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In the coming years, the frequency of unauthorised genetically modified organisms (GMOs) being present
in the European food and feed chain will increase significantly. Therefore, we have developed a strategy
to identify unauthorised GMOs containing a pCAMBIA family vector, frequently present in transgenic
plants. This integrated approach is performed in two successive steps on Bt rice grains. First, the potential
presence of unauthorised GMOs is assessed by the qPCR SYBR�Green technology targeting the terminator
35S pCAMBIA element. Second, its presence is confirmed via the characterisation of the junction between
the transgenic cassette and the rice genome. To this end, a DNA walking strategy is applied using a first
reverse primer followed by two semi-nested PCR rounds using primers that are each time nested to the
previous reverse primer. This approach allows to rapidly identify the transgene flanking region and can
easily be implemented by the enforcement laboratories.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Rice (Oryza sativa), one of the most important crops in the
world, is a staple food for more than three billion people. In addi-
tion, this cereal grain is also used in animal feed. The majority of
rice is grown and consumed in Asia, particularly in China (Chen,
Shelton, & Ye, 2011; Datta, 2004; James, 2009; Kathuria, Giri, Tyagi,
& Tyagi, 2007). On the European (EU) market, most of the rice is
currently imported from Asia (Stein & Rodriguez-Cerezo, 2009).
In order to provide food to the growing worldwide population
(approximately eight billion in 2020), rice production should in-
crease significantly (25–40%). To this end, genetically modified
(GM) rices are developed to ensure sufficient rice production in
spite of the lack of arable land. According to the scientific literature
on GM rice, the research in laboratories mainly target improving
biotic (insect, virus, fungi, bacteria) and abiotic (drought, salinity,
cold) tolerances (Ahmad et al., 2012; Chen et al., 2011;Datta,
2004; High, Cohen, Shu, & Altosaar, 2004; Kathuria et al., 2007;
Yu, Wang, & Wang, 2012). The development of GM rice is highly
supported by the Chinese government (Chen et al., 2011; Xia
et al., 2011). Since 2009, two insect resistant GM rices (Huahui-1
and Bt Shanyou 63) are cultivated on a large scale for commerciali-
sation in China. In addition, other insect resistant (Tarom molaii)
and herbicide tolerant (CL121, CL141, CFX51, IMINTA-1, IMINTA-
4, PWC16, LLRICE62, LLRICE06 and LLRICE601) GM rices are nowa-
days commercialised worldwide (Biosafety scanner; CERA; Chen
et al., 2011; Tan, Zhan, & Chen, 2011; Wang, Zhu, Lai, & Fu, 2012;
Xia et al., 2011). On the EU market, the introduction and the con-
trol of genetically modified organisms (GMOs) in the food and feed
chain are submitted to the EU legislation in order to guarantee the
freedom of choice to the consumer (Reg. EC no. 1829/2003; Reg. EC
no. 1830/2003). However, the continuous enforcement of this leg-
islation is complex for several reasons. First of all, the number
(around 30 to 120 GMOs) and the diversity (2 to 15 genes) of com-
mercialised GMOs will increase significantly in the 5 coming years
(Stein & Rodriguez-Cerezo, 2009). Moreover, numerous vectors
will be used, such as the pBin19, pBI121, pPZP and pCAMBIA fam-
ilies (Komori et al., 2007). Second, in addition to genes conferring
insect resistance or herbicide tolerance, a larger range of traits will
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be developed (e.g., abiotic stress tolerance, disease resistance and
nutritional allegations). Third, the present commercialised GM
crops are principally developed by American and EU companies
which have a major interest in being authorised to commercialise
their products on the EU market. Nevertheless, in 2015, more and
more GMOs intended for local consumption will be developed by
Asian technological centres. These GM crops are unlikely to be sub-
mitted for EU approval. Thus, it is very likely that the frequency of
unauthorised GMOs on the EU market will significantly increase by
their accidental (or adventitious) presence in raw materials and
processed food or feed (Stein & Rodriguez-Cerezo, 2009). In addi-
tion, the possible escape of GMOs from field-trials or during devel-
opment stages could also be another source of unauthorised GMOs
(Holst-Jensen et al., 2012; Zapiola, Campbell, Butler, & Mallory-
Smith, 2008). Indeed, although the presence of GM rice is to date
not authorised on the EU market, the herbicide tolerant LLRice601,
in 2004, and the insect resistant Bt Shanyou 63, in 2006, and KeF-
eng-6, in 2010, have been detected in food products imported from
China (Commission Implementing Decision No 2011/884/EU; Stein
& Rodriguez-Cerezo, 2009; Wang, Zhu, Lai, & Fu, 2011). In 2012,
more than 50% of the GMOs detected in food/feed matrices, re-
ported in the RAPID Alert System Database, concerned unauthor-
A

B

Fig. 1. DNA walking strategy. (A) Designed primer position of t35S pCAMBIA a-R (green)
sequence (highlighted) from t35S pCAMBIA 1300 sequence. This sequence is identical f
1381Xa, 1381Xb, 1381Xc, 1381Z, 1390, 1391, 1391Xa, 1391Xb, 1391Xc and 1391Z excep
DNA walking approach based on a double semi-nested PCR. Three reactions are carried o
carried out. In the first step, single strand DNA (ssDNA) fragments are produced by a singl
repeated four times in four individual tubes. In the second step, four different DRT primer
the first semi-nested PCR is obtained in combining t35S pCAMBIA b-R primer (blue) and a
is carried out by the combination of t35S pCAMBIA c-R primer (orange) and a short univ
product.
ised GM rices imported from Asia, mainly China (RASFF portal).
To address the increasing number of alerts, the EU commission
decided to implement ‘‘Emergency measures regarding unauthor-
ised genetically modified rice in rice products originating from
China and repealing Decision 2008/289/EC’’ (Commission Imple-
menting Decision no. 2011/884/EU).

To ensure an efficient GMO detection in food and feed products
on the EU market, several screening methods have been developed,
mainly based on the most common recombinant elements in GM
crops like transcription-regulating sequences. These elements are
p35S (Cauliflower mosaic virus (CaMV) 35S promoter) and tNOS
(Agrobacterium tumefaciens nopaline synthase terminator) (Bar-
bau-Piednoir et al., 2010). The majority of these methods have
been performed with the SYBR�Green and TaqMan� technologies
(Barbau-Piednoir, Botteldoorn, Yde, Mahillon, & Roosens, 2012b;
Barbau-Piednoir et al., 2010; Broeders, De Keersmaecker, &
Roosens, 2012b; Kluga et al., 2012; Mbongolo Mbella et al., 2011;
Reiting, Grohmann, & Mäde, 2010). However, the detection of ele-
ments derived from natural organisms (viruses and bacteria) can
be misinterpreted. One of the most common examples is a p35S
positive signal which could also mean the identification of the host
CaMV in Brassica species (Broeders, Papazova, Van den Bulcke, &
, t35S pCAMBIA b-R (blue) and t35S pCAMBIA c-R (orange) to target t35S pCAMBIA
or all pCAMBIA vectors (1200, 1201, 1281Z, 1291Z, 1301, 1302, 1303, 1304, 1380,
t for 2200, 2201, 2300, 2301 which are lightly shorter at the 30 end⁄). (B) Principle of
ut to amplify the targeted sequence. First, a two-step PCR taking place in one tube is
e primer extension reaction using t35S pCAMBIA a-R primer (green). This reaction is
s (A–D) (red) are immediately added individually to the four reaction tubes. Second,
long universal tagging primer (UAP-N1) (black). Finally, the second semi-nested PCR
ersal tagging primer (UAP-N2) (purple) in order to increase the yield of the specific
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Roosens, 2012a, 2012b). Therefore, additional markers have been
developed to discriminate the presence of the transgenic crop or
the natural organism, such as CRT (targeting the transcriptase gene
of CaMV virus) used for routine analysis in-house and CaMV (tar-
geting the ORFIII of CaMV virus) (Broeders et al., 2012a, 2012b,
2012c; Chaouachi et al., 2008).

However, the strategy described above is merely an indirect
proof of the potential GMO presence in food matrix. Direct proof
can only be supplied by the characterisation of the junction
between the transgenic integrated cassette and the plant genome.
To get this crucial information, DNA walking methods have been
used to identify this unknown nucleotide sequence flanking al-
ready known DNA regions in any given genome (Leoni, Volpicella,
De Leo, Gallerani, & Ceci, 2011; Volpicella et al., 2012). Classically,
three classes of strategies exist: (a) restriction-based methods,
involving a preliminary restriction digestion of the genomic DNA
(Jones & Winistorfer, 1992; Leoni et al., 2011; Shyamala & Ames,
1989; Theuns et al., 2002; Triglia, Peterson, & Kemp, 1988); (b)
extension-based methods, defined by the extension of a se-
quence-specific primer and subsequent tailing of the resulting sin-
gle-strand DNA molecule (Hermann et al., 2000; Leoni et al., 2011;
Min & Powell, 1998; Mueller & Wold, 1989); and (c) primer-based
methods, coupling various combinatorial (random or degenerate)
A

B

Fig. 2. Characterisation of the junction between the integrated transgenic pCAMBIA ca
different DRT mixes (A–D) on a 1% agarose gel. (B) Amplicon sequences presenting th
identified on the chromosome II and the chromosome III, respectively. The t35S pCAM
sequences were obtained by classic sequencing of the plasmids.
primers to sequence-specific primers (Leoni et al., 2011; Parker,
Rabinovitch, & Burmer, 1991). Up to now, some studies have been
published about the junction characterisation of transgenic plants
such as thale cress (Arabidopsis thaliana) (Ruttink et al., 2010; Win-
dels, De Buck, Van Bockstaele, De Loose, & Depicker, 2003b), potato
(Solanum tuberosum) (Cullen, Harwood, Smedley, Davies, & Taylor,
2011; Côte, Meldrum, Raymond, & Dollard, 2005), rice (O. sativa)
(KeFeng-6, KeFeng-8, LLRICE62, Bt Shanyou 63 (TT51-1)) (Cao
et al., 2011; Spalinskas, Van den Bulcke, Van den Eede, & Milcamps,
2012; Su, Xie, Wang, & Peng, 2011; Wang et al., 2011, 2012), maize
(Zea mays) (MON810, MON863, MON88017, NK603, LY038,
DAS59122-7, T25, 3272, Bt11, BT176, CHB351, GA21) (Collonnier
et al., 2005; Holck, Va, Didierjean, & Rudi, 2002; Raymond et al.,
2010; Rønning, Vaïtilingom, Berdal, & Holst-Jensen, 2003; Spalins-
kas et al., 2012; Taverniers et al., 2005; Trinh et al., 2012; Windels
et al., 2003a; Yang et al., 2005b), cotton (Gossypium hirsutum)
(MON1445) (Akritidis, Pasentsis, Tsaftaris, Mylona, & Polidoros,
2008), canola (Brassica napus) (GT73) (Taverniers et al., 2005) and
soybean (Glycine max) (MON89788, GT40-3-2) (Raymond et al.,
2010; Trinh et al., 2012; Windels, Taverniers, Depicker, Van Bock-
staele, & De Loose, 2001). However, most of the methods in these
studies cannot easily be used in routine analysis by the enforce-
ment laboratories: techniques are laborious and complex (finger-
ssette and the rice genome. (A) Visualisation of the amplicons obtained with the
e junction between the pCAMBIA 1300 vector (underlined) and the rice genome
BIA c-R (in bold) and the UAP-N1/UAP-N2 primers are dotted-underlined. These
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printing by capillary electrophoresis, genomic DNA library via
(unpredictable) restriction enzyme) with regard to a method
exclusively based upon PCR, require a lengthy procedure with gen-
erally multiple steps to get results, or present a lack of specificity,
yield or data concerning the compatibility with a low amount of
target.

The aim of the present study is to supply an integrated ap-
proach to identify unauthorised GMOs: A first real-time PCR
screening allows the detection of the terminator 35S (t35S) of
the pCAMBIA family vectors to indicate the potential presence of
unauthorised GMOs in food matrices (Fig. 3). Then, an appropriate
DNA walking method, anchored on the sequence used for the
screening followed by two semi-nested PCRs to identify the junc-
tion, confirms the GMO presence.
2. Materials and methods

2.1. Plant material

Grains of transgenic Bt rice (O. sativa L. Japonica cv Ariete) and its
wild-type (WT) were used in this study to develop the methodol-
Screening markers
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tNOS
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materials were characterised as previously described (Broeders
et al., 2012c). The list of all plant material is shown in Table 1.

2.2. DNA extraction, concentration and purity

Bt rice grains were ground to obtain a homogenous powder.
DNA was extracted using a CTAB-based procedure (ISO 21571) in
combination with the Genomic-tip20/G (QIAGEN, Hilden,
Germany). This DNA extraction method, adapted from the EU-RL
GMFF validated method, is composed of four main successive
steps: (1) Extraction of proteins, polysaccharides and organic
components, (2) Precipitation of DNA in presence of C-hexadecyl-
Trimethyl-Ammonium-Bromide (CTAB), (3) Purification of DNA
using a tip20 column and (4) Precipitation of DNA with isopropa-
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Table 1
Specificity of t35S pCAMBIA marker tested on plant materials observed in silico and in vitro by qPCR SYBR�Green assay. The positive and the negative signals obtained are
indicated by + and �, respectively.

Species Plant materials GMO% (m/m) In silico In vitro

Maize (Zea mays) WTa 0 � �
MON 810a,c 1 � �
MON 89034a 1 � �
MON 863a,c 1 � �
MON 88017a,c 1 � �
Bt176a,c 1 � �
3272a,c 10 � �
DAS59122a,c 9.87 � �
TC1507a,c 1 � �
T25a,c 100 � �
Bt11a,c 1 � �
GA21a,c 1 � �
NK603a,c 1 � �
MIR604a,c 1 � �
MIR162a,c 1 � �
98140a 1 � �

Soybean (Glycine max) WTa 0 � �
GTS40-3-2a,c 10 � �
A2704-12a,c 100 � �
A5547-127a,c 100 � �
MON 89788a 1 � �
305423a 1 � �
356043a 1 � �
MON 87701a 1 � �

Oilseed rape (Brassica napus) WTa 0 � �
RT73a 1 � �
MS8a,c 100 � �
Rf3a,c 100 � �
T45a,c 100 � �
Ms1a,c 1 � �
Rf1a,c 1 � �
Rf2a,c 1 � �
Topas 19/2a,c 1 � �

Cotton (Gossypium hirsutum) WTa 0 � �
MON 1445a,c 1 � �
MON 15985a,c 100 � �
MON 531a,c 100 � �
LL25a,c 100 � �
GHB614a 100 � �
GHB119a 10 � �
281-24-236 x 3006-210-23a 1 � �
MON 88913a 1 � �

Potato (Solanum tuberosum) WTa 0 � �
EH92-527-1a,c 1 � �

Sugar beet (Beta vulgaris) WTa 0 � �
H7-1a 100 � �

Rice (Oryza sativa) WTa 0 � �
LLRICE62a,c 1 � �
Bt rice 100 + +

Plasmid Sybricon t35S pCAMBIAb / + +

a CRM (Certified Reference Materials).
b Plasmid pUC18 containing t35SpCAMBIA amplicon.
c GMOs containing the p35S and/or tNOS elements (Barbau-Piednoir et al., 2010).
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nol (European Union Reference Laboratory, 2006; International
Standard ISO 21571, 2005). DNA concentration was measured by
spectrophotometry using the Nanodrop� 2000 (ThermoFisher,
DE, USA) device and DNA purity was evaluated by the A260/
A280 and A260/A230 ratios. DNA extraction, concentration and
purity of CRMs were carried out as previously described (Broeders
et al., 2012c).

2.3. Development and assessment of oligonucleotide primers

The oligonucleotide primers were designed to target the t35S
sequence of the pCAMBIA vector (Fig. 1). To get universal oligonu-
cleotide primers detecting all pCAMBIA vectors, all t35S pCAMBIA
sequences were compared via the software ‘‘ClustalW2’’. The oligo-
nucleotide primers were thus designed manually on the conserved
region of all pCAMBIA vectors. To be convenient for the DNA walk-
ing approach, these oligonucleotide primers were chosen at the
nearest extremity of the walking direction. Note that the t35S
pCAMBIA element is the starting position and the walking direc-
tion is defined on the rice genome through the left border of the
transgenic cassette (Cambia, Canberra, Australia; ClustalW2). Via
a different combination, the same oligonucleotide primers were
usable for qPCR assays. The oligonucleotide primers and the ob-
tained amplicon sequences are indicated in Table 2 and Fig. 1.
The specificity of oligonucleotide primers was initially evaluated
in silico using the program ‘‘wprimersearch’’ from the software
‘‘wEMBOSS’’, which mimics PCR amplification (Barbau-Piednoir
et al., 2012b; wEMBOSS) (Table 1).
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2.4. qPCR SYBR�Green technology

As previously described, for all qPCR assays, a standard 25 ll
reaction volume was applied containing 1� SYBR�Green PCR Mas-
termix (Diagenode, Liège, Belgium), 250 nM of each primer and
5 ll of DNA (10 ng/ll). The qPCR cycling program consisted of a
single cycle of DNA polymerase activation for 10 min at 95 �C fol-
lowed by 40 amplification cycles of 15 s at 95 �C (denaturing step)
and 1 min at 60 �C (annealing–extension step). The program for
melting curve analysis was performed by gradually increasing
the temperature from 60 to 95 �C in 20 min (±0.6�/20 s) (Barbau-
Piednoir et al., 2010; Broeders et al., 2012c). All runs were
performed on an iQ™5 real-time PCR detection system (BioRad,
Hemel Hempstead, UK) or an ABI 7300 qPCR system (Applied Bio-
systems, CA, USA) for the specificity assessment and the rest of the
analysis, respectively.

Concerning the qPCR method acceptance parameters, evalua-
tion of specificity, sensitivity and inter-run repeatability was car-
ried out as previously described (Broeders et al., 2012c). In brief,
the specificity of the t35S pCAMBIA c-F and the t35S pCAMBIA a-
R primers was tested on several WTs, GMOs and LLPs (Low Level
Presence) by qPCR SYBR�Green method using Ct and Tm values as
criteria (Tables 1 and 2) (Reg. EC no. 619/2011). Sensitivity and
repeatability were determined for t35S pCAMBIA primers on Bt
rice using the qPCR SYBR�Green method on serial dilutions going
from 2000 to 0.1 haploid genome equivalents (HGEs) (Tables 2
and 4). From these serial dilutions, the PCR efficiency and linearity
(R2) were estimated.
2.5. Cloning, sequencing and plasmid registration

The t35S pCAMBIA amplicon was cloned into a pUC18 plasmid
(INVITROGEN, CA, USA) to obtain the t35S pCAMBIA Sybricon as
Table 2
Oligonucleotide sequences used for qPCR assays, DNA walking approach and PCR am
oligonucleotides are used for the qPCR as well as for the DNA walking. PLD marker (Phop

Method Oligonucleotide name Oligonucleotide sequence

SYBR�Green qPCR p35S F AAAGCAAGTGGATTGATGT
p35S R GGGTCTTGCGAAGGATAGT

SYBR�Green qPCR tNOS F GATTAGAGTCCCGCAATTA
tNOS R TTATCCTAGKTTGCGCGCTA

SYBR�Green qPCR t35S F Data not shown
t35S R Data not shown

SYBR�Green qPCR PLD F GCTTAGGGAACAGGGAAG
PLD R CTTAGCATAGTCTGTGCCAT

SYBR�Green qPCR t35S pCAMBIA c-F CGGGGGATCTGGATTTTAG
t35S pCAMBIA a-R AGGGTTCCTATAGGGTTTC

DNA walking t35S pCAMBIA c-R TACTAAAATCCAGATCCCCC
t35S pCAMBIA b-R GTGTTGAGCATATAAGAAA
t35S pCAMBIA a-R AGGGTTCCTATAGGGTTTC

PCR Rice chromosome II-F CGAAAAGAAGATGGCAGG
pCAMBIA-R CTGTCGATCGACAAGCTCG

PCR Rice chromosome III-F TTTCTTTCGCTTCTGCAGGT
pCAMBIA-R CTGTCGATCGACAAGCTCG

Table 3
Analysis of Bt rice identity in silico and in vitro by qPCR SYBR�Green assay. The positive a

p35S tNOS t35S

In silico In vitro In silico In vitro In si

WT Bt rice � � � � �
Bt rice + + + + �
previously described (Barbau-Piednoir et al., 2010; Broeders
et al., 2012c; Sambrook & Russell, 2001). Briefly, the t35S pCAMBIA
amplicon was first subcloned into the pCR�2.1-TOPO� Vector using
the TOPO TA Cloning� Kit (INVITROGEN, CA, USA) according to the
manufacturers’ instructions. After EcoRI restriction, the correct
amplicon was then cloned into the vector pUC18 (INVITROGEN,
CA, USA). The plasmid was sequenced via a Genetic Sequencer
3130XL using the Big Dye Terminator Kit v3.1 (Applied Biosystems,
CA, USA) and was tested using the qPCR reaction conditions and
the specific primers as indicated in point 2.4. The t35S pCAMBIA
Sybricon plasmid was registered under ‘‘Safe Deposit’’ at the ‘‘Bel-
gian Culture Collection for Micro-organisms’’ in the ‘‘Plasmid and
DNA Library Collection’’ (BCCM/LMBP, Gent, Belgium; BCCM num-
ber: LMBP 8352). Authenticity was assessed by the BCCM/LMBP
prior to acceptance and certification (Barbau-Piednoir et al.,
2010; Broeders et al., 2012c).
2.6. DNA walking approach

2.6.1. DNA walking and double semi-nested PCR
The assay was performed using 100 ng of 100% Bt rice DNA

(Fig. 1). Degenerated random tagging (DRT) and Universal tagging
primers (UAP-N1 and N2) were provided by APAgene™ GOLD Gen-
ome Walking Kit (BIO S&T, Montréal, Canada). Recombinant Taq
DNA Polymerase (10342; INVITROGEN, CA, USA) was used to syn-
thesise DNA. The three gene-specific primers for t35S pCAMBIA
were designed as described above (Section 2.3). The t35S pCAMBIA
a-R primer was used to perform the DNA walking and then the
t35S pCAMBIA b-R and the t35S pCAMBIA c-R primers were ap-
plied in the first and the second semi-nested PCR rounds, respec-
tively. PCR mixes and conditions were carried out according to
the manufacturers’ instructions. The final PCR product was sepa-
rated by electrophoresis on a 1% agarose gel (INVITROGEN, CA,
plifications. In the purpose of an integrated approach, the same t35S pCAMBIA
holipase D gene from rice (Oryza sativa)) is used as the rice endogene control.

Product size (bp) Reference

GATA 75 Barbau-Piednoir et al. (2010)
G

TACATTTAA 69 Barbau-Piednoir et al. (2010)
TATT

107 In-house, Broeders et al. (2012b)

TAAAGTT 80 Mbongolo Mbella et al. (2011)
CCA

TA 137 This study
GCTC

G / This study
CCC
GCTC

AT 490 This study
AGT

515 This study
AGT

nd the negative obtained signals are indicated by + and �, respectively.

t35S pCAMBIA PLD

lico In vitro In silico In vitro In silico In vitro

� � � + +
� + + + +



Table 4
LOD6 (Limit Of Detection with 6 repeats) of t35S pCAMBIA screening marker for 100% Bt rice in SYBR�Green qPCR assay obtained at 5 HGEs (Haploid Genome Equivalent) (in
bold). The inter-run repeatability is determined as the relative standard deviation of the test results (RSDr %).

Dilution HGE/well Final DNA concentration (ng/ll) Final DNA concentration/well (ng) Dilution factor RSDr (%)

Stock 4 /
S1 2000 0.2 1 20 1.5
S2 1000 0.1 0.5 2 1.7
S3 400 0.04 0.2 2,5 1.1
S4 100 0.01 0.05 4 0.9
S5 50 0.005 0.025 2 1.8
S6 20 0.002 0.01 2,5 0.9
S7 10 0.001 0.005 2 2.0
S8 5 0.0005 0.0025 2 2.2
S9 2 0.0002 0.001 2,5
S10 1 0.0001 0.0005 2
S11 0.1 0.00001 0.00005 10
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USA) (100 V, 400 mA, 60 min). The amplicons were retrieved by
excising the specific band from the gel and were purified using
the QIAEX� Agarose Gel Extraction Kit (QIAGEN, Hilden, Germany).
2.6.2. Cloning and sequencing
Two sequencing strategies have been used. On the one hand,

the purified amplicons were directly sequenced using the t35S
pCAMBIA c-R primer to get information on the sequences including
the junction between the transgenic integrated cassette and the
plant genome (direct sequencing). On the other hand, each purified
amplicon was cloned into the pCR�2.1-TOPO� Vector using the
TOPO TA Cloning� Kit (INVITROGEN, CA, USA) according to the
manufacturers’ instructions. A PCR was carried out on colonies
using PCR™2.1-TOPO� and t35S pCAMBIA c-R primers and
analysed by electrophoresis on a 1% agarose gel (INVITROGEN,
CA, USA) (100 V, 400 mA, 60 min). The colonies possessing a frag-
ment of the correct size were further cultured. The plasmids were
extracted, using the QIAprep Spin Miniprep Kit (QIAGEN, Hilden,
Germany) according to manufacturers’ manual, to be sequenced
(classic sequencing). All sequencing reactions were performed on
a Genetic Sequencer 3130XL using the Big Dye Terminator Kit
v3.1 (Applied Biosystems, CA, USA) (Broeders et al., 2012c; Sam-
brook & Russell, 2001). The obtained sequences were aligned via
the software ‘‘ClustalW2’’ and then analysed using the software
‘‘Nucleotide BLAST NCBI’’ (ClustalW2; Nucleotide BLAST NCBI).
2.6.3. Verification of the transgene flanking regions by PCR
amplification

The transgene flanking regions identified by DNA walking were
verified by PCR amplification. The PCR was carried out using a re-
verse primer designed in downstream to the t35S pCAMBIA a-R
primer on the pCAMBIA construct and a forward primer designed
on the rice chromosome II or III (Table 2). These oligonucleotide
primers were initially evaluated in silico using the program ‘‘wpri-
mersearch’’ from the software ‘‘wEMBOSS’’ (wEMBOSS). A standard
25 ll reaction volume is applied containing 0.625 U of DreamTaq™
DNA Polymerase (Fermentas, CA, USA), 1� DreamTaq™ Buffer
(Fermentas, CA, USA), 0.2 mM of dNTPs, 250 nM of each primer
and 5 ll of DNA (10 ng/ll). The PCR program consisted of a single
cycle of 10 min at 95 �C (initial denaturation) followed by 35
amplification cycles of 30 s at 95 �C (denaturation), 30 s at 60 �C
(annealing) and 1 min at 72 �C (extension) and finishing by a single
cycle of 10 min at 72 �C (final extension). The run was performed
on an iQ™5 real-time PCR detection system (BioRad, Hemel Hemp-
stead, UK). The PCR products were analysed by electrophoresis on a
1% agarose gel (INVITROGEN, CA, USA) (100 V, 400 mA, 60 min).
The PCR products were purified using USB� ExoSAP-IT� PCR Prod-
uct Cleanup (Affymetrix, CA, USA) according to the manufacturers’
instructions. All sequencing reactions were performed on a Genetic
Sequencer 3130XL using the Big Dye Terminator Kit v3.1 (Applied
Biosystems, CA, USA) (Broeders et al., 2012c; Sambrook & Russell,
2001). The obtained sequences were analysed using the software
‘‘Nucleotide BLAST NCBI’’ (ClustalW2; Nucleotide BLAST NCBI).
3. Results and discussion

3.1. Selection of the t35S pCAMBIA screening marker and development
of a qPCR SYBR�Green assay

Considering the high diversity of genetic elements integrated in
GM rices, our attention was focused on rice transformation vectors.
Because of its presence in 30% of transgenic plants and, more
particularly, in 65 and 53 peer reviewed publications on GM rices
in 2011 and 2012, respectively, the pCAMBIA family vector was
considered as a strategic target to detect a large spectrum of unau-
thorised GMOs (Ahmad et al., 2012; Kathuria et al., 2007; Komori
et al., 2007; Scopus; Yu et al., 2012). The t35S pCAMBIA screening
marker was thus developed to identify unauthorised GMOs con-
taining a pCAMBIA family cassette. The t35S pCAMBIA-specific
SYBR�Green screening method, generating an amplicon of
137 bp, was performed for integration in to the CoSYPS (Combina-
tory SYBR�Green qPCR Screening) for GMO detection, composed of
18 SYBR�Green methods (RBCL, LEC, ADH, CRU, PLD, SAD1, GLU3,
p35S, tNOS, pFMV, pNOS, t35S, Cry1Ab/Ac, Cry3Bb, pat, bar, epsps
and CRT), which is able to run in a single 96-well plate (Barbau-
Piednoir et al., 2010; Barbau-Piednoir et al., 2012a; Broeders
et al., 2012a, 2012b, 2012c; European Union Reference Laboratory
for GMFood & Feed, 2006; Mbongolo Mbella et al., 2011; Van den
Bulcke et al., 2010; Vaïtilingom, Pijnenburg, Gendre, & Brignon,
1999; Yang et al., 2005a).
3.1.1. Analysis of Bt rice in silico and in vitro
The general structure of pCAMBIA vector is composed notably of

p35S, tNOS and t35S elements (Cambia, Canberra, Australia). Bioin-
formatics studies have shown that the common methods, including
those described in the compendium of reference methods for GMO
analysis, allow detection of p35S and tNOS (Data not shown, Table 3)
(Barbau-Piednoir et al., 2010; Corbisier et al., 2005; Fernandez et al.,
2005; Höhne, Santisi, & Meyer, 2002; Joint Research Centre, 2011;
Reiting, Broll, Waiblinger, & Grohmann, 2007; Waiblinger, Ernst,
Anderson, & Pietsch, 2008). Concerning the t35S element of the
pCAMBIA family vectors, its sequence was slightly different at the
50 end compared to the authorised GMOs and LLPs events containing
a t35S element (A2704-12, A5547-127, Bt11, Bt176, DAS59122,
GHB119, LLRICE62, T25, TC1507 and Topas-19-2). Therefore, this
element was not detected by the t35S SYBR�Green detection meth-
od developed previously in-house (Broeders et al., 2012b; Personal
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communication). All these bioinformatics data were confirmed
in vitro by qPCR SYBR�Green assay (Table 3).

3.1.2. Development of the t35S pCAMBIA screening marker
In order to discriminate unauthorised GMOs containing

pCAMBIA family vectors, the t35S pCAMBIA screening marker
was developed. To this end, the sequence of the t35S pCAMBIA ele-
ment was analysed. The majority of the pCAMBIA vectors (1200,
1201, 1281Z, 1291Z, 1300, 1301, 1302, 1303, 1304, 1380,
1381Xa, 1381Xb, 1381Xc, 1381Z, 1390, 1391, 1391Xa, 1391Xb,
1391Xc, 1391Z, 2200, 2300, 2301), except 0380 and 0390, pos-
sessed the t35S element. Its sequence was practically identical
(slightly shorter by 5 bp at the 30 end for 2200, 2201, 2300 and
2301). The t35S pCAMBIA a-R and t35S pCAMBIA c-F primers were
designed manually in the conserved region of the pCAMBIA family
vector to discriminate exclusively this element (Tables 1 and 2).
The specificity of this marker was tested initially in silico with
the software wEMBOSS.

3.1.3. qPCR SYBR�Green assay
To develop the t35S pCAMBIA marker, the specificity of t35S

pCAMBIA c-F and a-R primers was tested in vitro on all authorised
GMOs and LLPs events by the qPCR SYBR�Green assay (Tables 1
and 2). As expected, only the Bt rice, containing a pCAMBIA cas-
sette, was detected after 40 cycles with a Ct value at 22.70 and a
Tm value at 73 �C, indicating that the screening marker was spe-
cific. All the other WT, GMO and LLP materials tested did not give
a signal after 40 cycles. Then, the sensitivity of this marker was
determined via the limit of detection with 6 repeats (LOD6). The
LOD6 is defined as the amplicon copy number that affords a posi-
tive PCR result (expressed as Ct-value) upon six-fold measurement
of the target sequence in the same DNA sample (Table 4). To this
end, DNA from 100% Bt rice was diluted to 4 ng/ll and 4 indepen-
dent dilution series were prepared (in nuclease-free water) start-
ing from this concentration. The dilution series (from 1 to
0.00005 ng/ll of DNA) were prepared prior to setting up each of
the qPCR runs. For each assay, a range from 2000 to 0.1 HGEs
was tested in a qPCR SYBR�Green assay. The HGE content of the
DNA extracts was calculated according to the size of the rice gen-
ome (0.5 pg) (Arumuganathan & Earle, 1991). The LOD6 was ob-
tained at 5 HGEs (corresponding to 0.0025% of unauthorised
GMOs) with a mean Ct value of 35.28 Ct and a mean Tm value of
72.52 �C. Because the LOD6 was observed below a HGE of 20, the
t35S pCAMBIA screening marker was considered as being sensitive.
The experiment was also evaluated as repeatable according to the
RSDr percentage (relative standard deviation, RSD, of the test re-
sults). In addition, the PCR efficiency (80%) and the linearity
(R2 = 0.9954) were assessed as acceptable.

3.2. DNA walking approach

Following a positive signal observed in qPCR SYBR�Green assay,
the second step was to characterise the junction between the
transgenic cassette and the plant genome to confirm the presence
of pCAMBIA unauthorised GMOs in food/feed matrices (Fig. 3).
Therefore, a DNA walking approach has been developed.

3.2.1. In silico study
In order to supply an integrated approach, an additional oligo-

nucleotide primer, named t35S pCAMBIA b-R, was designed man-
ually, on the conserved region of the t35S pCAMBIA sequence,
localised between the t35S pCAMBIA a-R and t35S pCAMBIA c-R
primers previously used for the qPCR SYBR�Green assay (Fig. 1
and Table 2). The specificity of this primer was confirmed in silico
via the software wEMBOSS (data not shown).
3.2.2. Characterisation of the junction
The amplicons resulting from the double semi-nested PCR were

visualised on a 1% agarose gel. For each kind of DRT primers mixes
(A–D), amplicons were observed with an approximate size of
300 bp up to 1000 bp (Fig. 2A). The identity of the amplicons was
confirmed by direct sequencing of the purified PCR products. The
sequencing of the plasmids containing these amplicons allowed
identifying the t35S pCAMBIA c-R and UAP-N1/UAP-N2 primers
and determining the exact size of the amplicons (408–944 bp)
(Fig. 2). All analysed amplicons presented a sequence including
the junction between the pCAMBIA vector and the rice genome.
Two transgenic insertions have been detected. For the majority of
the amplicons (A2, A3, B1, C2, D1, D2 and D3), the pCAMBIA cas-
sette was integrated on a genomic sequence (OSJNBb0111B07)
from the chromosome III of O. sativa japonica Group coding for a
putative uncharacterised protein. For the three other amplicons
(A1, B2 and C1), the transgene flanking region was localised on a
genomic sequence (OSJNBa0016G10) from the chromosome II of
O. sativa japonica Group coding for a putative uncharacterised pro-
tein. These transgene flanking regions present a shorter left ends
compared to the pCAMBIA cassette situated on the chromosome
III. This variability of length could be explained by the fact that a
left end integrates less precisely than a right end (Gheysen, Villar-
roel, & Van Montagu, 1991; Krizkova & Hrouda, 1998). To confirm
the two chromosomal insertions, a PCR amplification using primers
annealing to the pCAMBIA construct and the rice chromosome II or
III was carried out (Table 2). The presence of PCR amplification as
well as the sequencing of these amplicons allowed verifying prop-
erly the transgene flanking regions (data not shown).

As all the obtained amplicons provided the transgene flanking
regions, these results demonstrated the high efficiency, specificity
and reliability of the present integrated approach. In addition, it’s
interesting to note that the two different transgene flanking re-
gions were not identically detected in function of the DRT primers
used. Indeed, all the types of DRT primers allowed identifying the
junction on the chromosome III while only the A, B and C DRT
primers have detected the junction on the chromosome II. This sys-
tem using four different DRT primers thus presents the advantage
to increase the likelihood to detect unauthorised GMOs, indepen-
dently of the tested matrices.

The proposed strategy is based on the presence of known trans-
genic elements. Consequently, the success of this integrated ap-
proach is limited to the knowledge level of transgenic elements
making up unauthorised GMOs. Therefore, in spite of the good per-
formance of this method, the strategy is not appropriate to detect
GMOs constituted of only unknown elements. To this end, other
technologies are more suitable such as ‘‘Next Generation Sequenc-
ing’’ methods. However, this last technique is at the present time
not easily implementable in GMO routine analysis due to its high
cost and its long time frame for data processing.

4. Conclusion

Considering the numerous unauthorised GM rices detected in
food/feed matrices on the EU market listed in 2012, as well as their
expected increase in the coming years, this study supplies to the
enforcement laboratories a strategy to ensure the unauthorised
GMO detection in the food and feed chain in semi-routine analysis
(RASFF portal; Stein & Rodriguez-Cerezo, 2009).

The proposed integrated approach is composed of two main
steps (Fig. 3). On the one hand, the potential presence of unauthor-
ised GMOs, containing a pCAMBIA family vector, in food/feed
matrices is detected via the qPCR SYBR�Green technology. The
key choice to target the pCAMBIA family vector, via its element
t35S, will allow detection of a large spectrum of unauthorised
GMOs. The t35S pCAMBIA marker was developed to be specific,
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sensitive, efficient, repeatable and to be integrated into the CoSYPS.
On the other hand, once this marker is indicated as positive for a
given food/feed matrix, the potential presence of unauthorised
GMOs, containing a pCAMBIA vector, is demonstrated by the char-
acterisation of the junction between the integrated cassette and
the plant genome using a DNA walking method starting from the
t35S pCAMBIA a-R primer. This method is then followed by two
semi-nested PCR rounds using the t35S pCAMBIA b-R and t35S
pCAMBIA c-R primers, respectively. With regard to the previous
articles describing methods characterising the junction sequences
of GMOs, the present DNA walking approach possesses the sub-
stantial advantage to be easily implementable in semi-routine
use thanks to the simplicity of a method exclusively based on
PCR. In addition, its short time frame to get the results (less than
three days including DNA walking method, DNA purification and
direct sequencing) and its relatively low cost clearly represent a
crucial benefit for the enforcement laboratories.
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