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The emerging impact of cell-free
 chemical biosynthesis
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Biomanufacturing has emerged as a promising alternative to

chemocatalysis for green, renewable, complex synthesis of

biofuels, medicines, and fine chemicals. Cell-free chemical

biosynthesis offers additional advantages over in vivo

production, enabling plug-and-play assembly of separately

produced enzymes into an optimal cascade, versatile reaction

conditions, and direct access to the reaction environment. In

order for these advantages to be realized on the larger scale of

industry, strategies are needed to reduce costs of biocatalyst

generation, improve biocatalyst stability, and enable

economically sustainable continuous cascade operation. Here

we overview the advantages and remaining challenges of

applying cell-free chemical biosynthesis for commodity

production, and discuss recent advances in cascade

engineering, enzyme immobilization, and enzyme

encapsulation which constitute important steps towards

addressing these challenges.
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Introduction
Biomanufacturing presents a renewable alternative to

petroleum-based chemocatalysis for commodity produc-

tion. In contrast to conventional industrial manufacturing,

living cells utilize serially organized enzymatic cascades

to drive many vital physiological processes. Such enzyme

cascades are a compelling means for biomanufacturing, as

they are: (1) highly selective and specific, (2) biodegrad-

able and non-toxic, and (3) optimized to function at

similar conditions, minimizing unit ops and the need

for intermediate purification. Harnessing these strengths,

microbial cells with engineered pathways have been

applied towards pharmaceutical and fine chemical
www.sciencedirect.com
manufacturing [1–3]. Despite these successes, it is still

challenging to engineer and optimize synthetic pathways

in live cells. In particular, mass transfer and pathway

optimization are constrained by cell membranes and

intracellular processes [4–6]. A promising alternative is

‘cell-free’ chemical biosynthesis (CFCB) for biomanufac-

turing, which seeks to exploit the advantages of whole-

cells outside of the constraints of live cells.

In CFCB, enzymes and cofactor components are assem-

bled and optimized towards enzymatic pathways with

great engineering freedom, thanks to the absence of cell

membranes and cellular processes. Such in vitro networks
have been used to produce a variety of products, such as

hydrogen [5,7], electricity [8], medicines [9,10], and fine

chemicals [9]. Several excellent reviews have discussed

cell-free metabolic engineering and its many applications

[6,11–13]. Here we present an overview of CFCB as a

platform for industrial chemical biosynthesis, discussing

its advantages, challenges and current applications.

Advantages of CFCB
As a chemical production platform, CFCB provides sev-

eral key advantages over in vivo synthesis, including (1)

facile plug-and-play cascade assembly, (2) versatile reac-

tion conditions, and (3) direct access to the reaction

environment for monitoring, manipulation, and mainte-

nance, as depicted in Figure 1.

Plug-and-play assembly

The CFCB system simplifies cascade production because

each enzyme can be produced separately using various

hosts and growth conditions, simplifying the optimization

of overall biocatalyst production efficiency [14]. Thereaf-

ter, enzyme concentrations and combinations can be

screened in a modular and high throughput manner

[15,16], improving yield and overall titers [16].

These optimized designs can then be scaled up to larger

production volumes with minimal re-optimization, as

demonstrated recently [17]. Individual enzyme building

blocks can also be grouped into modules with known

functions, which can be mixed and matched to produce a

variety of products [8,18]. Recently, crude lysates have

been demonstrated as a useful tool in cascade design

[11,19��], enabling rapid iteration through design-build-

test cycles by eliminating enzyme purification and allow-

ing biocatalyst synthesis from linear PCR templates

[19��,20,21]. Finally, the simpler, more linear setup of

CFCB promises simpler computational modeling,
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Advantages and challenges of cell-free chemical biosynthesis. Advantages include (1) plug-and-play cascade assembly for construction and

optimization of novel cascades, (2) versatile reaction conditions due to the absence of cell viability constraints, and (3) direct access for monitoring

and manipulation of the reaction environment. Challenges include (1) cost-effective biocatalyst production, (2) improving enzyme stability, and (3)

enabling economically sustainable cascade operation through cofactor and biocatalyst recycling.
broadening the potential for computational design of

cascades [5,7,22,23].

Versatile reaction conditions

A primary challenge of in vivo biomanufacturing is the

balance between product synthesis and the constraints of

cellular viability. These constraints introduce two pri-

mary limitations: (1) a portion of the energy suppliedmust

be used in cellular growth and metabolism, reducing

system efficiency, and (2) the scope of acceptable reaction

conditions is restricted to environments tolerated by the

cell, limiting solvent options, ionic strength, titers of toxic

products or intermediates, and reaction temperatures.

Because CFCB eliminates the constraints of cellular

viability, CFCB expands available reaction conditions
Current Opinion in Biotechnology 2018, 53:115–121
[24–26], enables high reaction rates [8], and allows higher

titers of some products and intermediates [9,16,27��],
providing greater opportunity for cascade optimization.

For example, a CFCB process enabled saccharification of

chitin to pyruvate at a higher optimal temperature of

70 �C, which is difficult to achieve in vivo [24]. Similarly,

the absence of cellular toxicity and crossover with native

metabolism recently allowed CFCB processes to exceed

in vivo titers of various monoterpenes [27��] and fructose

1,6-diphosphate [9].

Direct access to reaction environment

The absence of cell walls in CFCB also eliminates many

transport limitations. This enables greater control over

the reaction environment and more affordable product
www.sciencedirect.com
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purification [16], and is especially advantageous for

products with low secretion rates [9]. In addition, this

facilitates continuous product removal, which improves

yields of cascades that cannot accommodate an irrevers-

ible last reaction step. The open environment of CFCB

also facilitates continuous replenishment of cofactors,

for example through the application of continuous

exchange cell-free synthesis formats [28,29] or through

various cofactor replenishment strategies (Figure 2)

[9,10,15,16,24,27��,30]. Longer reactions enabled by

these strategies increase yields and with continued opti-

mization could enable continuous reaction operation,

which would be economically advantageous for chemical

production.

Absence of a cell wall also allows for innovative optimi-

zation strategies [19��,31,32��,33]. For example, the

kinetics of the reaction can be characterized through

manipulation of various inputs and real-time measure-

ment of the outputs [32��]. Cofactor concentrations can
Figure 2
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also be manipulated towards an optimal concentration

[19��]. Direct access to the reaction environment could

also improve controllability of the process in industrial

applications, as enzymes could be added or removed to

eliminate buildup of intermediates or unwanted side

products.

Lastly, the open format of CFCB provides opportunities

for on-demand synthesis through lyophilization and rehy-

dration of the system on-site [19��,34,35]. Crude lysates

systems can also enable on-demand pathway activation

through cell-free synthesis of a key cascade enzyme [20].

Challenges and relevant advances in CFCB
Despite the advantages of CFCB for industrial chemical

production, its application in industry hinges on solutions

to several key challenges: (1) cost-effective generation of

biocatalysts, (2) stabilization of enzyme building blocks

for long-term use, and (3) economically sustainable cas-

cade operation, as depicted in Figure 1.
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eactions. (a) Enzymes can be added into a cascade to recycle

ate and glucose. (b) Enzymatic cascades can be designed to avoid

groups directly from low-cost sources such as maltodextrin and

lower-cost biomimetic cofactors, such as P2NA+/P2NAH, or to

cascade. (d) Crude lysates provide inherent machinery for cofactor

e enzymatic cascade.
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Cost-effective production of biocatalysts

Purified enzymes are often the highest contributor to

biomanufacturing cost [13]. This cost has partially been

mitigated by efficient purification procedures, such as

one-step immobilization and affinity tag purification

[16,36,37], made even simpler by usingmagnetic supports

[37].

One approach which is gaining momentum is the use of

thermophilic enzymes in CFCB cascades to allow purifi-

cation of target enzymes by simple heat precipitation.

Heat treatment simultaneously lyses the host cells and

denatures endogenous enzymes. Using this approach,

thermophilic cascades have been designed to produce a

variety of important products and intermediates such as

pyruvate [24], fructose 1,6-diphosphate [9], glutathione

[16], and myo-inositol [17] from low-cost substrates such

as chitin [24] and maltodextrin [9,17]. However, this

approach is limited by the scope of known thermophilic

enzymes.

Another approach involves in vivo encapsulation of

enzymes into synthetic vesicles such as virus-like parti-

cles (VLPs), which can then be purified based on their

larger size [38�]. This approach could be used to sepa-

rately generate multiple purified, encapsulated enzyme

‘modules’ at low-cost which could be combined in one pot

to synthesize different products, provided that the syn-

thetic vesicle can accommodate incoming and outgoing

substrates, intermediates, and products.

The simplest approach uses crude lysates for CFCB,

eliminating enzyme purification from cascade assembly.

In this method, crude lysates overexpressing different

enzymes can be produced in parallel and mixed to con-

stitute a new optimized pathway [11,19��,20]. This

approach demonstrates that high enzyme purity is not

necessary for CFCB, indeed, maintenance of cellular

pathways for cofactor regeneration may even be benefi-

cial. However, additional engineering may be required to

prevent diversion of energy and intermediates into other

enzymatic pathways present in the crude lysate.

Stabilizing enzymes for long-term use

Degradation of enzymes by proteases, heat or harsh

solvents causes loss of enzyme activity and necessitates

replacement, increasing the cost of CFCB. In addition to

promoting long-term enzyme use, enhanced enzyme

stability can broaden the scope of CFCB. For example,

it can enable high-temperature reactions for breakdown

of cellulosic feedstocks [39�], or use of volatile solvents

[10] for simpler downstream purifications. Various meth-

ods have been employed in order to stabilize enzymes for

continuous use and diverse reaction conditions. Conve-

niently, the same approaches that simplify biocatalyst

purification, as described above, are the predominant

methods for stabilizing enzymes: (1) application and
Current Opinion in Biotechnology 2018, 53:115–121
engineering of thermostable enzymes, (2) immobiliza-

tion, and (3) encapsulation.

Thermophilic enzymes are often robust against high

temperatures, detergents and solvents [30], making them

a promising starting point for engineering stable cascades

[9,16,17,24,30]. However, there may not be known ther-

mophilic enzymes for a desired cascade, necessitating

additional approaches. One strategy is to engineer ther-

mally stable enzymes using computational methods and

high-throughput experimental screening using

approaches such as directed evolution. Coupling these

two approaches recently led to engineering of a thermo-

stable keto acid decarboxylase [39�]. As computational

models of protein stability continue to improve, rational

engineering of enzymes with improved stability will

become increasingly more feasible.

Immobilization is a well-established method for stabiliz-

ing proteins and is highly applicable to CFCB. As other

reviews have recently discussed major immobilization

techniques [40], here we will only briefly discuss

advances in immobilization. Immobilization to solid sur-

faces or nanoparticles [41] or to other enzymes in cross-

linked enzyme aggregates (CLEAs) [42] can significantly

improve thermal, pH, and storage stability. However,

preserving enzyme activity through the immobilization

can be challenging; harsh conditions needed for some

immobilization reactions can denature enzymes [43], and

natural amino acids in enzymes afford insufficient control

over conjugation site for optimizing stabilization and

accessibility. As a promising alternative, unnatural amino

acids have recently been utilized to immobilize enzymes

with remarkable control over conjugation site and active-

site orientation [44], which can both be rapidly optimized

through lysate-based screening systems [45]. This

approach could also be applied towards polymer conju-

gation, which has also been demonstrated to stabilize

proteins [46,47].

Another promising method of stabilizing enzymatic cas-

cades is enzyme encapsulation. Enzymes can be encap-

sulated in a variety of structures, including VLPs [38�],
hydrogels [48,49], metal organic frameworks (MOFs)

[50�,51�], and DNA cages [52]. Encapsulation in these

structures stabilizes the enzymes against proteases

[38�,52], heat [38�,48,50�], pH [38�,49], organic solvents,

and other denaturants [38�,50�]. Two particularly prom-

ising approaches are encapsulation in VLPs and MOFs.

Virus capsids self-assemble, simplifying encapsulation,

and can protect their enzymatic cargo in a wide variety

of environments [38�]. The highly tunable structures of

MOFs can be adapted to optimize the structure to the

desired enzymes [50�,51�].

Each of the above strategies shows promise, but can also

increase the cost of biocatalyst production through
www.sciencedirect.com



The emerging impact of cell-free chemical biosynthesis Wilding et al. 119
additional materials and preparation steps. Therefore,

continued efforts are necessary to allow maximum impact

of stabilizing alterations while minimizing production

costs and negative effects on specific activity.

Economically sustainable continuous cascade operation

An attractive aspect of CFCB for industrial production is

the potential for continuous operation, which allows high

yields and minimizes down-time of process equipment.

For such a process to be economical, however, pathways

must run independent of costly cofactor supplementa-

tion, allow for facile retention and reuse of cascade

enzymes, and synthesize sufficiently high product yields

from low-cost sources.

While continuous exchange is effective at producing

high yields of proteins, continuous addition of cofactors

is expensive and can lead to changes in the redox

potential of the reaction. Recently, efforts to address

the challenge of cofactor depletion have centered on

cofactor balance and regeneration through thoughtful

cascade design. Some of the main approaches are

depicted in Figure 2. One approach is to include addi-

tional enzymes in the cascade to recycle cofactors

[10,24,30] or to regenerate cofactors such as ATP

[16,27��], NAD+/NADH [15,27��], NADP+/NADPH

[15,24,27��], and CoA [15,27��], using low-cost phos-

phate sources [16,24,30] and energy sources [15,27��].
Some of these pathways have been engineered to func-

tion at high temperatures [9,16,24,30] in order to facili-

tate optimal CFCB product yield. Another promising

future option for cofactor regeneration involves harnes-

sing energy from light [53]. Cascade pathways can also

be designed to avoid certain cofactors. For example,

pathways have been designed to avoid using ATP by

directly utilizing bond energy and phosphate groups

from low-cost sources such as maltodextrin [9] and

polyphosphates [8,9]. Alternatively, pathways can avoid

dependence on natural cofactors by engineering

enzymes to use cheaper biomimetic cofactors such as

MNAH, BNAH, or P2NAH, which can also be regen-

erated via enzymatic pathways [54]. Another strategy is

to engineer some enzymes in a pathway to prefer one

cofactor over another in order to balance cofactor turn-

over [55]. Recent work using crude-lysates for CFCB has

also demonstrated that these systems can regenerate

cofactors using the host cell’s inherent machinery

[19��,20]. This approach is significantly less common,

but coupled with the advantages for cascade assembly,

may prove to be an important asset for CFCB processes

in the future.

The challenge of biocatalyst retention and recycling can

be addressed through immobilization and encapsulation.

While these same methods also conveniently simplify

biocatalyst generation and improve biocatalyst stability

as described above, biocatalyst recovery and reuse
www.sciencedirect.com
is arguably the most impactful application for these

technologies. For example, immobilization to magnetic

particles [41,56] or encapsulation in magneticMOFs [51�]
greatly simplifies enzyme recovery. DNA tethers as a

means of immobilization [56] also provides a facile

method for enzyme replacement via strand displacement,

enabling reuse of immobilization supports.

Immobilization and encapsulation can also simulta-

neously improve product yields by improving substrate

channeling and increasing enzyme specific activities

[41,52]. For example, immobilization to DNA structures

affords close control of enzyme proximity [55], cascade

geometry [57], and cofactor access [58] in order to opti-

mize flux through the desired pathway. Encapsulation can

improve pathway flux via compartmentalization [59],

which can be further refined using MOFs by optimizing

the spatial organization of the various enzymes within the

MOF [51�]. Other promising methods to improve product

yield and reduce side products include engineering the

system around the rate-limiting step [15] and ‘metabolic

proofreading’ to recycle unwanted side products [14,15].

Additionally, cascades have been implemented to use

low-cost feedstocks such as glucose [20,60], sucrose [61],

chitin [24], xylose [62], and maltodextrin [17] for

improved economics.

Current progress in the areas of cofactor regeneration,

enzyme recovery, and substrate channeling represent

important steps towards implementing continuous CFCB

cascades, however additional work is needed. Specifically,

additional engineering is necessary for the application of

these approaches to longer, more complex cascades, par-

ticularly in the areas of enzyme reuse and substrate

channeling where work has focused primarily on small

cascades of 2 or 3 enzymes.

Conclusions and future directions
Cell-free chemical biosynthesis provides modularity, flex-

ibility and control for cascade design and optimization,

towards the manufacturing of commodity chemicals from

inexpensive feedstocks. However, to realize such poten-

tial, the approach still needs to reduce cost of biocatalyst

generation, improve enzyme stability, and enable cost-

effective continuous cascade operation. Promising solu-

tions include rational engineering of thermostable

enzymes, and precise immobilization and encapsulation

strategies. Further progress in the areas of computational

modeling may also provide valuable tools for de novo
design of efficient CFCB pathways and effectively stabi-

lized enzymatic components.
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