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Abstract

When the laboratory methods employed are qualitat-
ive, the statistical methodologies used in testing for the
adventitious presence (AP) of transgenic material in
conventional seed and grain lots are well defined.
However, when the response from the method used by
the laboratory is quantitative (e.g. percent transgenic
DNA), the statistical methodologies developed for
qualitative laboratory methods are not fully appro-
priate. In this paper, we present the details of
procedures specific to quantitative laboratory
methods. In particular we consider: (1) the assess-
ment of quantitative laboratory method errors using
linear modelling; and (2) the process of deciding
whether or not a lot meets pre-specified purity
standards, including the development of probability
calculations needed to develop operating character-
istic curves and estimate consumer and producer
risks for a given lower quality limit (LQL), acceptable
quality limit (AQL) and testing plan. We also describe
implementation of this approach in a useful spread-
sheet application.
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Introduction

Commercial seed lots are used to obtain grain lots for
the next generation of food or feed. While the parent
seed or the grain progeny may look much the same,
the quality criteria to check for seed and grain are
generally quite different. For example, quality
characteristics for seed include germination, vigour
and varietal purity; while quality criteria for grain
include protein content or the processing ability of the
grain for beer or bread. Testing for (low) levels of
transgenic material in conventional lots is one of the
few quality characteristics that is of interest for both
grain and seed. The practice of testing conventional
lots for the presence of transgenic material is widely
referred to as adventitious presence (AP) testing, and
we adopt this terminology even though the testing
methods cannot differentiate between the adventi-
tious or intentional presence of transgenic traits; in
practice, appropriate documentation and procedures
that are outside the scope of this paper would be
required to provide evidence that any transgenic
material is in fact adventitious. Throughout the
remainder of this paper we use the word ‘lot’ to
refer to a seed lot or a grain lot, and ‘kernel’ to refer to
an individual seed or grain, as in both situations the
principles and possibilities described are valid.

Numerous steps are taken to ensure that a lot is
pure to pre-specified standards. Currently, one of the
features that must be checked is the level of transgenic
material in the lot. A lot that is claimed to carry a
certain transgene must be ensured to carry it in a high
percentage of the kernels. A conventional (non-
transgenic) lot may also be checked and held to
purity standards. The primary focus of this paper
pertains to testing for AP of transgenic material in
conventional lots.
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As we cannot test all of the kernels in a lot because
of the destructive nature of the tests, the first step of a
testing regime consists of obtaining representative
samples of kernels from the lot. This sampling step
should be implemented carefully, as it is essential to
ensure that the sample(s) is representative of the AP
present in the whole lot.

Once representative samples are obtained, they
are submitted to a laboratory to be assayed for AP.
Depending on the method used by the laboratory, the
characterization can be qualitative (i.e. absence or
presence of a particular trait) or quantitative
(i.e. quantification of the trait presence). It is
important to understand and quantify the laboratory
and assay errors that are common in the character-
ization of the sample(s). Qualitative laboratory
methods have false-negative (i.e. a kernel or pool
testing negative when in reality it is positive) and
false-positive (i.e. a kernel or pool testing positive
when in reality it is negative) rates. To assess false-
negative rates at specified levels of AP, experiments
are executed where laboratories are sent (blind)
spiked samples at those levels. Similarly, laboratories
can test true negative samples to evaluate their false-
positive rates. For quantitative laboratory methods,
there are multiple sources of variation. In this paper,
we will provide guidance for obtaining estimates of
these errors. Additionally, the statistical methods that
we propose for developing testing plans account for
the estimates of these errors.

Once a set of samples has been assayed for the AP,
a decision is made regarding lot conformity to
specified purity standards. This decision is supported
by probability calculations, which are common in the
area of statistics called statistical quality control. For
qualitative laboratory methods, Remund et al. (2001)
provided details for establishing testing plans based
on the assessment of consumer and producer risks for
a given lower quality limit (LQL) and acceptable
quality limit (AQL), and Kobilinsky and Bertheau
(2005) provided an optimization method to find
minimum cost testing plans.

A number of applications exist for evaluating
testing plans for qualitative laboratory methods. For
example Seedcalc, developed by Remund and
Simpson, is a Microsoft Excelw spreadsheet appli-
cation freely available at the International Seed Testing
Association (ISTA) web site (http://www.seedtest.
org/en/content- - -1- -1143.html).

Laffont and Wright (2002) introduced methods
for evaluating testing plans based on quantitative
laboratory methods. We provide the details of
these probability calculations in this paper. We
also describe how the statistical methods for
quantitative laboratory methods are implemented
in the newest version of Seedcalc, which is called
Seedcalc6.

Materials and methods

Estimation of variance parameters

For a quantitative laboratory method [e.g. real-time
polymerase chain reaction (PCR)], we propose to
consider two sources of variation: flour subsampling
variation (due to using only a subsample of the flour
after grinding a pool of m kernels for the assay) and
measurement (instrument) variation. In practice there
may be other important sources of variation, such as
variation over operators, machines or other factors
that might change with time. We suggest to
incorporate them into measurement variation by
ensuring replicate measurements encompass different
levels of these factors when estimating measurement
variation. The following experimental design could be
used to quantify flour subsampling and measurement
variation when using pool sizes of 3500 kernels to test
for AP levels around 0.1%:

. One pool of 3500 kernels is spiked with four
homozygous positive kernels to target the 0.11%
AP level. It is important that the zygosity of the
transgenic kernels spiked is considered so that the
desired target DNA level is achieved.

. The pool is ground into flour, five flour subsamples
are taken, and DNA is extracted from each
subsample.

. Each DNA extraction is measured three times
using a quantitative assay.

This experimental design is proposed as a
minimum requirement, especially as there are only
five subsamples to be used for estimating the flour
subsampling variation. It could be improved by taking
more subsamples from one pool, by taking sub-
samples from more than one pool of 3500 kernels, or
by considering various spiking levels.

The analysis of such an experiment (and of
particular interest here, estimation of the primary
sources of variation, e.g. the variance parameters) can
be conducted using the linear mixed effects model:

yij ¼ mþ ai þ eij; ð1Þ

where m is the overall mean, ai (i ¼ 1,. . .,5) is the
random effect of flour subsample i, and eij (i ¼ 1,. . .,5,
j ¼ 1, 2, 3) is the random effect of measurement j made
on flour subsample i. We assume that the ai effects are
independently and identically distributed (iid)
according to a normal distribution with mean zero
and variance s2

flour, Nð0;s2
flourÞ, and the eij effects are iid

Nð0;s2
measurementÞ. The variance parameters in these

normal distributions, s2
flour and s2

measurement, represent
the flour subsampling and measurement variation
mentioned above. Estimates of these parameters are
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needed for testing plan development described later
in this section.

Usually, the variance parameters in such models
are estimated using the restricted maximum like-
lihood (REML) method of estimation (Searle et al.,
1992). Although this method is available in most
classical statistical packages, it is not available in
spreadsheet applications such as Microsoft Excelw.
Another method, the method of moments, provides
estimates that are easy to compute and, thus, is used in
our implementation of these methods in Microsoft
Excelw. On the other hand, we stress that use of the
method of moments must be avoided when the data
are heavily unbalanced; the REML method provides
estimates with better properties in this case. The
variance parameter estimates are then incorporated
into the development of appropriate testing plans, as
described in the next subsection.

Testing plan development

Suppose that n (n $ 1) pools of m (m $ 1) kernels are
taken from a lot, J flour subsamples from each pool are
measured K times, and let yijk be the kth measurement
made on flour subsample j from pool i.

We assume that yijk can be modelled as:

yijk ¼ pþ ai þ bjðiÞ þ eijk; ð2Þ

where p is the true AP probability in the lot, ai is the
random effect of pool i, bj(i) is the random effect of
flour subsample j from pool i, and eijk is the random
effect of measurement k made on flour subsample j
from pool i. We assume that the ai effects are iid
Nð0;s2

samplingÞ, the bj(i) effects are iid Nð0;s2
flourÞ, the eijk

effects are iid Nð0;s2
measurementÞ, and that the par-

ameters s2
sampling, s2

flour and s2
measurement are as follows:

. The variance parameter s2
sampling is derived from

the variance of a binomial distribution based on m
kernels and probability pkernel that a particular
kernel is positive, denoted B(m, pkernel). This gives

s2
sampling ¼

pkernelð12pkernelÞ

m expressed on a kernel

level. The probability p is the true presence of
transgenic material in a lot expressed in %DNA.
We desire to express s2

sampling in terms of p rather

than pkernel. The relation between these parameters
is pkernel ¼ b £ p, where b is a constant multiplier
that converts from %DNA to %Seed units. We call
this constant b the b-Factor (biological factor), since
it makes unit conversions due to biological
phenomena such as zygosity, ploidy and copy
number. Using this relationship, the sampling
variance of p̂ is equal to the sampling variance of
p̂kernel=b. The sampling variance of p̂kernel=b is equal

to pkernelð12pkernelÞ

b 2m
, which can be re-expressed as bpð12bpÞ

b 2m

using the relation pkernel ¼ bp. Therefore, the
sampling variance expressed in %DNA units is
s2

sampling ¼
pð12bpÞ

bm .

. The variance parameters s2
flour and s2

measurement
correspond to a specific laboratory process. To
obtain estimates of these two parameters for any
given laboratory or laboratory process, our
recommendation is to perform experiments similar
to the (minimal) experiment described in the
previous subsection, or more sophisticated ones
with multiple target AP levels. As the estimates to
consider should reflect the current variability of
the laboratory process, such experiments should
be conducted on a regular basis and for each
laboratory (method). At present, we recommend
use of estimates provided by the analysis of the
most recent experiment, realizing that these
estimates can be improved by using information
from previous experiments. A sufficient number of
flour subsamples per AP level and measurement
replicates per flour subsample will be necessary to
get accurate estimates for any given laboratory
process.

A fundamental objective of quantitative AP testing
is to estimate the AP level in a lot (denoted by p) and
determine if the lot meets pre-specified purity
standards with high statistical confidence. The
parameter p in model (2) is estimated by the sample
mean: p̂ ¼ 1

nJK
i;j;k

P
yijk. The quantity p̂ then gives the

estimated AP in the lot. The variance of p̂ is given by:

s2
p̂ ¼

pð1 2 bpÞ

bnm
þ

s2
flour

nJ
þ

s2
measurement

nJK
: ð3Þ

As s2
measurement seems to depend linearly on p over a

limited range of p while the measurement coefficient of
variation (CVmeasurement), defined as

CVmeasurement ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

measurement

p

p , is fairly constant (as an
example, see Wright et al., 2002, pp. 22–23), we can
rewrite equation (3) as:

s2
p̂ ¼

pð1 2 bpÞ

bnm
þ

s2
flour

nJ
þ

ðpCVmeasurementÞ
2

nJK
: ð4Þ

In these equations, p and CVmeasurement are expressed
as proportions, that is percent/100, ranging from zero
to one.

When using equation (4) one should carefully
consider factors such as the zygosity, ploidy and copy
number of the reference material used in PCR method
calibration versus these same factors for transgenic
presence in the lots to be tested. If both the reference
material and the test lots have the same zygosity/
ploidy/copy number, then b-Factor ¼ 1 in equation
(4) (i.e. %DNA is equal to %Seed). If the zygosity/
ploidy/copy number of the reference material and
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the test lots differ, then b-Factor – 1 in equation (4)
[e.g. homozygous reference material and hemizygous
test lots (b-Factor ¼ 2)]. These are just two relatively
simple examples. Lipp et al. (2005) provide a more
thorough discussion of this topic.

When developing a testing plan based on a
quantitative assay, we can define an acceptance limit
(AL) such that if the observed AP% (p̂) is less than or
equal to the AL, the lot is ‘accepted’, and if not, the lot
is ‘rejected’. Given this AL and the variance of the
average estimated AP% in equation (4), we can
construct an operating characteristic (OC) curve,
which is a plot of the true AP% p versus the
probability of accepting the lot; such OC curves are
useful for evaluating whether or not a given testing
plan satisfies the testing objectives. OC curves are
constructed by considering that p̂ follows a normal
distribution, such that p̂ , Nðp;s2

p̂Þ: We then have

Prðp̂ # ALjpÞ ¼ Pr
p̂2 p

sp̂

#
AL 2 p

sp̂

����p
 !

¼ F
AL 2 p

sp̂

 ! ð5Þ

where F is the cumulative distribution function for the
standard normal distribution and sp̂ ¼

ffiffiffiffiffi
s2
p̂

q
:

Figure 1 is an example of an OC curve that can be
used to investigate properties of a testing plan with
the following components:

. Two pools of 3000 kernels are sampled from the lot,
one flour subsample is taken per pool, and three
measurements are made per flour subsample.

. The measurement CV is 15% (assumed to be fairly

constant up to 1% AP) and the flour subsampling

standard-deviation is sflour ¼
ffiffiffiffiffiffiffiffiffiffiffi
s2

flour

q
¼ 0:011%.

. The AL is chosen to be 0.5%.

From this curve, we can see, for example, that with
this particular testing plan and the variance par-
ameters associated with this hypothetical assay, the
probability of accepting a lot with true AP below
0.35% is very high (above 95%), while the probability
of accepting a lot with true AP above 0.7% is very low
(below 5%). Probability of acceptance for values
between 0.35% and 0.7% AP in a lot can also be read
from the y-axis, and used to determine whether or not
this plan would satisfy testing objectives.

Equation (5) can also be used to estimate the
consumer and the producer risks for a given lower
quality limit (LQL) and a given acceptable quality
limit (AQL), respectively (for a definition of consumer
and producer risks, LQL and AQL, see Remund et al.,
2001):

Consumer risk ¼ Prðp̂ # ALjLQLÞ

¼ F
AL 2 LQL

sp̂

 !
;

and

Producer risk ¼ Prðp̂ . ALjAQLÞ

¼ 1 2F
AL 2 AQL

sp̂

 !
:

These risks represent specific values (that can also be
obtained from the OC curve) in which there is a
particular interest. The OC curve describes the
consumer risk for accepting a lot when the true lot
AP is equal to the LQL, as well as giving the
probability of acceptance for AP equal to any other
value shown on the x-axis; the producer risk can
be obtained from the OC curve as 100 minus the y-axis
value when the actual impurity is equal to the AQL.

Results

All of the methods discussed in the previous section to
accommodate quantitative assays have been
implemented in the newest version of the Microsoft
Excelw spreadsheet Seedcalc: Seedcalc6. This new
version contains the following additional worksheets:
Quant Plan Design (Fig. 2), Compare Testing Plan
(Fig. 3), and Quant Impurity Estimation (Fig. 4). These
new worksheets are next discussed in detail, including
some discussion and comparisons with the work-
sheets intended for qualitative plans. We do not
include many details pertaining to these qualitative
plans, but these details can be obtained from Remund
et al. (2001).

Figure 1. An example of the operating characteristic (OC)
curve for a quantitative testing plan.
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Figure 2. Seedcalc6 Quant Plan Design worksheet.

Figure 3. Seedcalc6 Compare Testing Plan worksheet.
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Quant Plan Design worksheet (Fig. 2)

This worksheet is used to design seed/grain sampling
and testing plans when a quantitative assay such as
real–time PCR is used. Much of the logic and
terminology is similar to the Qual Plan Design
worksheet (intended for use with qualitative assays),
but there are differences pertaining to the use of
quantitative assays, such as the use of flour sub-
sampling standard deviation or measurement CV,
rather than false–positive and false–negative rates.

The number of pools, number of kernels per pool,
number of flour subsamples per pool and number of
measurements for each flour subsample can be
entered by the user, based on the intended procedure
for sampling and testing of the kernels. The usual LQL
and AQL inputs are also provided by the user and are
used to determine how good the testing plan is for the
specific testing needs. The b–Factor can be used to
make adjustments in the sampling variability for
zygosity, ploidy, copy number or some other
biological phenomenon that causes the transgenic
material presence in %Seeds and %DNA units to
differ. The measurement CV and flour subsample
standard deviation are entered to define the perform-
ance of the assay system. These values take the place
of the false–negative and false–positive rates for
qualitative assays, and can be taken from past
experience, or can be obtained from testing results
that are transferred from the Quant Impurity

Estimation worksheet (discussed later in this section).
The acceptance limit (AL) is the cut–off impurity level
measured in the sample for acceptance of a lot, and is
also a required user input. In practice, testing results
for all tested samples are averaged together, and this
average is compared against the AL, as explained
using formulas in the Materials and methods section;
if the average sample results are equal to or less than
this value, then the lot is ‘accepted’; otherwise, the lot
is ‘rejected’. An AL equal to zero cannot be entered in
the current version of Seedcalc because this value does
not provide a good approximation of the binomial
distribution with the normal distribution. The method
limit of detection should also be considered when
choosing AL values in close proximity to zero. Based
upon the user inputs described in this paragraph,
Seedcalc6 then gives the producer and consumer
confidence levels at the AQL and LQL, respectively. It
also provides graphical (OC curve) and tabular
presentations of the lot acceptance probabilities at
various levels of lot impurity.

An additional feature of Seedcalc6 is the ‘Find
Plan’ tool, which can be used to help the user in
searching for a testing plan. After entering the
optional values, target producer and consumer levels,
this tool can be used to modify the user inputs,
defining the testing plan properties in the previous
paragraph to achieve these levels. The ‘Find Plan’ tool
can be selected by clicking the button above the LQL
input cell. The user is then given the four options for

Figure 4. Seedcalc6 Quant Impurity Estimation worksheet.
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searching for testing plans. The descriptions for each
of these four options are given in the ‘Find Plan’
window.

Compare Testing Plan worksheet (Fig. 3)

This worksheet can be used to visually compare the
OC curves of different testing plans along with testing
plan parameters. A testing plan can be designed in the
Qual Plan Design or the Quant Plan Design worksheet
and then transferred to this worksheet to be compared
with other testing plans, or simply saved for future
reference. Caution should be used when comparing
testing plans based on quantitative assays with testing
plans based on qualitative assays, as the impurity
units may be different, and thus, the two types of
testing plans may not be comparable. For example, the
impurity units for a qualitative assay testing plan may
be %Kernel, and units for a quantitative assay testing
plan may be in terms of %DNA.

Quant Impurity Estimation worksheet (Fig. 4)

This worksheet can be used to obtain estimates of lot
impurity/purity and approximate confidence limits
when a quantitative assay is used in testing.
Unbalanced data (e.g. missing measurements for the
different flour subsamples) can be accommodated by
using empty cells. The user enters data and
parameters in the input cells, and the results are
then reported. Notice that all individual quantitative
results for each assay measurement are input into the
spreadsheet so that the different components of
variability can be estimated. A bar chart is displayed
to visualize the contribution of each variation
component to the total variation. These contributions
are defined by:

. Sampling variation component: p̂ð12bp̂Þ
bnm

� �
=ŝ2

p̂

. Flour variation component:
ŝ2

flour

nJ

� �
=ŝ2

p̂ and

. Measurement variation component:

ŝ 2
measurement

nJK

� �
=ŝ2

p̂

where n is the number of pools, m is the number of
kernels per pool, J is the number of flour subsamples
from each pool, K is the number of measurements per
flour subsample, b is the b-Factor, p̂ is the mean of the
quantitative results, ŝ 2

flour and ŝ 2
measurement are the

estimates (determined using the method of moments)
of the flour subsampling variance and measurement
variance, respectively, and

ŝ 2
p̂ ¼

p̂ð1 2 bp̂Þ

bnm
þ

ŝ 2
flour

nJ
þ

ŝ 2
measurement

nJK
:

The variance components estimated on this worksheet
can be transferred to the Quant Plan Design worksheet
to be used as inputs into the design of future testing
plans when an appropriately designed preliminary
experiment was used to obtain the input data.

To illustrate the use of these worksheets, an
example is given (Fig. 4). Suppose that a laboratory
has completed the analysis of samples to test for AP
levels of a commercial transgenic trait in a conven-
tional lot. The laboratory evaluated two pools of 3000
kernels each. Two flour subsamples were taken from
each ground pool, and DNA extractions were
performed. Three measurements were made using
real time PCR on each extraction. These results are
entered into the Quant Impurity Estimation worksheet
in Fig. 4. Note that the second assay measurements for
flour subsample #2 in pool #1 and subsample #1 in
pool #2 are left blank to represent missing data. The
worksheet reports the estimated impurity in the lot as
0.22%, and the associated 95% upper confidence limit
is 0.33% for the lot; this 95% upper confidence limit
gives an indication of the uncertainty of the result.

The measurement CV and flour sub-sampling
variability obtained from these sample results can be
transferred to the Quant Plan Design worksheet by
clicking on the ‘Quant. Plan Design’ button shown in
Fig. 4. Note again that our strong recommendation is
to use specific experiments based on spiked pools with
appropriate and known levels of AP to estimate the
variance components, rather than to rely on estimation
of variance parameters from unknown samples; when
unknown samples are used, there is no way to be sure
the variance parameters would be appropriate for the
levels of AP appropriate for a given testing strategy.
With these two variability estimates, a testing plan can
be designed with the following additional criteria:
LQL ¼ 1%, AQL ¼ 0.25%, pool size ¼ 3000, number
of flour subsamples ¼ 1, and number of measure-
ments per flour subsample ¼ 2. The ‘Find Plan’
button can be selected along with the ‘Fixed Pool Size’
option and the testing plan shown in Fig. 2 is the
result. Note that the consumer and producer
confidence targets are met with the testing plan. If
this testing plan is deemed reasonable, it can be
transferred to the Compare Plans worksheet, as shown
in Fig. 3, by clicking the ‘Transfer’ button in Fig. 2. If
the testing plan designed in Fig. 2 is considered
unreasonable because of the issue of inappropriate
laboratory variability estimates, larger variance esti-
mates can be considered to assess how the testing plan
is impacted or changes. Note that in Fig. 3, with a
measurement CV of 30%, the testing plan does not
meet the target consumer confidence requirement of
95% at the LQL (consumer confidence level at LQL
¼ 87.75%).

The confidence limits on the true lot impurity
given in Fig. 4 are generally of primary interest. As
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stated earlier, these confidence limits are partially a
function of the sampling variability. In some instances,
we may have an interest in calculating confidence
limits that include lab variability, but exclude
sampling variability. For example, in a laboratory
proficiency test where blind samples are distributed,
an estimate and confidence interval of the true value
in the sample would be of interest. In this case, the
sampling variability would not be included in the
confidence interval if the entire sample were ground
for analysis. Note that in this case, inferences can only
be made to the true value in the sample. These
confidence intervals, which exclude sampling varia-
bility, can be obtained in the Quant Impurity
Estimation sheet (bottom of Fig. 4) by checking the
box ‘Displaying confidence intervals without
sampling variability’ on the left side of the sheet.

Discussion

The methods presented in this paper provide a useful
extension to the present lot acceptance sampling
methods when a quantitative assay is used. These
methods can be used to design testing plans to
evaluate lot purity; in particular, we focus on the
application of testing for AP. Importantly, these
methods are consistent with methods that have been
developed for qualitative assays; the same general
concepts and terminology apply for the two
approaches. When quantitative assay methods are
used, assessment of the variation from different
sources is an important step. This assessment is
done through a classical linear modelling framework;
variance components are estimated and are then
incorporated into the reject/accept criteria for
seed/grain lots. As variation is laboratory and assay
dependent, it is important to obtain estimates of
variation for a given laboratory and assay prior to
relying on a particular testing plan. Other factors that
may affect testing plan validity through the accuracy
of the variance estimates are the number of kernels in
a given pool and the true AP in the lot; when
developing testing plans, it is important to obtain
variance estimates for appropriate ranges of these

factors. Finally, we note that the methods presented
here are an area of ongoing research. For example, we
are investigating statistical methods for improving
and incorporating the relationship between the AP
level and the measurement variance (s2

measurement)
directly into testing plan calculations.
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