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Glycerol is the conventional substrate
for 1,3-PDO production, nevertheless,
efforts towards development of alter-
native, non-natural routes of 1,3-PDO
synthesis have been pursued. In gen-
eral, three different strategies can be
adopted: i) engineering natural 1,3-
PDO producers, to endow them with
the ability to produce glycerol from
glucose; ii) extending the glycerol
synthesis pathway towards 1,3-PDO
production in good glycerol-produc-
ers; iii) establishment of the whole
pathway from glucose to 1,3-PDO in
microbes that possess neither of these
traits. Until now, 1,3-PDO synthesis
was accomplished through heterolo-
gous expression of two panels of
genes involved in glucose-to-glycerol
and glycerol-to-1,3-PDO bioconver-
sion (Figure 1).

The first strategy, engineering nat-
ural 1,3-PDO producers, to endow them
with the ability to produce glycerol

from glucose, is the least explored one.
Production of 1,3-PDO from sugar
could be accomplished in native 
1,3-PDO producers by expression of
glycerol-3-phosphate phosphatase
(G3PdeP), which diverts intermedi-
ates of central carbon metabolism to-
wards glycerol production. To date,
however, no significant progress in-
volving the strategy to express
G3PdeP in native 1,3-PDO producers
has been reported. On the other hand,
several articles on extending the glyc-
erol synthesis pathway towards 1,3-
PDO production in good glycerol-pro-
ducers have been published [2–7].
Saccharomyces cerevisiae strains
harboring enterobacterial genes in-
volved in 1,3-PDO formation could
produce 1,3-PDO at relatively low
titers (0.4 g/L [2], 1.2 g/L [3]). Non-con-
ventional yeasts, Hansenula polymor-
pha and Zygosaccharomyces rouxii,
also served as hosts for the 1,3-PDO-

synthesis genes from Klebsiella pneu-
moniae, resulting in recombinant
strains capable of 1,3-PDO formation
through the native glycerol intermedi-
ate, with the final titer of 2.4  g/L  [4]
and 17.1  g/L  [5], respectively. The
most notable achievement in biotech-
nological 1,3-PDO production from
glucose was reported by DuPont and
Genencor [6] and falls into the third
category, i.e. establishment of the
whole pathway from glucose to 1,3-
PDO in microbes that possess neither
of these traits. The successful meta-
bolic engineering strategy, resulting
in 135  g/L of 1,3-PDO, included i.a.
overexpression of heterologous genes
(glucose–glycerol–1,3-PDO), re-direc-
tion of carbon fluxes, and modification
of the glucose transportation system.
The final engineered Escherichia coli
strain now operates in a commercial
process [6]. The strategy by DuPont
and Genencor was later partially fol-
lowed by Liang et al. [7], resulting in a
recombinant E. coli strain, expressing
the heterologous genes, able to syn-
thesize 1,3-PDO from glucose at a titer
of 12.1 g/L.

The current report by An-Ping
Zeng and co-workers [1] presents a
completely new strategy of genetic
engineering for microbial 1,3-PDO
production. The concept relies on
channeling the carbon flux from glu-
cose through the homoserine synthe-
sis pathway towards 1,3-PDO forma-
tion via three heterologous enzymatic
activities. Importantly, as no natural
enzyme is able to catalyze the first re-
action of homoserine deamination 

A number of inventive genetic and metabolic engineering strategies towards
improved 1,3-propanediol (1,3-PDO) production have been reported to date.
So far, all of the strategies relied on bioconversion of glycerol. Either glycerol
has been used as a primary substrate in the culture medium, or glycerol was
an intermediate in a synthetic pathway leading from glucose to 1,3-PDO. The
article by Chen et al. [1] in this issue of Biotechnology Journal constitutes a par-
adigm shift in our understanding of microbial 1,3-PDO production. The au-
thors constructed a fully glycerol-independent pathway of 1,3-PDO synthesis
from glucose by recruiting native metabolites of central carbon and nitrogen
metabolism. The connection between the native and heterologous parts was
secured by an engineered protein with modified characteristics, which consti-
tutes a substantial added value of this contribution. The paper illustrates an
excellent example of a successful synthetic biology approach with application
in industrial biotechnology.
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to generate 4-hydroxy-2-ketobutyrate,
the authors engineered glutamate de-
hydrogenase and changed its sub-
strate specificity. The novelty of this
report [1] lies in the establishment of a
new operable pathway for 1,3-PDO
synthesis with full independence from
glycerol, but also without requirement
for Co-B12 or SAM cofactors (essential
for glycerol dehydratase activity,
GDHt, involved the native pathway).
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As the authors mentioned, at this mo-
ment the manuscript constitutes a
“proof-of-concept”, due to a relatively
low 1,3-PDO titer (51.5 ± 4.9mg/L) and
requirement for external homoserine
addition, but definitely it is an original
and valuable contribution with great
potential for further development.
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Figure 1. General strategies followed for establishment of glucose-to-1,3-PDO pathway. The framed and col-

ored part of the pathway is the one modified in the respective strategy. Abbreviations: metabolites and path-

ways: 3-HPA – 3-hydroxypropionaldehyde, 1,3-PDO – 1,3-propanediol, DHA – dihydroxyacetone, DHAP – di-

hydroxyacetone phosphate, G3P – glycerol-3-phosphate, TCA – tricarboxylic acid cycle, 4-HOx-2-kBUTYRATE

– 4-hydroxy-2-ketobutyrate; enzymes (provided in italics): GDHt – glycerol dehydratase (most frequently used

dhaB1-4 genes from K  pneumoniae), PDOR – 1,3-propanediol oxidoreductase (most frequently used dhaT

gene from K. pneumoniae or yqhD from E. coli), G3PdeP – glycerol-3-phosphate phosphatase from S. cerevisi-

ae, G3Pdh – glycerol-3-phosphate dehydrogenase from S. cerevisiae, *GDH – engineered glutamate dehydro-

genase, PDC – pyruvate decarboxylase from Zymomonas mobilis. 
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