. Surprisingly, both amino acid sequences
and synteny are highly conserved, indicating thatPGBD5
was domesticated more than 500 million years ago.
Given that PGBD5 is expressed mainly in the brain and
central nervous system, this gene may have played an
important role in the evolution of the central nervous
system (39).

Most of the domesticated piggyBac transposases have
substitutions in the catalytic core residues DDD (see be-
low). They are thus unlikely to have transposase activity,
suggesting that their DNA-binding capacity may be uti-
lized by the host (22). Intriguing instances of domestica-
tion of piggyBac transposase can be found in the ciliates
Paramecium tetraurelia (7) and Tetrahymena thermo-
phila (8). Ciliates are unicellular eukaryotes and have two
functionally distinct versions of nuclei in the cytoplasm,
namely a micronucleus as the germ-line genome and a
macronucleus that is derived from a micronucleus and
responsible for somatic gene transcription. During mac-
ronucleus development, the genome undergoes massive

ASMscience.org/MicrobiolSpectrum 3

piggyBac Transposon

http://www.ASMscience.org/MicrobiolSpectrum


Downloaded from www.asmscience.org by

IP:  207.253.234.98

On: Fri, 25 Oct 2019 20:04:52

DNA amplification and extensive genome rearrangement
including elimination of internal eliminated sequences
(IESs) and transposable elements. The precise excision of
IESs is particularly essential as this is required for re-
construction of functional genes. Domesticated piggyBac
transposases encoded by piggyMac in P. tetraurelia or
TPB2 inT. Thermophila play a central role in the genome
rearrangement, as shown in RNA interference experi-
ments (7, 8). Animals in which expression of the do-
mesticated gene was knocked down by RNAi exhibited
deficiency in initiating genome rearrangement in the de-
velopingmacronucleus. Furthermore, both proteins carry
a conserved DDD motif and the TPB2 gene product has
been shown to have an endonuclease activity in vitro
(27). In addition toRAG1 recombinase, the domesticated
piggyBac transposases in ciliates provide another exam-
ple that the catalytic activity of transposases is utilized by
the host organisms.

MECHANISM OF TRANSPOSITION
piggyBac Transposase
Many transposases and retroviral integrases contain a
DDE/D domain, which includes two highly conserved
aspartic acid (D) residues and either a glutamic acid (E)
residue or a third D. This domain is also known to form
an RNase H-like fold (40, 41). The essential amino acid
triad coordinates divalent metal ions such as Mg2+,
which catalyses transposition/integration activities (40,
41). The disruption of any one of the triad completely
abolishes transposase activity. An alignment of piggyBac
transposases from piggyBac-like elements found in var-
ious species shows several highly conserved blocks of
amino acids in the core region between positions 130
and 522 of the T. ni piggyBac transposase, which con-
tains several conserved aspartic acid (D) and glutamic
acid (E) residues (22, 42, 43). Although this region does
not readily show similarity to the widespread DDE
domains, a weak similarity to the IS4 family protein was
identified (22), leading to predictions that D268 and
D346 in the T. ni piggyBac transposase are the con-
served aspartic acid in the DDE/D domain. Mutational
analyses of D268, D346 as well as another highly con-
served D447 of T. ni piggyBac transposase revealed
that these residues are absolutely required for all steps
of transposition including nicking, hairpin resolution,
and target joining (see below). This allows us to con-
clude that the piggyBac transposase is a member of the
DDE/D recombinase family (43).

The C-terminal region is variable but contains sev-
eral conserved cysteine residues with regular spacing,

forming a putative zinc-binding plant homeodomain
(PHD) finger (43). A T. ni piggyBac transposase mutant
lacking the C-terminal domain can show in vitro trans-
position activity at the level equivalent to the wild-type
transposase. Given that PHD fingers bind to chroma-
tin (44), the C-terminus of piggyBac transposases may
facilitate binding to transposon DNA in a chromatin
context.

Chemical Steps
The piggyBac transposon has a broad host range, sug-
gesting that its mobilization could be host-factor inde-
pendent. In 2008,Craig and colleagues purified bacterially
expressed piggyBac transposase and reconstituted exci-
sion and integration reactions in vitro using the purified
transposase and substrate DNA (43). Their detailed ana-
lyses revealed the unique chemical steps that piggyBac
employs.

Figure 2 illustrates the chemical steps of the mecha-
nism of piggyBac transposition. When the piggyBac
transposase binds to the transposon end, it initiates the
excision reaction by nicking the 3′ end of each strand of
the transposon ends. The free 3′ OH then attacks the
complementary strand of the 5′ end of the flanking
TTAA, resulting in the formation of a hairpin on the
transposon end and the release of the transposon from
the host genome. The hairpin structures in the transpo-
sition intermediates are quickly resolved by the trans-
posase and the exposed 3′ OH is then used for target
joining. During the integration reaction, the exposed
3′ OH at the transposon end first attacks the 5′ end of
target TTAA sites. This joins one strand of the trans-
poson to the target site. Integration is completed when
the ends of the transposon ligate to the complementary
genomic strand.

At the excised genomic sites, 5′ overhangs of the
tetranucletide TTAA are produced at both ends. These
are simply paired and re-ligated by host factors, which
restores the sequence to its original state. piggyBac thus
shows precise excision and does not usually leave a foot-
print. However, there are occasional failures of donor
site repair, which result in small insertions and/or de-
letions, at a frequency of around 1% of excision events
during chromosomal transposition in mouse embryonic
stem (ES) cells (45).

There are two unique features in piggyBac transposi-
tion. Firstly, it requires no DNA synthesis. Mobilization
of many conventional DNA transposons is associated
with DNA synthesis by host repair proteins, which re-
sults in target site duplication and a “footprint” (Fig. 3
right). However, piggyBac produces 5′ TTAA overhang
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attached to the transposition intermediates and uses it
to base-pair with the 5′ TTAA single-strand gaps on the
target DNA during integration (Fig. 3 left). Therefore,
piggyBac does not require DNA synthesis. Secondly,
the excised transposon ends form a hairpin structure.
This mechanism was the first to be observed in eukary-
otic transposons although it has been seen in bacterial
NA transposons that belong to the IS4 family, namely
Tn5 and Tn10. In the Tn5 and Tn10 transposons, an
essential step of hairpin processing is base flipping,
which is often observed in reactions involving DNA
modifying enzymes such as DNA methylases and DNA
glycosylases. The cocrystal structure of Tn5 synaptic
complex revealed for the first time that base flipping is

employed in transposition reactions. Bischerour and
Chalmers further characterized base flipping at the mo-
lecular level and revealed the involvement of two W
residues in Tn5 and one W and one E residue in Tn10.
These residues are located at the equivalent position
near the third E residue of the DDE triad (46, 47). Al-
though these amino acids are not conserved in their
corresponding positions in T. ni piggyBac transposase,
there is one W residue (position 465 in T. ni piggyBac
transposase, downstream of the third D residue of the
DDD triad) that is highly conserved among piggyBac
transposases and has been suggested to be involved in
base flipping (48). However, W465A mutant showed
much reduced nicking activity as well as deficiency in

FIGURE 2 The chemical steps of T. ni piggyBac transposition. Black and grey arrowheads
indicate positions of nicks or sites where 3′ OH groups attack, respectively. Modified from
ref. (43). doi:10.1128/microbiolspec.MDNA3-0028-2014.f2
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every subsequent step of transposition reaction: hair-
pin formation, hairpin resolution, and target joining
(43). Therefore, W465 plays a central role in the trans-
posase activity and cannot have a role only in DNA
hairpin formation and resolution. Given that Tn5/Tn10
transposons produce a blunt intermediate molecule (38,
39) whereas piggyBac intermediate carries 4-nucleotide
5′ overhangs (43), piggyBac may therefore use differ-
ent amino acids or mechanism(s) to facilitate hairpin
processing.

Integration Site Preference
The piggyBac target site, TTAA, is fairly frequent in the
genome but the epigenetic status of the target sites may
affect integration site preference of the piggyBac trans-
poson. Understanding such a preference is important,
especially when piggyBac is used as an insertional mu-
tagen or a gene therapy vehicle.

To analyze site preference with an adequate statis-
tical power, a large number of integration sites are re-
quired. Ligation-mediated PCR is the most frequently
used method to identify transposon integration sites
(49). In this method, genomic DNA is typically digested
with a 4-bp cutter restriction enzyme, ligated with
an adaptor (known as a splinkerette) and amplified by
PCR using transposon-specific and splinkerette-specific

primers. The resulting PCR products, which contain
junctions between the transposon end and the flanking
genomic regions, are determined by capillary sequenc-
ing, thereby identifying the integration sites. An issue is
that the throughput of this method is too low to collect
statistically significant numbers of transposon integra-
tion sites. Recent advances in sequencing technologies,
however, have transformed the way we identify trans-
poson integration sites (50). It is now possible to iden-
tify tens of thousands of sites simultaneously. These can
then be compared with an accumulating genomic data-
set, such as those of the histone modification and DNase
hypersensitive sites, allowing us to comprehensively ana-
lyze and identify the epigenetic elements that affect in-
tegration site preference.

Using the method described above, Li et al. identified
more than 30 thousand T. ni piggyBac integration sites
in mouse embryonic stem cells (51). When mobilized
from chromosomal donor sites, the piggyBac transposon
showed strong local hopping patterns; these are com-
monly observed in DNA transposon mobilization. Ap-
proximately 10 to 15% of integrations were found
within 5Mb from the donor sites. This also increased the
frequency of integration into the chromosome that con-
tains the donor sites, resulting in 25% of reintegrations
in the original donor chromosome. When compared to

FIGURE 3 Comparison of target site joining and repair in piggyBac (left) and Tc1 (right).
Grey arrowheads indicate sites where 3′ OH groups attack. Modified from ref. (136).
doi:10.1128/microbiolspec.MDNA3-0028-2014.f3
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the epigenetic features, the piggyBac integration sites are
clearly associated with accessible chromatin structures.
These sites include DNase hypersensitive sites, sites with
trimethylated lysine 4 on histone H3 and sites with pol II
binding. In sharp contrast, the piggyBac integration sites
are negatively correlated with lamin-associated domains,
which are heterochromatin domains. These trends are
more obvious when the piggyBac transposons are mo-
bilized from genomic donor sites rather than from trans-
fected plasmid DNA. piggyBac preferentially integrates
in genic regions, especially regions that contain expressed
genes.

These preferential integrations into the open chroma-
tin structure were also observed in piggyBat transposon
(theM. lucifugus-derived piggyBac-like element) in both
human cells and bat fibroblasts (27). Interestingly, the
piggyBat transposons are accumulated in genic regions
of the bat genome, indicating that the in vitro studies
using human or mouse cell lines truly reflect native trans-
position patterns.

piggyBac AS GENETIC TOOLS
DNA transposons have been used as versatile genetic
tools in a wide range of organisms. For example, the
Tc1 element was used in Caenorhabditis elegans muta-
genesis (52) and the P element was used in Drosophila
melanogaster (53, 54). Earlier studies revealed that
Drosophila-derived transposons such as the P element
and the hobo transposon were either not functional
or limited in nondrosophilid insects (55). There was
therefore a need to develop alternative transposon-based
transgenesis systems for nondrosophilid insects. The
Lepidopteran transposon, piggyBac, was one such can-
didate. An engineered piggyBac-based vector was first
shown to be able to mobilize in a nonhost S. frugiperda
cell line in 1995 (56, 57). Subsequently, it was shown that
the piggyBac was able to mobilize in non-Lepidopteran
insects (15). Today, T. ni piggyBac transposition has
been confirmed in 5 orders of insects (Table 1) and
in organisms including plants, yeasts, protozoa, and
vertebrates (Table 2). The piggyBac-based transposon

TABLE 1 Studies in which piggyBac transposition has been confirmed in insect species

Order Common name Scientific name Reference

Coleoptera Ladybird beetle Harmonia axyridis (81)

Coleoptera Red flour beetle Tribolium castaneum (82)

Diptera La Crosse encephalitis vector mosquito Aedes triseriatus (83)

Diptera Yellow fever mosquito Aedes aegypti (84)

Diptera Dengue vector mosquito Aedes albopictus (83)

Diptera Mosquito Aedes fluviatilis (85)

Diptera Mexican fruit fly Anastrepha ludens (86)

Diptera Malaria mosquito Anopheles albimanus (87)

Diptera Malaria mosquito Anopheles gambiae (88)

Diptera Mosquito Anopheles gambiae (89)

Diptera Malaria mosquito Anopheles stephensi (90)

Diptera Oriental fruit fly Bactrocera dorsalis (17)

Diptera Queensland fruit fly Bactrocera tryoni (91)

Diptera Mediterranean fruit fly Ceratitis capitata (15)

Diptera Fruit fly Drosophila melanogaster (16, 84)

Diptera Spotted wing drosophilid Drosophila suzukii (92)

Diptera House fly Musca domestica (93)

Diptera Stalk-eyed fly Teleopsis dalmanni (94)

Hymenoptera Sawfly Athalia rosae (95)

Lepidoptera Butterfly Bicyclus anynana (96)

Lepidoptera Silkworm Bombyx mori (59)

Lepidoptera Codling moth Cydia pomonella (97)

Lepidoptera Tobacco budworm Heliothis virescens (98)

Lepidoptera Cabbage moth Mamestra brassicae (99)

Lepidoptera Asian corn borer Ostrinia furnacalis (100)

Lepidoptera Pink bollworm Pectinophora gossypiella (101)

Lepidoptera Potato tuber moth Phthorimaea operculella (102)

Lepidoptera Diamondback moth Plutella xylostella (103)

Lepidoptera Fall armyworm Spodoptera frugiperda (56)

Orthoptera Two-spotted cricket Gryllus bimaculatus (104)
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vector system is the most widely used transposon sys-
tem for a variety of applications such as transgenesis
and mutagenesis. Furthermore, piggyBac has poten-
tial as a gene therapy vehicle (58). The next section
describes the piggyBac transposon in the context of ge-
netic tools.

The Engineered Nonautonomous
piggyBac Transposon System
Similar to the other transposon systems such as P ele-
ment and Tc1 transposon, the autonomous piggyBac
transposon can be separated into 2 components: a DNA
segment flanked by piggyBac TIR and a transposase.
The initial transgenesis experiments using the piggyBac
transposon were conducted in a conservative vector
system in which genetic marker genes were simply in-
serted into the middle of the transposase coding region
(13, 14). Alternatively, the short fragment (0.75 kb)
in the transposase coding region was replaced with
marker genes (59), retaining most of the original trans-
poson sequences. To improve and increase the versatility
of the vector system, the minimum terminal sequences
needed to be identified. This was done by analysis of
a series of internal deletion constructs. The originally
identified minimum terminal sequences were 125 bp
for the 5′ terminus and 162 bp for the 3′ terminus;
such a vector had transposition activities that were

comparable to the full-length transposon in T. ni em-
bryos (60). However, this minimal piggyBac vector
had a dramatic reduction in transformation efficiency in
Drosophila. Further analysis revealed the necessity of
internal domain sequences for efficient transposition
and identified the optimal terminal length as 311 bp
for the 5′ terminus and 235 bp for the 3′ terminus
(61). This is the most commonly used vector configu-
ration today.

Any DNA fragments can be inserted as a transposon
cargo between these terminal repeats and mobilized by
the transposase. Various elements have been used de-
pending on the experimental purpose. To express a gene
of interest exogenously, a transcription unit, containing
a suitable promoter, a coding sequence, and a poly-
adenylation signal sequence, is inserted. For disrupting
gene function, a gene trap element consisting of a splice
acceptor site and a polyadenylation signal sequence
can be used. The cargo capacity of the piggyBac trans-
poson is fairly large; transposons with a cargo of up
to 10 kb can be mobilized without losing transposi-
tion efficiency (62). Recently, it has been shown that
piggyBac can transpose bacterial artificial chromosomes
(BACs), which are 150 to 300 kb in length, in mouse
and human pluripotent stem cells (50, 63) and in mouse
zygotes (64). In the best result in the zygote injection,
45% of F0 mice carried a BAC transgene and most of
them have transposon signature (64).

TABLE 2 Studies in which piggyBac transposition has been confirmed in noninsect species

Organism Common name (cell type) Scientific name Reference

Yeast Budding yeast Saccharomyces cerevisiae (43)

Yeast Fission yeast Schizosaccharomyces pombe (105)

Protozoa Malaria parasite Plasmodium falciparum (79)

Protozoa Human blood fluke parasite Schistosoma mansoni (106)

Protozoa Malaria parasite Plasmodium berghei (107)

Protozoa Apicomplexan parasite Eimeria tenella (108)

Protozoa Rat gastrointestinal parasite Strongyloides ratti (109)

Pranarian Pranarian Girardia tigrina (110)

Fish Zebrafish (Zygote) Danio rerio (111)

Bird Chicken (PGC, spinal cord) Gallus gallus (112, 113, 114, 115)

Mammal Mouse (ES cells, in vivo) Mus musculus (49, 62, 64)

Mammal Rat (Zygote, in vivo) Rattus norvegicus (116, 117)

Mammal Goat (Fetal fibroblasts) Capra aegagrus (118)

Mammal Pig (Fetal fibroblasts) Sus scrofa (119)

Mammal Horse (Fetal fibroblasts) Equus ferus (120)

Mammal Human (Cancer cell lines, primary T lymphocyte,
CD34+ hematopoietic stem cells, ES cells, iPS cells)

Homo sapiens (63, 70, 121, 122, 123)

Mammal Macaque (ES cells) Macaca fascicularis
M. mulatta

(65)

Plant Rice Oryza sativa (124)
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Transposase/Transposon Variants
Increasing transposition efficiency is the key to improving
efficiency of transposon-mediated genetic manipulation.
This has been done recently by a series of mutagenesis of
the TIRs and the transposase, followed by screening for
hyperactive variants.

(i) Transposon
Transposon TIR sequences were randomly mutagenized
by error-prone PCR. These sequences were then screened
for higher transposition activity. A mutant 5′ TIR carry-
ing two substitutions, T53C and C136T, showed a 59%
increase in overall transposition compared to the wild-
type TIR (65). The mechanisms by which these substi-
tutions increase transposition frequency remain elusive.

(ii) Transposase
Since piggyBac is derived from insects, the codon usage
may not be suitable for expression in mammalian cells.
One simple idea to increase the transposition efficiency
is to optimize codon usage and increase the expression
level of the transposase. Indeed, optimization of the
transposase-coding sequences to the codon usage of
mouse (66) or human (65) increased the transposition
efficiency by several fold when compared to the original
insect sequences. Another approach is random muta-
genesis of the transposase by error-prone PCR followed
by screening for hyperactive mutants (45). The yeast-
based transposition assay system is particularly useful
for large-scale screening. A total of 10,000 clones were
screened and 17 hyperactive mutants were identified.
The activity of each mutant was further tested in mouse
ES cells and 5 mutants showed higher activity (I30V/
G165S, S103P, M282V, S509G/N570S and N538K).
All seven amino acid substitutions that were found in
the five mutants were then combined into one coding
sequence and the resulting transposase, named hyPBase,
showed increases of approximately 20-fold in excision
and 10-fold in integration in mouse ES cells (45). The
hyPBasewas also able to increase transposition efficiency
in human cells (67). The mechanisms by which these mu-
tations alter transposition activity remain elusive.

In addition to the developments described above, a
variant called Exc+Int− transposase that can excise a
transposon but cannot integrate it back into the host
genome has recently been generated (68). This variant
was identified by site-directed mutagenesis of potentially
DNA-interacting amino acids. Given that piggyBac can
be excised seamlessly, this new variant transposase is
useful for the removal of transgenes carried by piggyBac.
The variantwas found to have theR372A/K375Adouble

mutation and was further mutagenized by error-prone
PCR to screen for hyperactive variants. Two mutations,
namely M194V and D450N, were found to increase the
excision activity of the Exc+Int− (R372A/K375A) trans-
posase. When R372A/K375A/D450N mutations were
introduced into the hyPBase background, the transpos-
ase showed amarked increase in its excision activity with
no change in its integration activity.

In addition, transposase variants have also been gen-
erated by fusing functional protein domains. The ERT2
domain (a mutated version of the ligand-binding domain
of the human estrogen receptor) allows temporal regu-
lation of enzymatic activity of the fusion proteins by
tamoxifen administration (69). ThepiggyBac transposase-
ERT2 fusion protein can be activated upon induction, but
remains inactive without tamoxifen (66). DNA-binding
domains such as the Gal4 DNA-binding domain and
custom-made zinc finger DNA-binding domains have
also been used. These fusion transposes are not only active
but also able to integrate transposons into sites that are in
close proximity to their respective binding sites, thereby
allowing site-directed transposition (65, 68, 70). Sleeping
Beauty andTol2 transposases are not amenable to protein
fusion (70). The flexibility of transposase modification by
protein domain fusion is therefore another unique feature
of the piggyBac transposon system.

piggyBac-MEDIATED GENETIC SCREENING
One major application of DNA transposons is inser-
tional mutagenesis. The piggyBac transposon vectors
have been used as an insertional mutagen in several
organisms (Table 3). One of the best examples of mu-
tagenesis using piggyBac is in vivo mutagenesis in mice
for cancer gene discovery. Traditionally, murine leuke-
mia virus and murine mammary tumor virus were used

TABLE 3 Studies using the piggyBac transposon as an in-
sertional mutagen

Organisms Purpose Species Reference

Insect Mutagenesis Tribolium
castaneum

(125, 126)

Insect Mutagenesis Drosophila
melanogaster

(127, 128, 129)

Mouse In vivo cancer
gene discovery

Mus musculus (76, 130, 131)

Mouse In vitro screening
in ES cells

Mus musculus (132, 133, 134)

Yeast Mutagenesis Fission yeast (105)

Malaria Mutagenesis and
phenotype-based
screen

Plasmodium
berghei
Plasmodium
falciparum

(80, 107, 135)
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for oncogene discovery in hematopoietic cells (71, 72)
and mammary tissues (73), respectively. However, such
experiments were not possible in a large fraction of solid
tumors due to the limited accessibility of these retro-
viruses. Analyses of such tumors therefore required
the development of active transposon systems in mam-
malian cells. Sleeping Beauty is the first transposon sys-
tem that has sufficient transposition efficiency for use
in mutagenesis (74). Subsequently, piggyBac was also
shown to be able to transpose efficiently in mice (62).
The vector configuration that is typically used in mice

for in vivo mutagenesis is shown in Fig. 4. It contains
both gene inactivation and activation elements to iden-
tify tumor suppressors and oncogenes, respectively.
Mobilization of this mutagenic transposon in mice could
either significantly increase tumor formation (75, 76) or
promote tumorigenesis when used in conjunction with
cancer-predisposing genetic backgrounds (77). These
transposon-induced tumors typically hosted piggyBac
integration events within the tumor suppressors and/or
upstream of the oncogenes (76). Detailed analyses suc-
cessfully identified novel oncogenes (76).

FIGURE 4 Transposon-mediated cancer gene discovery in mice. (A) Commonly used
genetic elements. TIR, terminal inverted repeat; SA, splice acceptor site; pA, polyadenyl-
ation signal sequence; SD, splice donor site. (B) In gene activation, a strong constitutive
promoter ectopically expresses or overexpresses a trapped gene. The transposon carries
two splice acceptor sites in both directions; the trapped genes will be inactivated in spite
of the transposon orientation relative to the gene. doi:10.1128/microbiolspec.MDNA3
-0028-2014.f4
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Another example of the use of piggyBac in muta-
genesis is the malaria parasite, Plasmodium falciparum.
Genetic manipulation is a fundamental experimental
method for gene function studies in any organism.
However, it is extremely difficult in P. falciparum for a
number of reasons (78). The transfection efficiency is
extremely low since DNA has to travel through multi-
layers of membranes to get into the nucleus of blood-
stage parasites. Linear DNA is degraded before reaching
the parasite nucleus, whereas circular DNA stays as epi-
somes in the parasite nucleus. The piggyBac transposon
can circumvent these issues and a piggyBac-based trans-
formation system has recently been developed (79). By
scaling up the experimental scale, one can generate a
library of mutant parasites. A small library consisting
of 189 parasites with piggyBac insertion was recently
generated and, from this library, 29 parasites that were
deficient in gametocytogenesis were successfully isolated
(80).

CONCLUDING REMARKS
Recent advances in genome sequencing of various
organisms have unveiled a number of previously un-
recognized transposable elements and domesticated
transposases, which has allowed us to greatly widen
our understanding of these elements. The piggyBac
transposon is one such good example, as exemplified
by the discoveries of piggyBat and piggyMac. Genome
sequence data will continue to accumulate and may pro-
vide even more surprising characteristics of these para-
sitic DNA elements. In terms of the molecular biology of
piggyBac, a number of efforts have been made and
the chemical steps of piggyBac transposition have been
characterized. However, its uniqueness has left some
unsolved questions; for instance, the molecular mecha-
nisms of hairpin processing. Further biochemical char-
acterization of piggyBac transposase and domesticated
enzymes will reveal its unique DNA processing mecha-
nisms. In particular, crystal structures of piggyBac trans-
posases in a free or in a DNA-binding form will be
of great interest to unveil the mechanisms of hairpin
processing. In addition, the versatility of the piggyBac
transposon system has allowed us to achieve previously
difficult-to-perform transgenesis and mutagenesis. This
will further expand our ability to address biological
questions.
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