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Abstract. Genetic modification (GM) of mosquitoes (which renders them genetically modified organisms, GMOs)
offers opportunities for controlling malaria. Transgenic strains of mosquitoes have been developed and evaluation of
these to 1) replace or suppress wild vector populations and 2) reduce transmission and deliver public health gains are
an imminent prospect. The transition of this approach from confined laboratory settings to open field trials in disease-
endemic countries (DECs) is a staged process that aims to maximize the likelihood of epidemiologic benefits while
minimizing potential pitfalls during implementation. Unlike conventional approaches to vector control, application of
GM mosquitoes will face contrasting expectations of multiple stakeholders, the management of which will prove critical
to safeguard support and avoid antagonism, so that potential public health benefits can be fully evaluated. Inclusion of
key stakeholders in decision-making processes, transfer of problem-ownership to DECs, and increased support from the
wider malaria research community are important prerequisites for this. It is argued that the many developments in this
field require coordination by an international entity to serve as a guiding coalition to stimulate collaborative research
and facilitate stakeholder involvement. Contemporary developments in the field of modern biotechnology, and in
particular GM, requires competencies beyond the field of biology, and the future of transgenic mosquitoes will hinge on
the ability to govern the process of their introduction in societies in which perceived risks may outweigh rational and
responsible involvement.

INTRODUCTION

The history of malaria vector control is typified by the
search for compounds that interfere with vital physiologic
processes in the mosquito.1 Ever since Ross’ first transmission
models,2 it became clear that adult mosquito survival repre-
sents an Achilles heel in the epidemiology of malaria.3 This
fundamental understanding led to the search for compounds
with insecticidal activity that would persist in the environment
in which these were applied. Most, if not all, new develop-
ments in the control of anophelines presented incremental
improvements of this concept. Resistance was, and is still to-
day, viewed as an unavoidable consequence of widespread
insecticide use that can either be managed or overcome by the
discovery of new compounds with desirable (i.e., long-term
mosquitocidal) characteristics.4,5 Based on phenomenal his-
torical successes around the globe, the huge efforts underway
to scale-up use of insecticide-treated bednets (ITNs)6,7 and
the renewed acceptability of DDT for vector control follow-
ing the agreement to the Stockholm Convention on Persistent
Organic Pollutants,8–11 it is hardly surprising that the main-
stay of malaria vector control remains focused on chemical
control. Disturbingly, all of these methods depend on the
ability to reach target communities, acquisition of consent or
willingness to use them, and cost and correct use. Both the use
of ITNs and indoor residual spraying (IRS) target mosquito
vectors in the domestic environment, and interest in peri-
domestic control strategies (e.g., larval control) is slowly re-
viving.12,13

The above contrasts sharply with the more radical concept
to render mosquito populations refractory to infection with
Plasmodium parasites.14 The focus here is on the ability to
modify the genome of Anopheles in such a manner that the
acquired phenotypical traits are inherited in a non-Mendelian

fashion and spread through a population with the aim to
eventually replace a susceptible with a refractory population.
Unlike the aim to shorten the daily survival of the vector, it is
now the competence to transmit disease that serves as the
intervention target. Alternatively, genetic engineering may
convey conditional lethality,15 but focus here will be on en-
gineered refractoriness. In contrast with insecticide-based
strategies, however, there are no precedents (yet) of success-
ful application, leading to the classification of this approach as
linear technology-push.16 In the absence of market pull
mechanisms, present in some circumstances for ITNs, further-
ance of this approach depends on basic scientific develop-
ments and proof-of-principle experimentation, followed by
stepwise introduction in suitable disease-endemic country
(DEC) settings. Using the same process, genetic control strat-
egies such as the sterile insect technique (SIT),17 in which
large numbers of radiation-sterilized males confer sterility to
the pest population on release, have created new market op-
portunities for the control of insect pests, which are now ex-
panding.18 Although the concept here is population suppres-
sion and/or local elimination, it is probably the only bench-
mark available at present for vector control strategies based
on modern biotechnological tools.19 The novelty of the ap-
proach thus poses challenges on several fronts. First, there are
various technical hurdles affecting progress, posing challenges
to the scientific community. Second, the transition from the
laboratory to the field requires careful planning to manage
the risk of project failure or premature termination. Third
(and unknown at this stage), it remains to be seen under what
ethical, legal, and societal frameworks (ELSI) adoption in
DECs can be secured. In this article, we aim to shed light on
all three challenges, with emphasis on the latter two, which
inevitably will prove vital in the medium to long term.

TECHNOLOGICAL CHALLENGES

Fifteen years ago, a report was published by the World
Health Organization that focused on prospects of using ge-
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netic modification of anopheline mosquitoes for malaria con-
trol.20 Building on concepts posed in the late 1960s21 and
genetic modification of Drosophila,22 a strategic roadmap was
developed, with the following targets: a transgenic mosquito
by 2000, a refractory mosquito by 2005, and field trials by
2010.23 Dramatic advances in modern biotechnology resulted
in stable germ line transformation of Anopheles stephensi,24

An. gambiae,25 and An. albimanus26 as planned, with the first
refractoriness to Plasmodium berghei engineered in An.
stephensi ahead of schedule.27 However, by 2006, engineering
of refractoriness to P. falciparum has not yet been reported.
Current availability of the An. gambiae genome sequence en-
ables functional studies on human malarias and anophelines
in the search for novel control strategies.28 These successes
heightened enthusiasm beyond those directly involved29,30

and resulted in the formation of new perspectives within re-
lated disciplines. Ecologic aspects of the approach have been
reviewed,31–33 besides issues related to the transition of the
approach from the bench to the field.34 Reviews and books on
the subject continue to be published as it matures.35–37

These encouraging developments were presented to the
broader malaria research and control community during a
plenary debate at the 4th MIM Pan-African Malaria Confer-
ence, held in Yaoundé, Cameroon, in November 2005. After
explanatory remarks on contemporary issues in the field of
genetically modified (GM) mosquitoes,38 196 participants ex-
pressed their views on 10 statements (Figure 1). More than
one half of the respondents viewed the above successes as
indicative for future successful implementation of the ap-
proach (Figure 1, Q1) and were confident that systems to
target human malarias will be developed (Figure 1, Q2).
Three of four respondents believed that the lessons learned
from previous genetic control trials, coupled with a vast in-
crease in knowledge of the target organisms, will increase the
likelihood of success in future trials (Figure 1, Q3). However,
a variety of technical hurdles, related to biologic constraints
remain, the most salient of which are listed below.

Mosquito fitness. The introduction of novel phenotypic
traits in transgenic mosquitoes may induce a fitness cost that
could impede the effectiveness of genetic drive mechanisms
and thus the spread of transgenes in target field popula-
tions.39 Expression of marker proteins and effector mol-
ecules, particularly when expressed using ubiquitous promot-
ers, may be detrimental to the mosquito.40 In addition, trans-
gene insertion may interfere with gene expression of the
mosquito strain because of the essentially random nature of
genomic insertion. This so-called insertional mutagenesis may
be naturally selected against or be overcome through selec-
tion of lines with higher fitness.41 However, the inability to
control insertion site location using conventional vectors has
led to the development of vectors that can provide a stable
docking site for site-targeted transgene insertion. This,
coupled with the use of suicide vectors, will increase safety
and make transgene expression more predictable.42 However,
it will still be necessary to select, from a series of insertions
with docking sites, the most fit. Finally, the genetic make-up
of transgenic lines and inbreeding have been posed as addi-
tional factors affecting the fitness of transgenic lines.39,43 This
latter factor is probably not a serious concern and can prob-
ably be dealt with using a well-designed breeding scheme.
These shortcomings may be overcome by circumventing the
mosquito genome altogether and instead focus on genetic

modification of symbiotic (midgut) bacteria as a means to
deliver anti-pathogen products.44 Whatever approach is
adopted in the coming years, compensation for fitness loss,
preferably by conferring fitness advantages to transgenics that
outweigh cost-benefit equilibria in susceptible wild-type mos-
quitoes,45 will remain a critical challenge. The measurement
of fitness in the laboratory with laboratory strains is at best
inadequate and at worst misleading. The only meaningful
measure of fitness will be when the GM mosquitoes are com-
peted against wild mosquitoes in the field. As a concept to
address this, Scott and others46 called for the development of
consensus methodology in fitness studies based on stepwise
progression from laboratory to semi-field settings (see be-
low), with competitiveness of GM mosquitoes as a key crite-
rion.

Genetic drive. On the premise that transgenic lines with
acceptable fitness can be developed, the next challenge will
be to drive the desirable attributes to fixation in field popu-
lations. In contrast with SIT campaigns, in which massive re-
peated releases of sterile males are practiced, the use of males
able to drive a transgene into a target population may require
the production and release of much smaller numbers, thereby
gradually altering its susceptibility in favor of refractoriness.
Reviews on genetic drive mechanisms47 and desirable at-
tributes thereof48,49 focus on the possible fitness costs associ-
ated with the drive mechanism itself (as described above), the
rate at which introgression of transgenes in populations oc-
curs, and the ability of the mechanism to drive large genetic
constructs. Models have been developed to study these phe-
nomena.50,51 These indicate that the complete linkage be-
tween genes delivering anti-pathogen traits, and the genetic
drive mechanism deployed, besides stable and reliable levels
of phenotypic expression of transgenes, is mandatory to ac-
complish adequate penetration of the target population and
impact on disease transmission. If there is a fitness cost asso-
ciated with a refractoriness effector gene, recombination be-
tween it and the driver will eventually lead to fixation of the
driver alone without the effector gene, with no long-term
impact on vector competence.

A second major issue to take into account is the response of
the target organism (i.e., the Plasmodium), to the anti-
pathogen trait. This “trait” will be a protein that either pre-
vents development of the parasite or kills it. The pressure on
the parasite population will undoubtedly elicit a response
given the time that the population replacement process may
take. A mutational event that enables the parasite to negate
the effects of the anti-pathogen trait will rapidly be selected
for despite the ongoing gene driving process. Unfortunately,
in contrast to the other two factors mentioned above, parasite
response to selection pressure in the field is not a “research-
able topic” and may only be studied under artificial labora-
tory conditions. Hopefully, targeting the Plasmodium popu-
lation with parasiticidal compounds will not result in the
development of resistance as occurred when the vector popu-
lation was targeted with insecticidal compounds.

Fitness of GM mosquitoes, the search for appropriate ge-
netic drive mechanisms, and the response of the parasite will
remain challenges for the foreseeable future. However, in line
with the confidence expressed by the majority of the respon-
dents during the debate in Yaoundé, we are of the opinion
that improved understanding of insect transformation and
mosquito genetics, behavior, and ecology will enable the de-
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FIGURE 1. Views from the malaria research and control community (N � 196) in response to statements presented during a plenary debate
at the 4th MIM conference held in Yaoundé, Cameroon, in November 2005. The debate was titled: “Is the transgenic mosquito as a weapon
against malaria ever going to fly?” Black, yes; dark gray, no; light gray, no opinion; white, no answer.
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velopment of GM mosquito strains worthy of testing beyond
the confines of the laboratory.

TRANSITIONAL CHALLENGES

Given such accomplishments, a new array of challenges
emerges.52 The complexity of these form the interface be-
tween the technological and the ELSI described below.53 A
stepwise approach has been proposed for fitness evalua-
tions,46 and this model can be expanded to include compo-
nents of the transitional change to bridge laboratory and field
research (Figure 2).34 In furtherance to previous studies on
transgenic insects, such as the pink bollworm,54 which were
limited by tethering the insects and cutting off their wings, the
endpoint of studies on GM mosquitoes will be their full evalu-
ation in contained semi-field environments in a DEC setting.
At least two of the four Grand Challenges in Global Health
projects on genetic control of disease vectors (although these
focus on Aedes rather than anopheline vectors)55,56 aim for
this goal before 2010. Although this target is clear and restric-
tive in the sense that concerns related to open-field releases
can be controlled, it does pose additional issues, particularly
the choice of DEC setting.

Field site selection. It seems logical to select field sites on
the assumption that, given successful evaluation of novel
strains in semi-field environments, GM mosquitoes will be

released in the country and the environment in which such
evaluations took place. Beyond the stipulated criteria that
should govern site selection,57,58 such as geographic isolation,
genetic make-up of the vector population,59 disease transmis-
sion intensity, etc., which in essence match those of other
genetic control approaches such as SIT, broader concerns re-
lated to future open-field releases emerge. First, it must be
considered that population replacement strategies leave a
population capable of vectoring other pathogens (e.g., filarial
worms). More than 40% of the respondents considered this
scenario unjustifiable (Figure 1, Q4). Second, these prerequi-
sites limit the scale and scope of opportunities. There are very
few sites in Africa with sufficient ecological or physical (e.g.,
islands) isolation and hypoendemic malaria transmission by a
single vector species where evaluation may take place. Our
effort to develop SIT against An. arabiensis has (thus far) led
to the identification of just two sites with appropriate condi-
tions (Northern Sudan and the island of La Réunion). How-
ever, despite the high levels of investment in genetic control
strategies (still a fraction of the global investment in drugs
and vaccines R&D)60 and the (possible) limited applicability
of these in sub-Saharan Africa, 45% of the respondents con-
sider the endeavor worthwhile (Figure 1, Q5). We share this
view, because experiences in proof-of-principle settings may
serve as the basis for expansion of the approach to more
intricate settings, as has been experienced with SIT against
tsetse flies (with the initial elimination of Glossina austeni

FIGURE 2. Staged progression of research toward field implementation of GM mosquitoes from laboratory to open field settings (A), the
model proposed for fitness evaluation of transgenic mosquito lines (B; after Scott and others),46 and transitional and ELSI issues (C) affecting
field site selection and open field releases (D).
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from the island of Unguja, Zanzibar,61 followed by current
expansion of activities in more complex settings on mainland
Africa).

The key point addressed here is that the selection of field
sites, even with the intermediate aim of semi-field evaluation
of GM strains, requires commitment planning based on wider
issues (e.g., biotechnology policies, pubic opinion) that may
be present in the DEC setting of choice (Figure 2). One half
the respondents shared this view (Figure 1, Q6).

Problem-ownership transfer. Given the novelty of the ap-
proach, commitment planning becomes essential. Commit-
ment here refers to the willingness of DECs to first evaluate
and ultimately adopt the approach as a possible tool for ma-
laria control to augment their established strategic portfolio
of disease control methods (e.g., ITNs, IRS). Clearly this will
depend on the effectiveness of the proposed strategy and out-
come of laboratory evaluations. The likelihood of adoption,
in turn, will increase with investment in knowledge and skills
acquisition (or capacity and capability building) in the DEC
with regard to the GM mosquito approach.34,62 The ultimate
aim is to transfer problem-ownership to the DEC. This model
is now being used by the IAEA when developing area-wide
integrated SIT programs against tsetse flies in collaboration
with its Member States (MSs). Beyond the technical support
provided in the form of expert advice, training (through fel-
lowships), and provision of equipment, MSs bear full respon-
sibility for the development and implementation of the pro-
grams. The inherent implication here is that DECs, ad in-

terim, will engage their often limited human and financial
resources towards research rather than control efforts. Inter-
estingly, one half the respondents favor this (Figure 1, Q7)
and apparently see maturation of equality in terms of com-
petence and partnership as beneficial.

Beyond problem-ownership transfer and, given the contro-
versial nature of genetically modified organisms (GMOs), the
establishment of an international and independent coordinat-
ing entity has been called for repeatedly.53,57,63,64 This body
could coordinate research efforts, focus on the broader dis-
semination of scientific progress to multiple stakeholders, and
facilitate collaborative efforts and partnership strengthening
within and beyond the scientific community. The establish-
ment of a guiding coalition may safeguard against potential
antagonism and ensure integrity of all those involved during
the transitional and implementation phases of the GM mos-
quito endeavor. The proposed constituency of this coordinating
entity is shown in Figure 3. Executive responsibility, in accor-
dance with problem-ownership transfer, lies with experts, regu-
latory and executive authorities, and WHO officials in DECs,
with additional (international) expertise serving in an advisory
capacity. As transition from the laboratory to the field pro-
ceeds, the committee evaluates scientific progress and gives
recommendations for subsequent research. Although this
committee is not yet in existence, nearly 70% of the respon-
dents agreed that its absence in this or any other suitable
format and constituency could lead to failure of the GM mos-
quito endeavor (Figure 1, Q9).

FIGURE 3. A proposed mechanism for coordinating research on GM mosquitoes (modified after Knols and Bossin57). A coordination
committee consisting of expert representatives from DECs where trials are planned, supported by in-country, regional, and global World Health
Organization experts takes executive responsibility for phased progress evaluation and decision making is augmented by outside expert views in
an advisory capacity.
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Containment and risk management. With robust and suit-
able transgenic strains available, appropriate DEC settings
and problem-ownership transfer, and a guiding coalition in
place, trials in contained semi-field systems pose the next set
of challenges. Although guidelines for the handling, transpor-
tation, and laboratory confinement for transgenic mosquitoes
have been developed,65 no such guidelines are currently avail-
able for similar activities (and semi-field research) in DECs. It
is to be expected that research on GM mosquitoes in their
endemic environment will require heightened levels of con-
tainment, and a task force is currently drafting such guidelines
(A James, personal communication). Clearly, such guidelines
will have to amalgamate international, national, and perhaps
local guidelines.66

Semi-field research (i.e., strain evaluation in large outdoor
enclosures) has been undertaken since the early days of ge-
netic mosquito control67 but has only recently been used for
research on African anophelines.68 A clear challenge, re-
quired for the evaluation of mosquito fitness, will be the es-
tablishment of self-perpetuating populations with overlapping
generations in such enclosures. The concomitant exposure of
such populations to Plasmodium infections to evaluate their
refractoriness will pose additional hurdles and will have to use
an artificial bloodfeeding system for this purpose.69 Experi-
ence with this type of research is still limited, as are issues
related to the physical (i.e., structural) and biologic contain-
ment (e.g., release of sterilized or otherwise reproductively
impaired specimens) or inadvertent release of GM mosqui-
toes (i.e., the response to accidents).

Risk, which is the product of an identified hazard (i.e., the
degree of severity of the adverse consequence) and the like-
lihood of that hazard actually occurring,70 and risk manage-
ment (reducing the likelihood of hazards or mitigating the
impact of adverse consequences) form a crucial part of re-
search on genetically engineered organisms. Such risks can be
probabilistic, hypothetical, or speculative. Only the former
two classes are amenable to study, because at least the hazard
is known or can be assumed to exist on scientific grounds.
Only in such cases can risk assessment progress through sci-
entific research. We have recently developed a risk classifi-
cation matrix for research on transgenic mosquitoes in semi-
field systems based on 1) the reproductive ability of the strain
tested, 2) the genetic drive system used, and 3) the nature of
the effector molecule (M Benedict, H Bossin, and B Knols,
unpublished data). This indicates that fertile insects carrying
genetically engineered transposable elements to drive novel
anti-pathogen traits will require the highest containment lev-
els. The nature of the vector used for gene transfer and its
mobility properties both intra-genomic and inter-genomic
(i.e., lateral or horizontal transfer) are thus of primary impor-
tance in risk assessment.71

Stakeholder involvement. Most publications that focus on
ELSI (see below) advocate the involvement of the broader
stakeholder community at a time when open-field releases are
foreseen.72–74 Here we also underscore the importance of ini-
tiating this process earlier, during the transitional stages,
when planning semi-field systems research. Even if this re-
search will be undertaken in isolated areas in DECs, it will not
go unnoticed in the community, press, etc., and requires care-
ful management. Research on (non-transgenic) mosquitoes in
large outdoor enclosures in Kenya and Tanzania56 has raised
considerable concern (if not anxiety) in nearby communities

(H Ferguson and G Killeen, personal communication), and
this is likely to be more so in research involving GM mosqui-
toes (Figure 1, Q8 and Q9). Potential risks involved, even
when considered relatively small (such as the ability of trans-
genic mosquitoes to vector other diseases), may be perceived
and viewed in a different light outside of the scientific com-
munity.

ETHICAL, LEGAL, AND SOCIAL ISSUES

It is noteworthy that the ethical, legal, and social issues
surrounding the application of GM mosquitoes are nearly
always featured last in publications on the topic (including
this one).32–37 Given the controversies on GMOs, this is
hardly surprising, and it is often argued that basic research
should provide the answers needed to dampen the debate and
the risk of polarization.75 Research is the only route through
which risk assessment and future evaluation of the public
health benefits of the approach can progress. The view, held
by 34% of the malaria research and control community, that
the approach “will never fly” (Figure 1, Q10) is therefore both
surprising and worrying at the same time. It indicates that,
even in an informed group of malariologists, skepticism re-
mains strong over acceptance and tolerance of ambiguity and
uncertainty that accompanies (any) scientific endeavor. It has
taken four decades of research to develop promising malaria
vaccines and 20 years from the first application of insecticide
on a bednet to the currently available long-lasting impreg-
nated nets that are being introduced in Africa on a large scale.
What matters here is that views on GM mosquitoes are not
likely to be viewed in isolation, but as part of a wider debate
over developments in biotechnology (i.e., GM plants,76 stem
cell research, animal cloning, etc.) and the perception of
these, fueling skepticism and/or antagonism. Seeking coher-
ence and agreement within the malaria community to avoid
further polarization is thus called for. The coordination com-
mittee described above (Figure 3) could well undertake this
task.

Beyond internal stakeholders (i.e., the malaria research
and control community), a much broader framework of stake-
holder groups, affected by or able to affect the GM mosquito
endeavor, can or might exert their influence in the foresee-
able future. Their importance and necessary inclusion in vari-
ous capacities cannot be overemphasized and yet has received
only marginal attention to date. Stakeholder influence has
increased dramatically over the last few decades, enforced by
the internet and other modern communication tools, enabling
criticism to emerge from all corners of society and not just
through the press. With beliefs and values already stretched
by the global GMO debate, the pace with which government-
imposed, novel, yet controversial, initiatives in several in-
stances is taking place in DECs is likely to be affected. Failure
to involve key stakeholders at a sufficiently early stage may
lead to the disruption, or worse, to the termination of con-
tained and open-field trials of GM mosquitoes. The history of
genetic control trials against culicine mosquitoes in India in
the mid-1970s77,78 shows how opposition can have far-
reaching consequences. After several years of work on field
testing of the mating competitiveness of sterile male mosqui-
toes,79 accusations that the project was meant to obtain data
for biologic warfare using yellow fever were launched in the
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press and taken up by opposition politicians. Shortly after-
ward, a well-prepared attempt to eradicate an urban Ae. ae-
gypti population by sterile male releases was banned by the
government of India 2 days before its launch.80 Given that
only (non-biting) males were to be released, no data relevant
to biologic warfare could have been collected, yet such ru-
mors about this project still persist.81 Reluctance of WHO at
the time to intervene in what they viewed as an internal In-
dian political matter has been listed as a reason why the situ-
ation escalated,82 hinting once more at the need for an im-
partial global coordinating entity for genetic control trials. A
clear task would be to develop stakeholder power matrices83

to estimate the power and legitimacy each stakeholder has in
terms of influence and claims, from which the potential im-
pact on the purpose of research trials can be deducted. Figure
4 uses this approach to understand the opposition Monsanto
faced when intending to enter the European market with GM
crops.84 Similarly, it addresses the position of key stakehold-
ers in a GM mosquito project whereby the likely position of
non-governmental organizations (NGOs), the general public,
etc., may change over time in search for increased power. The
role of DEC partner institutions and their governments will
become critical in managing the position of these groups,
highlighting the need for problem-ownership transfer and em-
powerment of DEC partners.

The role of (currently disempowered) target communities
inhabiting areas earmarked for possible future releases of
GM mosquitoes requires special attention. Several challenges
emerge here. First, some societies or parts thereof may be
more willing to accept evaluation of the approach in their
surroundings than others. This results in a paradox: should
biologic criteria (see above) outweigh social acceptance or
vice versa? Congruence between the governing variables of
these criteria is preferred but may not be assumed to be in
existence at present. Second, the nature of genetic control
interventions (per definition area-wide) will affect all citizens
in release areas, requiring informed community consent.85

The widely advocated involvement of target communities in
field evaluation of the approach is likely to be influenced by
a debate on the uncertainties and ambiguities related to it in
view of existing alternative vector control tools with proven
efficacy. If malaria eradication in isolated settings (e.g., is-
lands) can be accomplished through integrated disease man-
agement (e.g., mass chemotherapy combined with ITNs),86

application of alternative approaches with unknown efficacy
will require careful evaluation from an ethical perspective.
The boundaries for this consent, moreover, are blurred. The
ability of vectors to disperse actively and/or passively (e.g., on
cars, boats, aircraft) places any trial beyond the confines of a
given spatial dimension and must be fully recognized. It is
likely that acquisition of consent for open-field releases will
be initiated centrally and follow international and country-
specific guidelines. Subsequently, community consent may be
obtained through community consultation of inhabitants of
ear-marked areas and take the form of intense dialog with
elected representatives of those communities, based on local
governance frameworks.

Of particular concern is the epidemiologic consequences
of reductions in transmission intensity and how this may af-
fect the development of immunity to malaria and the age at
which infections are acquired.87 Discussions on this issue
have been widespread with regard to currently used vector

control interventions (such as ITNs)88 and center around pre-
intervention levels of transmission (and related levels of im-
munity), incomplete efficiency of refractoriness,89 and/or col-
lapse of the transgene system. In the latter case, or with the
introduction of competent vectors into areas freed of malaria
for extended periods of time, the likelihood of epidemics is
real. It is clear, therefore, that the introduction of GM mos-
quitoes will necessitate long-term monitoring of the impact on
malaria epidemiology.

With only few surveys having been undertaken to assess the
viewpoints from communities regarding the use of GM mos-
quitoes,90 the current and future attitudes toward the ap-
proach may be influenced by global developments in the field
of biotechnology and require careful analysis to avoid repeti-
tion of negative past experiences.

FUTURE PERSPECTIVES

In the above sections, we described multiple challenges that
the GM mosquito endeavor will face in the coming years.
Open-field releases are not anticipated in the next 5–10 years,
during which time the arena of malaria and its control will
undergo changes that will affect the likelihood of implemen-
tation. Although forecasting is often inaccurate, some salient
points may be emphasized that can either positively or nega-
tively affect GM mosquito strategies. For instance, by 2025,
90% of the world’s population will live in developing coun-
tries,91 and 52% of the African population will live in urban
environments, of which 300 million will be in slums.92 Envi-
ronmental modification and/or degradation may lead to re-
duction of malaria, and high population densities may result
in a shift of interest toward case management, personal pro-
tection measures, or larval control.93 On the other hand, ge-
netic control strategies may become particularly attractive as
operations over relatively small areas can achieve maximum
impact in number of people protected.94 Moreover, it has
been observed that urban areas harbor island populations of
one species (e.g., An. stephensi and An. arabiensis) sur-
rounded by another species in rural settings (An. culicifacies
and An. gambiae s.s., respectively), essentially rendering the
urban species an isolated population.95

Over the last 15 years, dramatic progress has been made in
the development of malaria vaccines,96 and availability of
these will probably affect the future of vector control inter-
ventions negatively. Given the efforts to increase uptake of
ITNs in much of sub-Saharan Africa, problems with insecti-
cide resistance will presumably increase, necessitating alter-
native vector control strategies. At present, there seems to be
little to offer beyond the ITN/IRS era, which may influence
the perception and willingness to apply genetic control strat-
egies favorably. Whether ongoing globalization will dissolve
the current differences in perception of GMOs remains to be
seen, yet it seems unlikely that complacency and acceptance
will prevail in all corners of society. Preparedness for antago-
nism to avoid another incident like the India example de-
scribed above is essential, yet little has been done at present
in this direction. Any genetic control trial receiving bad press
and opposition is likely to affect similar efforts worldwide,
with the real risk of delaying implementation of strategies
that potentially may save thousands of lives every year. Ho-
listic and integrative approaches, although tedious, time-
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consuming, and resource-intensive, are needed to move ge-
netic control trials forward in a manner that maximizes sup-
port of all stakeholders involved, with the greatest chance to
properly assess the merits in terms of public health benefits.
Current efforts focus mainly on the technical challenges listed

above, and good science and persistence are key ingredients
to face these. Resolving transitional and implementation chal-
lenges may prove much more complex and time consuming.97

However, these will ultimately determine whether “transgenic
mosquitoes will ever fly to control malaria.”

FIGURE 4. Stakeholder power matrices plotting the position of key stakeholders for the Monsanto case (A) with regard to criteria power (i.e.,
the power to define goals, aims, and purposes of Monsanto) and operational power (i.e., the power to influence the operations of Monsanto and
its allocation of a range of resources). Arrows indicate the flux in influence and outcomes (Greenpeace affected consumer demands, in turn
influencing willingness of supermarkets to sell and farmers to produce GM crops). A similar diagram for a hypothetical project working toward
releases of GM mosquitoes for disease control (B) highlights the need for strengthening the position of DEC partner institutions (through
problem-ownership transfer and capacity building) to avoid similar antagonism of currently disempowered stakeholder groups.
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