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Abstract

Quality control by attribute [A. Hald, Statistical Theory of Sampling Inspection by Attributes, Academic Press, New York, 1981; E.G.

Schilling, Acceptance sampling in quality control. In: Statistics: Textbooks and Monographs, Vol. 42, Dekker, 1982; J.J. Daudin, C.S.

Tapiero. Les outils et le contrôle de la qualité. Economica (1996).] may be used with grain lots to control their purity. But usually the control

cannot be made on each grain separately. The presence of an impurity is rather assayed in groups of grains the size of which is an important

parameter which can be used to find a cost optimal acceptance sampling plan among those which give acceptable consumer’s and producer’s

risks. This group control has been studied for virus or bacterium detection in grains by the Elisa method [Y. Maury, C. Duby, J.M. Bossenec,

G. Boudazin, Group analysis using ELISA: determination of the level of transmission of Soybean Mosaic Virus in soybean seed, Agronomie

5, 1985, 405–415; Y. Maury, C. Duby, R.K. Khetarpal, Seed certification for viruses. In: Plant Virus, Disease Control, A. Hadidi, R.K.

Khetarpal, H. Koganezawa, eds., APS Press, Chap. 18, 1998, 237–248.] and is advocated by Remund et al. [K. Remund, D. Dixon, D.

Wright, L. Holden, Statistical considerations in seed purity testing for transgenic traits, Seed Sci. Res. 11, 2001, 101–119.] for genetically

modified organism (GMO) detection. But no optimization method to select the cheapest acceptance single- or double-sampling plan has yet

been described.

Given a control cost function depending on the number of groups to analyse and on the total number of grains, we describe in this paper a

practical way to get the least expensive acceptance sampling plan keeping both the consumer’s and the producer’s risks below a

predetermined threshold. The method is more specially illustrated by examples in GMO detection.

D 2004 Elsevier B.V. All rights reserved.

Keywords: Seed acceptance sampling; Quality control; Operating characteristic curve; Single sampling by attributes; double sampling by attributes; Group

analysis; GMO detection
1. Introduction

In grain production and commercialisation, the purity

and absence of defect of a grain lot processed has to be

checked for various criteria. For instance, its ability to

germinate, its belonging to the indicated variety, its good

health state, the absence of toxics like mycotoxin, etc.

Recent advances in agricultural biotechnology have

produced new transgenic varieties whose characteristics

have to be thoroughly studied before they can be
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authorized for commercialisation. Hence, there is also an

important need to control that no such unauthorized

genetically modified organism (GMO) exists in the

commercialised lots of grains, or when legislation makes

the labelling compulsory that it has been adequately

labelled.

In some case, the analysed criteria can be evaluated by a

quantitative response. For instance, the optical density in an

ELISA method, the cycle threshold (Ct) in a real time

polymerase chain reaction (RtPCR), etc. can be calibrated to

predict microorganism or GMO concentration. But doing

that rigorously implies a good knowledge of the distribution

of the response and its uncertainty.
ory Systems 75 (2005) 189–200
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An easier and more robust way of dealing with such a

measurement is to transform it into a binary response such

as presence or absence. In quality control, this binary

response is called an attribute and a control based on it is a

control by attributes (Refs. [1–3]). The sampling scheme

then consists in collecting an initial sample, which is sent to

the laboratory for analyses. From this initial sample, the

laboratory extracts one or several subsamples and deter-

mines the presence or absence for each of them. It is from

these binary responses that the control is made. The

procedure used to get the initial sample is called here the

initial sampling protocol, while the procedure used by

laboratories to control this initial sample is called the

acceptance sampling plan. A somewhat different terminol-

ogy appears in Ref. [6] who distinguish the testing plan

from the sampling plan, but we have chosen here a

terminology more in accordance with the classical statistical

one (see Ref. [2] for instance). Note that grain is used here

as a substitute for seeds and grains.

Standardised initial sampling protocol for grains are

available [7] and so they will not be taken into consideration

here. Their aim is to get a first initial sample as represen-

tative as possible of the whole lot. This is important as the

acceptance sampling plan further proceeds only from this

initial sample and bases the acceptance entirely on it. If the

initial sample is representative, it can be assumed that each

subsample behaves as a simple random sample from the

whole lot.

Several acceptance sampling plans using the control by

attribute of the subsamples are proposed in Ref. [6]

especially for detection of transgenic traits (see also Ref.

[8]). Similar acceptance sampling plans had been described

previously for the detection of viruses or bacteria by Refs.

[4,5]. The subsamples are called pools in one case [6],

groups in the other [4], but the approaches described in

these articles are essentially the same. Following Ref. [4],

we shall refer to this kind of control as group analysis. From

the classical quality control point of view, each subsample is

a sampling unit [9]. It is however important to notice that

the sizes of the different subsamples need not be identical

and are important to take into account.

Acceptance sampling plans using the control by attrib-

utes are also recommended by GIPSA and used by

numerous seed producers and grain exporters. Consider

for instance the control described and recommended by Ref.

[10] for the detection of StarLink, a GMO maize developed

by Aventis CropScience, which produces a protein Cry9C

with insecticidal properties effective in controlling the

European corn borer and which was approved for use as

animal feed only. In that case, the GIPSA proposal to check

that the lot does not include StarLink grains is to ground and

assay enough grains to give the consumer, if no GMO is

found in them, a very low probability of accepting a lot with

an unacceptable GMO rate. For instance, if a proportion

above 0.3% is considered unacceptable, 2300 grains have to

be used to get a 0.1% probability of accepting a lot reaching
this 0.3% GMO rate. Since detection is made in that case

through the expressed protein Cry9C, it is recommended to

perform the analysis on separate subsamples of 400 grains

insuring that even 1 GM grain in the subsample is reliably

detected. The lot is accepted if none of the subsamples

contains GMO. Thus, the GIPSA procedure also uses

subsamples and their attributes, but the size 400 of these

subsamples is only dictated by the limit of the analytical

method of detection and does not take into account the

producer’s risk to see his lot rejected when there is a slight

fortuitous GMO presence.

Multiple sampling plans with more than two stages

would be unpractical in this context, so we have limited the

investigation to the single- and double-sampling plans [2]

(called single-stage or double-stage testing plan by Ref. [6]).

For them, we describe a practical algorithm to get the

cheapest sampling plan keeping both the consumer’s and the

producer’s risks below predetermined small levels.

For ordinary quality control, practical algorithms to find

suitable single- or double-sampling plans have been

proposed ([11,12]) and computer programs are available

(see the Journal of Quality Technology or Ref. [13]). But the

approach is here complicated by the fact that the number of

subsamples and their size are simultaneously optimized.

Moreover, in double-sampling plans, the size needs not be

the same in the first and second stage. Modifying it between

the two stages can offer a lot more flexibility and

consequently decrease costs.

As indicated by its name, double sampling proceeds in

two stages. A few subsamples are first assayed. A second

more important set of subsamples is then assayed only if the

first results leave some doubt. Since in many cases the first

assays are conclusive, this double sampling may achieve the

same risk control with a cost far smaller than the single

sampling which assays all subsamples simultaneously [14].

To make things clearer, the methodology is illustrated

throughout the paper by the case of GMO detection. But it

can be easily adapted to any other detection provided there

is a way of determining the presence or absence of the

incriminated analyte, microorganism, etc in a subsample of

grains. In the case of GMO, this determination is generally

made either through a protein specific of the GMO trait, or

by PCR amplification and subsequent detection of the

corresponding DNA sequence.

Note that GMO control is compulsory in numerous

countries including those of the European Union. Since the

introduction of the novel food and ingredient 258/97/EC

directive, all foods containing GMO or derived compounds

should be labelled above a 1% threshold of fortuitous

presence in each ingredient (directive 49/2000/EC).
2. Single and double sampling

In a single-sampling plan, N groups of n grains are

separately ground and analysed to determine if they are
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GMO-positive or not. If there are X positive out of the N

groups the GMO proportion may be estimated by X/N and

the lot is accepted if XVA, rejected if X NA, where A is a

predetermined acceptance threshold. Thus, the set of

parameters defining the plan is (N,n,A).

In the case of grains, the double sampling is defined as

follows. First, N1 groups of n1 grains are assayed. The lot is

accepted if X1VA1 where X1 is the number of positive groups

and A1 a predetermined threshold. If X1zR1, where R1 is a

predetermined rejection threshold, the lot is rejected. In

between, that is if A1bX1bR1, N2 new groups are assayed.

The lot is then accepted ifX2VA2(X1), whereX2 is the number

of positive among the N2 new groups and A2(X1) a

predetermined threshold. The function A2:X1iA2(X1) giving

for each value of X1 the acceptance threshold at the second

step must be a decreasing function of X1 because the bigger is

X1, the smaller must be X2 to compensate. In classical quality

control, this function has the form A2�X1 where A2 is a fixed

number. The lot is therefore accepted at the second step if

X2+X1VA2 and rejected if X2+X1zR2=A2+1. Since we allow

here the subsamples examined at steps 1 and 2 to have

possibly different numbers n1 and n2 of grains, it seems

natural as a consequence to adopt a larger frame making

possible the use of something less symmetric than the sum

X1+X2 to base the acceptance at the second step. So the set of

parameters to determine in that case is T=(N1,n1,A1,R1 ,

N2,n2,A2()). The brackets following A2 are put to remind that

A2 is a function.
3. Consumer’s and producer’s risks

The aim of a control is to insure the consumer that the lot

is rejected with high probability whenever the proportion of

GM grains is above a non-tolerable threshold pnt, called

Limiting Quality Level (LQL) or Consumer Quality Level

(CQL) in quality control. But for the producer’s sake, there

must be also a high probability to accept if the GMO

proportion is below a tolerable threshold pt called Accept-

able Quality Level (AQL) or Producer Quality Level (PQL)

in quality control. Of course, the tolerable threshold must be

smaller than the non-tolerable one, that is ptbpnt; otherwise,

there cannot be any agreement between the consumer and

the producer.

The consumer’s requirement can thus be formalised by

the inequality

Prob acceptancejpntÞVbð ð1Þ

which means that the risk for the consumer to accept the lot

if the GMO proportion reaches the non-tolerable threshold

must be smaller than b. Similarly, the producer’s require-

ment is expressed by the inequality

Prob rejectionjptÞVað ð2Þ

meaning that his risk that the lot is rejected if the GMO

proportion is the tolerable one pt does not exceed a. These
maximum tolerated risks b and a are called consumer’s and

producer’s risks, respectively.

The choice of pnt, b, p t, a depends on many

considerations: risk for humans, risk for environment,

degree of purity that can be obtained, nature of the grains

(commercial seeds, basic seeds, breeder’s seeds, grain for

human food, for animal feed, etc.). Once there is an

agreement between contractors on their choice, the

problem is to find the acceptance sampling plan leading

to a minimal inspection cost among those which satisfies

the constraints (1) and (2).

Note that taking into account the producer’s risk

appears essential in many cases. First, some GM plants

are very scattered today (e.g. Round-up Ready Soja for

instance) and it is almost impossible to avoid any trace of

them, e.g., in big cargos. This small fortuitous presence of

GMO has been often observed. It is taken into account by

local regulations, which have generally adopt low but

positive thresholds when there are no safety issues. One

reason for it is that the dissemination of pollen by the

wind or the insects cannot be completely controlled. This

is why the producer’s point of view has to be taken into

account. As outlined by Ref. [15], plans requiring no

defects for acceptance can be used only if the state of the

arts permits near perfect quality level, and this is not the

case here.

Even for GMO free supply chains, the producer’s risk

has to be taken into account. Otherwise, the fortuitous

presence of GMO would lead to many lot rejections, hence

to a considerable price increase that would finally entail the

suppression of these chains, hence the exact opposite of

what is wished by consumers wanting to avoid new GMO

products.

The control cost, in which we include sampling,

mainly depends on the number of assays and grains. In

the next section, its expression is formalised for the two

kinds of sampling plans considered, the single and the

double.
4. Cost function

4.1. Single-sampling plan

We let Ca be the cost of assaying one group, that is the cost

of the whole sequence of operations used to detect GMO in

this group (grinding, protein or DNA extraction, immuno-

logical or PCR method). Since in single sampling there are N

such assays, the global cost of the assays is NCa. The cost of

the grains used for these assays must be added. This cost is

CgNn, whereCg denotes the cost of one grain, which strongly

depends on the nature of the grain (ordinary grains,

commercial seeds, breeder’s seed, etc.). The whole cost in

single sampling therefore takes the form

C N ; nð Þ ¼ CaN þ CgNn: ð3Þ
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It is always possible to assume that Ca=1, that is to

take the assay cost as unit price. The cost Cg is then

relative to this assay cost. For instance, Cg=0.001 if the

price of one grain is 1/1000 of the assay price, or

equivalently if the cost of an assay is equivalent to the

cost of 1000 grains.

4.2. Double-sampling plan

In double sampling, the cost is random since the

second step only occurs if A1bX1bR1, hence with a

probability denoted by Prob(step 2jp), which depends on

the real GMO proportion p. It is the expectation of this

cost for a given p, which has to be optimized. This

expectation is

C N1; n1;A1;R1;N2; n2;A2ðÞð Þ
¼ C N1; n1ð Þ þ Prob step 2jpð Þ C N2; n2ð Þ
¼ CaN1 þ CgN1n1 þ Prob step 2jpð Þ CaN2 þ CgN2n2

� �
ð4Þ

where C is defined as in single sampling by Eq. (3). In

this form, it is assumed that the N2n2 grains needed for

the second step have to be paid only if this second step

occurs. In practice, it may be necessary to get and pay the

N2n2 grains of the second stage even if they remain

unused, in order to avoid a second sampling in the lot and

because it may be difficult to return them. The cost then

takes the following form

C N1; n1;A1;R1;N2; n2;A2ðÞð Þ

¼ Cg N1n1 þ N2n2ð Þ þ Ca N1 þ Prob step 2jpð ÞN2ð Þ ð5Þ

Though we consider here only the first form (Eq. (4)) of

the cost, it is not difficult to adapt the methodology to the

second form.

The parameter p appearing in Eqs. (4) and

(5) is unknown. To get an idea of how the optimal plan

depends on it, two values pt (the tolerable threshold) and

p0=pt /10 will be given to it in this paper. Similarly, the ratio

Cg /Ca giving the cost of a grain relatively to the cost of

assay of a subsample will also be given two values 0.001

and 0.01. To know which values of p and Cg /Ca are used,

the cost defined by Eq. (4) with given p, Cg and Ca=1 is

denoted by C ( p,Cg) instead of C alone. Thus

C p;Cg

� �
N1; n1;A1;R1;N2; n2;A2ðÞð Þ

¼ N1 þ CgN1n1 þ Prob step 2jpð Þ N2 þ CgN2n2
� �

ð6Þ

In the sequel, the set of parameters T =(N1, n1,A1,

R1,N2,n2,A2()) will sometimes be omitted if the context

clearly shows which one is used.
5. Cost minimization of group analysis control by

attributes

5.1. Case of the single sampling

Let p be the proportion of GM grains in the lot. As

mentioned in the introduction, it is assumed that each grain

in the initial sample has probability p to be GMO,

independently of the other grains. The probability that no

grain is GMO in a group of n grains is (1�p)n and,

consequently, if the GMO detection procedure is error-free,

the probability to find a group positive, that is containing at

least one GM grain is

P ¼ 1� 1� pð Þn: ð7Þ

Section 5.2 explains how to take into account possible

errors of detection by replacing P by the probability P̃ to

detect, either rightly or wrongly.

The number X of groups, among the N, containing at

least one GMO grain follows a binomial law B(N,P).
Assuming that any GMO grain is detected with certainty by

the procedure, the probability of acceptance and rejection

are respectively

Prob XVAjpð Þ ¼
XA
j¼0

N

j

� �
P j 1� Pð ÞN�j;

Prob X NAjpð Þ ¼ 1� Prob XVAjpð Þ: ð8Þ

The consumer’s requirement (Eq. (1)) is that the accept-

ance probability is smaller then b when p=pnt, the

producer’s one (Eq. (2)) that the rejection probability is

smaller than a when p=pt:

Prob XVAjpntð ÞVb; Prob X NAjptð ÞVa: ð9Þ

These probabilities are given by Eq. (8) where P takes

the corresponding values Pnt and Pt:

Pnt ¼ 1� 1� pntð Þn; Pt ¼ 1� 1� ptð Þn:

The problem is to find N, n and A minimizing the

quantity (3) and satisfying the constraints (9).

For n fixed, Guenther’s algorithm [11] provides the

solution, that is the minimum acceptable N and correspond-

ing value of A such that the constraints (9) are satisfied. Fig.

1 represents these values in function of n when

pnt ¼ 1%; b ¼ 5%; pt ¼ 0:2%; a ¼ 5%: ð10Þ

These parameters will be used to illustrate the methodology

throughout this article. Note that the 1% value for pnt is the

current European threshold for food labelling.

The minimum acceptable number of groups N is always

greater or equal to 7. The smallest value of n leading to this

minimum is 204. The corresponding acceptance threshold is

A=4.

The corresponding acceptance sampling plan assays the

presence of GMO in 7 groups of 204 grains and accept the



Fig. 1. Minimum N and corresponding A for each n, when the constraint parameters are given by the equalities (10). The graphic gives an information similar

to that of Table 1. The constraints remain those defined by the equalities (10). The thick line gives for each n the minimum acceptable N, while the thin line

gives the corresponding A. The minimum N of 7 is obtained when n=204 as in Table 1. The corresponding value of A is 4. A vertical line has been drawn at this

abscissa.
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lot if the number X of groups where GMO is detected is

below 4: XV4. This plan guarantees that the consumer’s risk

to accept a lot with more than 1% GMO and the producer’s

risk to reject a lot with less than 0.2% GMO are both below

5%.

Note that this acceptance sampling plan minimizes N but

not necessarily the control cost (3). Consider for instance the

two values of Cg introduced in Section 4. If Cg=Ca/1000,

this plan minimizes the cost function (3) but if Cg=Ca/100

then the cheapest choice is N=8, n=164, A=4. Table 1

illustrates this point.

5.2. False positive and false negative

The assay method sometimes gives a false result, that is

find GMO when there is no GMO grain in the group –false

positive– or do not find GMO though there is some in the

group –false negative–. The origin of such errors and the

way to reduce them is thoroughly discussed in Ref. [6]. To

take them into account, one has to replace the probability P
Table 1

Minimum N and associated costs for some values of n, when equalities (10) are

n 60 100 140 164

N 18 14 9 8

A 4 5 4 4

Nn 1080 1400 1260 1312

C(N,n)=N+0.001Nn 19.1 15.4 10.3 9.3

C(N,n)=N+0.01Nn 28.8 28.0 21.6 21.1

Example: if each group has n=204 grains, the consumer’s and producer’s requirem

equal to 4. However, if the grain cost is, e.g., 1% of a one group assay cost, henc

groups of 164 grains than N=7 groups of 204 grains.
that a group is GMO positive by the probability P̃ that the

group is found GMO positive by the assay.

Let d be the probability to find positive a group without

GM grain and k the probability to find negative a group

including at least one GM grain. Then

P̃P¼P 1�kð Þþ 1� Pð Þd¼ 1� 1� pð Þnð Þ 1� kð Þþ 1� pð Þnd

It is natural to assume d constant. As to k, it may also be

assumed independent from the GMO fraction in the

subsample if this fraction is not too small, which will

systematically be the case when n is not too big. For

instance, it is known that StarLink detection through the

protein Cry9C correctly works as far as the GMO rate is

not lower than 1 GMO grain in 400. So k may be

assumed constant for group sizes below 400, but for

bigger values it should be considered as a function of the

GMO fraction. The probability P(1�k) that a group
satisfied

180 200 203 204 208 209

9 9 9 7 7 9

5 5 5 4 4 5

1620 1800 1827 1428 1456 1881

10.6 10.8 10.8 8.4 8.5 10.9

25.2 27.0 27.3 21.3 21.6 27.8

ents can be simultaneously satisfied only if Nz7, and for N =7, A must be

e the global cost proportional to N +0.01Nn, then it is cheaper to use N =8
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includes GMO and that the assay correctly detects it

should then be replaced by

1� k 1=nð Þð Þ n

1

� �
p 1� pð Þn�1

þ 1� k 2=nð Þð Þ n

2

�
p2 1� pð Þn�2 þ : : ::

�

To take into account the assay deficiencies, d and k have

first to be evaluated, for instance by assaying groups with

known GMO fraction. Once they are known, the relation

between p and P̃ can be used to compute the risks for given

pnt and pt and therefore to find a suitable sampling plan as

previously.

5.3. Case of the double sampling

The double sampling allows to reach the same risk

targets with a much lower cost. Let

P1 ¼ 1� 1� pð Þn1 ; P2 ¼ 1� 1� pð Þn2 : ð11Þ

The probability to accept the lot at the first step is

Prob X1VA1jpð Þ ¼
XA1

j¼0

N1

j

�
P

j
1 1� P1ð ÞN1�j

�
ð12Þ

There is a second step only if X1 takes a value j such that

A1b jbR1. In that case, the lot is accepted if X2VA2( j),

hence with probability

Prob X2VA2 jð Þjpð Þ ¼
XA2 jð Þ

k¼0

N2

k

�
Pk
2 1� P2ð ÞN2�k :

�
ð13Þ

As the probability to get X1=j and X2VA2( j ) is

Prob(X1= j| p)Prob(X2VA2( j)| p), the probability of accept-

ance when A1b X1b R1 is

XR1�1

j¼A1þ1

Prob X1¼ jjpð ÞProb X2VA2 jð Þjpð Þ

and finally the global probability of acceptance, denoted by

Pa( p), is

Pa pð Þ ¼ Prob X1VA1jpð Þ

þ
XR1�1

j¼A1þ1

Prob X1 ¼ jjpð ÞProb X2VA2 jð Þjpð Þ

¼
XA1

j¼0

N1

j

� �
P

j
1 1� P1ð ÞN1�j

þ
XR1�1

j¼A1þ1

N1

j

� �
P

j
1 1� P1ð ÞN1�j

�
XA2 jð Þ

k¼0

N2

k

� �
Pk
2 1� P2ð ÞN2�k : ð14Þ
5.4. Finding an optimal double-sampling plan

To determine an optimal double-sampling plan in classical

quality control, Daudin et al. [16] first vary the parameters of

the acceptance sampling plan continuously in R, then select

integer values in the vicinity of the real optimal solution. In

GMO control, the cost is strongly dependent on the number

of assayed groups. Therefore only small values of N1 and N2

have to be examined and it is possible to work directly on sets

of integer parameters. The number of possible values for n1,

n2 is however too important to examine all of them. So the

optimization is carried out in two steps. First, for each

possible set of parameters T=(N1,A1,R1,N2,A2()), the

optimal couple (n1,n2) satisfying the constraints, if any, is

looked for and the associated cost C(T) computed. Then the

optimal set T is obtained by comparison between these C(T)
for all possible T. This may be done for several values of p to

get an idea of the sensibility of the optimum to the percentage

of GMO grains in the lot.

Fig. 3 illustrates the constraints on (n1,n2) for two

choices of T=(N1,A1,R1,N2,A2()), with the constraint

parameters (10). To satisfy the consumer’s and producer’s

constraints

Pa pntð ÞVb; ð15Þ

1� Pa ptð ÞVa; ð16Þ

the point (n1,n2) must be above the curve B (Buyer’s=con-

sumer’s curve) defined by Pa( pnt)=b and below the curve S

(Seller’s=producer’s curve) defined by 1�Pa( pt)=a (the

results of Appendix A.1 explain why). If the area thus

defined is empty as in Fig. 3b, there is no couple (n1,n2)

satisfying the constraints. When it is not empty as in Fig. 3a,

the following step is to find the couple giving the minimum

cost.

Fig. 3 suggests the following specific algorithm to

determine if the constraint area is empty or not. Theminimum

of the difference curve D=B�S is looked for. This difference

D appears to be first decreasing, then increasing in function of

n1. It is easy to find its minimum as the point where its

derivative in function of n1 is zero (the derivative is given in

Appendix A.3). If B is below S at this minimum, there is a

couple (n1,n2) satisfying the constraints and the constraint

area, bordered at its top by S and at its bottom by B, is not

empty. In that case, the value of n1 corresponding to the

point at the extreme left of the constraint area can be easily

found as the value such that B�S=0.

For n1 fixed, it appears from Eq. (6) that the optimum n2
is the smallest one compatible with the constraints, that is

the one associated to n1 on the B curve. So the following

optimization step is to find the minimum cost along the

consumer’s curve B.

In most cases, the cost C given by Eq. (6) appears to be

first decreasing, then increasing when moving from the left

to the right on the consumer’s curve B. It is then easy to find
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the zero of its derivative dC=dn1 with respect to n1 (which is

given in Appendix A.3). The corresponding point on the B

curve gives the searched optimum. In some case, however, it

gives only a local optimum but it was observed that this

occurs only for parameters N1, A1, R1, N2, A2 which are far

from the optimum. Fig. 2 shows the variation of the cost

C( p,Cg)(T) in function of n1 on the B curve for some values

of p, Cg and set of parameters T=(N1,A1,R1,N2,A2()).

When Cg=0 and p is small, the derivative dC=dn1 is

already positive at the leftest point of the constraint area.

This point is then optimal. This is for instance the case in Fig.

3a. The optimum is obtained for n1=393, n2=330 when Cg=0

and p=p0. To explain this, note that when Cg=0, the cost (6)

becomes C p; 0ð Þ ¼ N1 þ Prob step 2jpð ÞN2. It does not

depends on n2 and its dependence on n1 is only through

Prob(step 2|p) which can be written

Prob step 2jpð Þ ¼
XR1�1

j¼A1þ1

N1

j

� �
P j 1� Pð ÞN1�j;

where P ¼ 1� 1� pð Þn1 : ð17Þ

Lemma A.1 shows that this quantity is an increasing

function of P if P is sufficiently small. Hence, the positivity

of dC=dn1 when n1 is the abscissa of the leftest point of the

constraint area and p small enough.
Fig. 3. Constraints for n1 and n2 associated with the parameters in (10)

B: buyer’s or consumer’s curve defined by Prob(acceptation|pnt)=b
S: seller’s or producer’s curve defined by Prob(rejection|pt)=a

To satisfy the consumer’s constraint, the couple (n1,n2) must be above

curve B. It must be below curve S to satisfy the producer’s constraint. Thus,

B and S are respectively the bottom and top borders of the constraint area.

Figure a illustrates a situation where this admissible area, below S and

above B, is not empty, while figure b illustrates on the contrary a situation

where the consumer’s and producer’s constraints cannot be simultaneously

satisfied. The admissible area in figure a is colored in light grey.

Fig. 2. Variation of the cost C( p, Cg) along the B curve for some double-

sampling plans

Curve p Cg N1 A1 R1 N2 A2

1* 0.0002 0.001 1, 0, 2, 6, A2(1)=4

2 0.0020 0.000 2, 1, 3, 5, A2(2)=4

3 0.0020 0.001 1, 0, 2, 9, A2(1)=8

4 0.0002 0.010 1, 0, 2, 10, A2(1)=9

5* 0.0020 0.010 4, 1, 5, 5, A2(2,3,4)=2,1,0

6 0.0020 0.010 3, 0, 3, 10, A2(1,2)=9,6

The conditions marked by a * are optimal for the corresponding p and

Cg (see Table 2). Note that curve 6 exhibits a local optimum around

n1=220, but that the corresponding parameters give a much more

expensive plan than those associated with curve 5.
It is crucial in the sequence of operations leading to the

optimum choice of (n1,n2) to have an efficient way of deter-

mining the n2 associated to a given n1 on the S and B curves.

These values are found as the solutions of the equations

1�Pa( pt)=a and Pa( pnt)=b. It is shown in Appendix A.1 that

for fixed values of the other parameters, the acceptance

probability Pa( p) is a decreasing function of n2. This result

can be used to solve efficiently these equations in n2.

Example. The algorithm is used with the parameters defined

by the equalities (10). The number of groups N1 is varied

between 1 and 4 and A1, R1 among all possible compatible

sets of values. Then, N2 is varied between 1 and 10 and A2

among all compatible decreasing acceptance function A2.



Fig. 4. Some acceptance sampling plans operating characteristic curves

respecting the constraints associated with the equalities (10)

Plan 1: single sampling N=1, n=300, A=0

Plan 2: single sampling N=3, n=300, A=1

Plan 3: single sampling N=7, n=204, A=4

Plan 4: double sampling N1=1, n1=333, A1=0, R1=2, N2=6, n2=339,

A2(1)=4

Plan 5: double sampling N1=2, n1=393, A1=1, R1=3, N2=5, n2=330,

A2(2)=3

Plans 4 and 5 are the double-sampling plans respectively minimizing the

costs C(0.02%,0.001) and C(0.2%,0.001) under the consumer and producer

constraints defined by equalities (10) (see Table 2). Plan 3 gives the cost-

optimal single-sampling plan when Cg/Ca=1/1000 under the same con-

straints (see Table 1). The single-sampling plan 1 takes only the consumer

constraint into account, while the plan 2 shows what can be achieved with a

single sampling if no more than three groups are to be assayed.
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There are 6017 possible combinations (N1,A1,R1,N2,A2)

to explore. For 3899 of them, D=B�S is negative at its

minimum and so there exists a couple (n1,n2) satisfying the

consumer’s and producer’s constraints. For each of these

3899 combinations, the couple (n1,n2) at the left of the

constraint area, i.e., with minimum n1, is first looked for. It

appears that this couple minimizes the cost function C p; 0ð Þ
given by Eq. (6) for the two values pt and p0=pt/10 of p

introduced in Section 4.

Then, optima are searched along the B curve for the cost

functions C( p,Cg) where p takes the values p0=0.02%,

pt=0.2% and Cg the values 1/1000, 1/100 (Cg is expressed

as in Eq. (6) with the price of the group assay as unit price,

i.e., Ca=1).

The whole search takes less than half an hour on

modern microcomputers. The bigger part of this time is

used to get the 3899 admissible conditions with the

couple (n1,n2) at the left of the constraint area, and the

rest to get the corresponding optimal n1 for the four costs

with Cgp0. In many cases, it can be immediately checked

that these last ones coincide with the former value n1.

Table 2 gives the optimal plans thus obtained. Note that

most of the time is spent on condition N1=4 which

appears interesting only to minimize the cost computed

with p=pt, Cg=0.01.

The statistical properties of an acceptance sampling plan

are well summed up by the operating characteristic curve

representing the acceptance probability Pa( p) in function of

p. This probability is given by Eq. (14) in the double

sampling, by Eq. (8) in the single one. Fig. 4 gives this

curve for some single- and double-sampling plans. The

double-sampling plan 4 in this figure uses only one assay in

the first step and goes to step 2 with probability 0.06 if

p=p0=0.0002 and 0.49 if p=pt. It is far less expensive than

the single-sampling optimal plan 3 with N=7 which gives a

similar operating characteristic curve. The single-sampling

plan 1 would be adopted to limit to 5% the risk of accepting

a lot with 1% GMO content if, like in Ref. [10], one does

not care about the producer’s risk.
Table 2

Optimal parameters for some cost function C p;Cg

� �
in double sampling

Cost C p;Cg

� �
Parameters of the plan

N1 n1 A1 R1 N2

Cð0:02%; 0Þ 1 333 0 2 6

Cð0:02%; 0:001Þ 1 333 0 2 6

Cð0:02%; 0:01Þ 1 314 0 2 9

Cð0:2%; 0Þ 2 392 1 3 5

Cð0:2%; 0:001Þ 2 393 1 3 5

Cð0:2%; 0:01Þ 4 155 1 5 5

col (1): Prob(step 2|p).

col (2): gives the probability to go to step 2 and the cost for the other value of p

Example: if the mean GMO rate is p=0.02% and the cost of a grain about 1% of th

first 1 group of 314 grains. The lot is accepted if the result is negative, otherwise 9 o

of them are GMO positive.
Thus, an appropriate choice of an acceptance sampling

plan by attribute can lead to a quite economical control taking

into account both the consumer’s and producer’s require-

ments. In some cases, this plan can lead to acceptance even if
(1) Cost (2)

n2 A2

339 (4) 0.06 1.39

339 (4) 0.06 1.85 (0.49, 5.24

for p=0.2%)

182 (4) 0.06 5.68

601 (4) 0.30 3.48

330 (3) 0.30 4.76 (0.01, 2.82

for p=0.02%)

147 (2,1,0) 0.29 13.79

(the one not used for the optimization).

e cost of one group assay, the more economical double-sampling plan assays

ther groups of 182 grains are assayed and the lot accepted only if less than 4



A. Kobilinsky, Y. Bertheau / Chemometrics and Intelligent Laboratory Systems 75 (2005) 189–200 197
some assayed subsamples are GMO positive. This fact must

be explained to users as perfectly coherent with the agreement

reached by producers and consumers on the choice of a non-

zero tolerable threshold pt. These plans have still to be

compared to procedures using the very sensitive quantitative

response provided by quantitative real time PCR, which

could be more adequate in some cases but need more work to

know which factors are influencing the distribution of the

quantitative response.
Acknowledgment

The authors thank Professor Max Feinberg for his very

efficient help in revising this paper.
Appendix A. Appendices on double-sampling

optimization

A.1. Some results about the acceptance probability in

double sampling

The description of the constraint area for (n1,n2) made

after Eqs. (15) and (16) relies on the fact that the probability

of acceptance Pa( pnt) given by Eq. (14) is a decreasing

function of n2. This fact is also used to find for each n1 the

corresponding n2 on the curves B and S, i.e., B(n1) and

S(n1).

Indeed, the greater is n2, the greater is the probability

P2=1�(1�pnt)
n2 that GMO grains are detected in a group of

the second stage, hence the greater is the probability of

rejection at step 2 and the lower is the probability of

acceptance. In fact, the next proposition gives a little more

general result which will be used to prove that for given

values of the other parameters, the probability of acceptance

Pa( pnt) is also a decreasing function of n1.

Proposition A.1. Let / Pð Þ ¼
PN

j¼0 qj

�
N
j

�
Pj 1� Pð ÞN�j

where q0zq1: : :zqN are non-increasing weights. Then, / is

a decreasing function of P.

Proof. Let /j(P) be the probability that X=j where X

follows the binomial law B N ;Pð Þ:

uj Pð Þ ¼ N

j

�
P j 1� Pð ÞN�j

�

Then, /(P)=
P

j=0
Nqj/j(P). The derivative of /j(P) is

/jV Pð Þ¼ N

j

� �
jPj�1 1�Pð ÞN�j � N � jð ÞPj 1� Pð ÞN�j�1

� �

¼ N

j

� �
Pj�1 1� Pð ÞN�j�1

j 1� Pð Þ � N � jð ÞPð Þ

¼ N

j

�
NPj�1 1� Pð ÞN�j�1 j

N
� P

� �
:

�

If 0bPb1, the formula clearly holds for j=0 or j=N. This

derivative is positive if PVj/N, negative otherwise. Let i be
the smallest index j such that PVj/N. Then, for jbi,

/jV(P)b0 and qjzqi so that qj/jV(P)Vqi/jV(P). For iVj,
/jV(P)z0, qjVqi and the same inequality qj/jV(P)Vqi/jV(P)
is consequently satisfied. Hence

/V Pð Þ ¼
XN
j¼0

qj/jV Pð ÞV
X
j

qi/jV Pð Þ ¼ qi
X
j

/jV Pð Þ

But the latter sum is 0 since
P

j/j(P)=1. Hence, /V(P) is
negative and the proposition is proved.

We restate as a lemma a result of the proof which will be

used later.

Lemma A.1. The derivative of /j Pð Þ ¼ N

j

�
Pj 1� Pð ÞN�j

�
is

/jV Pð Þ ¼ N

j

�
NPj�1 1� Pð ÞN�j�1 j

N
� P

�
:

��

This proposition can be used to prove that the acceptance

function Pa( p) given by Eq. (14) is a decreasing function of

n2. Note first that the sum on the right of Eq. (13) can be

written

XN2

k¼0

qk
N2

k

�
Pk
2 1� P2ð ÞN2�k

�

where qk=1 for kVA2( j) and qk=0 otherwise. By the

proposition, it is a decreasing function of P2, hence of n2
by Eq. (11). Then, since Pa( p) is a linear combination of

such sums with positive weights independent of n2, it is also

a decreasing function of n2.

From formula (14), it also follows that Pa( p) is a

decreasing function of n1 when the other parameters,

including n2, are fixed. Indeed, let qj=1 if jVA1,

qj=Prob(X2VA2( j)|p) if A1bjbR1 and qj=0 otherwise. Then

Pa pð Þ ¼
XN1

j¼0

qj
N1

j

�
P
j
1 1� P1ð ÞN1�j:

�

The distribution of X2 does not involve n1, hence the

weights qj do not depend on n1. Moreover, since jiA2( j) is

decreasing, so is the sequence qj for A1bjbR1 and therefore

the global sequence q0,. . .,qN1
. So the proposition can be

applied to show that Pa( p) is a decreasing function of

P1=1�(1�p)n1, hence of n1.

A.2. Inequalities used to accelerate the search in double

sampling

A.2.1. Bounds for n1 and n2
For T=(N1,A1,R1,N2,A2) fixed, the search on (n1,n2) can

use the following bounds.
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! Lower bound for n1. The size n1 must be big

enough to insure that the probability of acceptance at the

first step is lower than b when p=pnt. In particular, we

must have Prob(X1=0|pnt)Vb, that is (1�pnt)
n1N1Vb or

equivalently

n1z
ln bð Þ

N1ln 1� pntÞð

This gives a lower bound for n1. If A1N0, a better lower

bound can be found by solving numerically the equality

Prob(X1VA1|pnt)=b in n1. This is easily done as the

probability of acceptance Prob(X1VA1|pnt) is a decreasing

function of n1.

! Upper bound for n1. If the proportion p is very small,

the lot should be accepted at the first step with a good

probability to avoid an expensive second step. This can be

formalized by requiring that

Prob X1NA1jp0ÞVb0ð ð18Þ

where p0 is a fixed small proportion, for instance the value

p0=pnt/10 introduced in the end of Section 4, and b0 a

predetermined risk to get no acceptance at the first step

when the proportion of GMO is only p0. We could for

instance take b0=10% to accept at first step with probability

90% when the proportion of GMO is only p0.

Since Prob(X1(A1|p0) is an increasing function of n1, the

maximal n1 satisfying Eq. (18) is easily found. An initial

upper bound for n1 can be deduced from the inequality

Prob X1 ¼ N1jp0ÞVb0ð ð19Þ

which is clearly implied by the preceding one since N1NA1.

The equality X1=N1 means that all N1 groups assayed at step

1 contain GMO grains. Since the probability under p0 for a

group to include at least one GMO grain is 1�(1�p0)
n1, the

probability that there is at least one GMO grain in each of

the n1 groups is

1� 1� p0Þn1ð Þð N1 :

Hence

Prob X1 ¼ N1jp0ð ÞVb0Z 1� 1� p0ð Þn1ð ÞN1Vb0

ZN1ln 1� 1� p0Þn1ð ÞVln b0ð Þ:ð

It is easy to check that ln(1�d)N�2d if dV0.79. Hence, if
(1�p0)

n1V0.79, that is n1zln(0.79)/ln(1�p0), then

N1ln(1�(1�p0)
n1)N�2N1(1�p0)

n1 and this is greater

ln(b0) iff n1zln(�ln(b0)/2N1)/ln(1�p0). Therefore, if

n1zmax
ln0:79

ln 1� p0ð Þ ;
ln � ln b0Þ=2N1ð Þð

ln 1� p0ð Þ

� �
ð20Þ
then Prob(X1=N1|p0)Nb0. Consequently, Eq. (19), hence Eq.

(18), can be satisfied only if n1 is smaller than the bound on

the right of Eq. (20).

! Lower bound for n2 for a fixed n1. For each fixed

value of n1, one has to find the minimum value of n2
satisfying Eq. (15) (i.e., n2=B(n1)). This inequality implies

Prob X2 ¼ 0jpntð Þ ¼ 1� pntð Þn2N2Vb2 ¼ b�Prob X1VA1jpntð Þ

hence

n2z
ln b2ð Þ

N2ln 1� pntÞ:ð

The term on the right provides a lower bound for n2.

A.2.2. Restrictions in the choice of A1, R1, A2

As previously mentioned, since the group assays are very

expensive, only a few values of N1 and N2 have to be used.

We give below the constraints on the other parameters A1,

R1, A2.

! We must have 0VA1VN1�1, then A1+2VR1VN1+1. If

R1=N1+1, this means that there is no possibility for a

rejection at the first step. Note that, if R1 were equal to

A1+1, there would not be any possibility to get a second

step, hence the equality A1+2VR1.

! The acceptance function A2 varies among the decreas-

ing functions from the set {A1+1,. . .,R1�1} into the set {0,

1, . . ., N2�1}.

A.3. Some useful derivatives

The optimization algorithm uses the derivatives of the

B and S function dB/dn1, dS/dn1, then the derivative of

the cost in function of n1 : dC=dn1. We show below how

to compute exactly these derivatives.

We consider fixed values of N1, A1, R1, N2 and of the

acceptance function A2. With each couple (n1,n2) is then

associated the probability Pa( p) of acceptance whenever p

is the GMO rate in the lot. We denote it by F( p, n1, n2)

to stress its dependence on the couple (n1,n2). With this

notation, the equations defining the B and S curves,

derived from the inequalities (15) and (16), become

F pnt; n1; n2Þ ¼ b for B;ð

1� F pt; n1; n2Þ ¼ a for S:ð

They are both of the form F( p, n1, n2)=cte, which gives by

differentiation

BF

Bn1
dn1 þ

BF

Bn2
dn2 ¼ 0
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hence

dn2

dn1
¼ � BF=Bn1

BF=Bn2
: ð21Þ

Let

/1j P1ð Þ ¼ N1

j

� �
P
j
1 1� P1ð ÞN1�j;

/2k P2ð Þ ¼ N2

k

� �
Pk
2 1� P2ð ÞN2�k

where P1 and P2 are defined as in Eq. (11). With these

notations, Eq. (14) becomes

F p; n1; n2ð Þ ¼
XA1

j¼0

/1j P1ð Þ þ
XR1�1

j¼A1þ1

/1j P1ð Þ
XA2 jð Þ

k¼0

/2k P2Þ:ð

F depends on n1 through P1 and on n2 through P2. Hence

BF

Bni
¼ BF

BPi

dPi

dni
:

From Eq. (11), we have

dPi

dni
¼ � 1� pð Þni ln 1� pð Þ:

Consequently

BF

Bn1
¼ � 1� pð Þn1 ln 1� pð Þ

" XA1

j¼0

/1jV P1ð Þ

þ
XR1�1

j¼A1þ1

/1jV P1ð Þ
XA2 jð Þ

k¼0

/2kðP2Þ
#

BF

Bn2
¼� 1� pð Þn2 ln 1� pð Þ

" XR1�1

j¼A1þ1

/1j P1ð Þ
XA2ð jÞ

k¼0

/2kV P2ð Þ
#

and Eq. (21) takes the form

dn2

dn1
¼ � 1� pð Þn1�n2

PA1

j¼0 /1jV P1ð Þ þ
PR1�1

j¼A1þ1 /1jV P1ð Þ
PA2 jð Þ

k¼0 /2k P2ð ÞPR1�1
j¼A1þ1 /1j P1ð Þ

PA2 jð Þ
k¼0 /2kV P2ð Þ

ð22Þ

Lemma A.1 gives

/1jV P1ð Þ ¼ N1

j

� �
N1P

j�1
1 1� P1ð ÞN1�j�1 j

N1

� P1

� �
ð23Þ

/2kV P2ð Þ ¼ N2

k

� �
N2P

k�1
2 1� P2ð ÞN2�k�1 k

N2

� P2

� �
:

ð24Þ

The equality (22) can then be used with p=pnt and n2=B(n1)

to get the derivative dB/dn1 at any point n1, and similarly

with p=pt and n2=S(n1) to get dS/dn1.

We go on assuming N1, A1, R1, N2, A2 fixed. For each

n1, the less expansive choice of n2 is the smaller compatible

with the constraints, that is the corresponding point
n2=B(n1) on the consumer’s curve. Recall that the optimal

n1 is found by studying the variation of the cost C given by

Eq. (6) when n1 varies and n2 varies accordingly on the B

curve.

The derivative of this cost with respect to n1 is

d

dn1
C ¼ CgN1 þ

d Prob step 2jpð Þ
dn1

N2 þ CgN2n2
� �

þ Prob step 2jpð ÞCgN2

dn2

dn1
:

If the terms depending on Cg are put together, it takes the

form

d

dn1
C

¼ Cg N1þN2n2
dP step 2jpð Þ

dn1
þProb step 2jpð ÞN2

dn2

dn1

� �

þ N2

d Prob step 2jpð Þ
dn1

The probability Prob(step 2|p) to go to step 2 when the

GMO rate is p is given by Eq. (17). It follows from Lemma

A.1 that its derivative with respect to n1 is

d Prob step 2jpð Þ
dn1

¼ dP

dn1

XR1�1

j¼A1þ1

N1

j

� �
N1P

j�1 1� Pð ÞN1�j�1

� j

N1

� P

� �

where

dP

dn1
¼ � ln 1� pð Þ 1� pð Þn1N0:

Using these formula and n2=B(n1), it is easy to compute the

derivative dC=dn1 for each n1.
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