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Abstract
Background: Lignin is a phenolic heteropolymer in secondary cell walls that plays a major role in
the development of plants and their defense against pathogens. The biosynthesis of monolignols,
which represent the main component of lignin involves many enzymes. The cinnamyl alcohol
dehydrogenase (CAD) is a key enzyme in lignin biosynthesis as it catalyzes the final step in the
synthesis of monolignols. The CAD gene family has been studied in Arabidopsis thaliana, Oryza sativa
and partially in Populus. This is the first comprehensive study on the CAD gene family in woody
plants including genome organization, gene structure, phylogeny across land plant lineages, and
expression profiling in Populus.

Results: The phylogenetic analyses showed that CAD genes fall into three main classes (clades),
one of which is represented by CAD sequences from gymnosperms and angiosperms. The other
two clades are represented by sequences only from angiosperms. All Populus CAD genes, except
PoptrCAD 4 are distributed in Class II and Class III. CAD genes associated with xylem development
(PoptrCAD 4 and PoptrCAD 10) belong to Class I and Class II. Most of the CAD genes are physically
distributed on duplicated blocks and are still in conserved locations on the homeologous duplicated
blocks. Promoter analysis of CAD genes revealed several motifs involved in gene expression
modulation under various biological and physiological processes. The CAD genes showed different
expression patterns in poplar with only two genes preferentially expressed in xylem tissues during
lignin biosynthesis.

Conclusion: The phylogeny of CAD genes suggests that the radiation of this gene family may have
occurred in the early ancestry of angiosperms. Gene distribution on the chromosomes of Populus
showed that both large scale and tandem duplications contributed significantly to the CAD gene
family expansion. The duplication of several CAD genes seems to be associated with a genome
duplication event that happened in the ancestor of Salicaceae. Phylogenetic analyses associated with
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expression profiling and results from previous studies suggest that CAD genes involved in wood
development belong to Class I and Class II. The other CAD genes from Class II and Class III may
function in plant tissues under biotic stresses. The conservation of most duplicated CAD genes, the
differential distribution of motifs in their promoter regions, and the divergence of their expression
profiles in various tissues of Populus plants indicate that genes in the CAD family have evolved
tissue-specialized expression profiles and may have divergent functions.

Background
Lignin is a phenolic heteropolymer that provides plant
cells with structural rigidity, a barrier against insects and
other pestilent species, and hydrophobicity [1-4]. Its role
in hydrophobicity helps xylem cells facilitate the conduc-
tion of water and minerals throughout the plant [5].
Lignin is the second most abundant plant molecule on
earth next to cellulose and comprises approximately 35%
of the dry matter of wood in some tree species [6]. The
composition of lignin consists of various phenylpropa-
noids, predominantly the monolignols p-coumaryl, con-
iferyl, and sinapyl alcohols. Lignin varies in content and
composition between gymnosperms and angiosperms. In
gymnosperms, lignin contains guaiacyl subunits (G units)
and p-hydroxyphenyl units (H units) polymerized from
coniferyl alcohol and from p-coumaryl alcohol respec-
tively. Lignin in angiosperms comprises, in addition to G-
units and some H-units [7], syringyl units (or S-units)
polymerized from sinapyl alcohol. However, there are
exceptions found within each group [7] and variation in
lignin composition can even occur between cell types
within the same plant.

The monolignol biosynthetic pathway involves many
intermediates and enzymes [8]. The first step in the proc-
ess consists of a deamination of phenylalanine by the phe-
nylalanine ammonia-lyase (PAL) [9,10] that produces
cinnamic acid. Cinnamic acid is then hydroxylated by the
enzyme cinnamate-4-hydroxylase (C4H) producing p-
coumaric acid [11], which is in turn activated by 4-couma-
rate:CoA ligase (4CL) to produce p-coumaroyl-CoA
[12,13]. This product is processed by cinnamoyl-CoA
reductase (CCR) to coniferaldehyde, which in turn is con-
verted to coniferyl alcohol by the action of CAD. p-cou-
maroyl-CoA can also be transformed to p-coumaroyl-CoA
shikimate by the action of hydroxycinamoyl transferase
(HCT). p-coumaroyl-CoA shikimate proceeds through a
series of transformations into caffeoyl shikimate, caffeoyl-
CoA, feruloyl CoA, and coniferaldehyde by the action of
the enzymes p-coumarate 3-hydrolase (C3H), HCT, caffe-
oyl-CoA O-methyltransferase (CCOMT), and cinnamoyl
CoA reductase (CCR), respectively. Coniferaldehyde can
be transformed to coniferyl alcohol by the action of CAD
or lead to 5-Hydroxy- coniferaldehyde and sinapyl alde-
hyde under the action of ferulate 5-hydrolase (F5H) and
caffeic/5-hydroxyferulic acid O-methyltransferase

(COMT). The sinapyl alcohol is produced either from
sinapyl aldehyde by CAD or from coniferyl alcohol by
F5H and COMT. It has also been reported that the synthe-
sis of sinapyl alcohol can be catalyzed by sinapyl alcohol
dehydrogenase (SAD) [14]. However, recent studies
[15,16] did not find any detectable sinapyl alcohol dehy-
drogenase activity in Arabidopsis and Oryza indicating that
the same CAD gene products can synthesize both con-
iferyl and sinapyl alcohols.

Because of its economic importance and biological role in
various developmental and defense processes, the func-
tion of lignin biosynthesis related genes has been well
studied in various plants [17,18]. Down-regulation of
genes involved in the early steps of the monolignol syn-
thesis pathway can lead to a reduction in lignin biosynthe-
sis [17]. However, altered expression of CAD genes in
various plants resulted in only slight variations in lignin
content [19-23]. This is mainly due to the incorporation
of other phenolic products that compensate for mono-
lignols in lignin as well as the compensation by other
members of the CAD gene family. A significant reduction
of lignin was detected in natural CAD mutants in Pinus
(5%) and the bm2, bm3, and bm4 mutants in maize (20%)
[24,25]. The gene underlying the bm1 mutant in maize is
not a CAD gene, however, and may encode a regulator of
several CAD genes. Down-regulating the expression of
CAD genes in Nicotiana tabacum, Populus, and Pinus
showed no gross morphological variations but CAD defi-
cient plants were enriched in coniferyl aldehyde and
sinapyl aldehyde [24,26,27]. The accumulation of the
aldehyde molecules is responsible for the red-brown color
in the stems of natural and induced CAD mutants in Pop-
ulus, Zea, Oryza, and Pinus [15,16,24,25]. A recent study in
Arabidopsis showed that double mutants in the two major
CAD genes associated with lignin biosynthesis (AtCAD_C
and AtCAD_D named AtCAD4 and AtCAD5) present pros-
trate stems because of the weakness of the vasculature
[15]. A reduction in the size and the diameter of the stems
was also observed in the double mutant plants. Beside its
role in plant development, CAD also seems to play a key
role in plant defense against abiotic and biotic stresses
[1,28,29].

CAD proteins are encoded by a gene family in plants
[29,30]. Complete sets of CAD genes and CAD-like genes
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have been previously identified in the genomes of model
species (Arabidopsis, Oryza, and Populus) and partially
from expressed sequences of non-model plants. In Arabi-
dopsis, CAD exists as a multigene family consisting of nine
genes (AtCAD1 to AtCAD9) [31,32]. Although all nine
have been classified as CAD genes based on their pre-
dicted protein sequences, only CAD-C (AtCAD5) and
CAD-D (AtCAD4) have been shown to have major roles in
lignin synthesis in Arabidopsis [32,33]. AtCAD7 and
AtCAD8 may also be involved to some extent in lignin
biosynthesis [33]. AtCAD2, AtCAD3, AtCAD6, and
AtCAD9 appear to encode mannitol dehydrogenases. A
double mutation of AtCAD2 and AtCAD6 led to an over-
expression of AtCAD1 (AtCAD7) suggesting a compensa-
tion between some CAD genes [34]. In Oryza, 12 CAD
genes have been reported [16].

Phylogenetic analysis [29,35] of the predicted amino acid
sequences of CAD genes in Arabidopsis has shown that
CAD is organized into three classes with gymnosperm
sequences clustering in a separate group [29]. On the con-
trary, another study [30] showed that CAD genes were dis-
tributed in two classes both containing monocot and
eudicot genes. The contradictory results obtained in these
two studies were obtained using a limited set of genes and
were not conclusive.

In this study we retrieved and compared CAD sequences
from a wide variety of plants, making full use of the avail-
able plant genome sequences (Arabidopsis, Oryza, Populus,
Medicago, and Vitis) as well as expressed sequence data-
bases for species of basal angiosperms, gymnosperms, and
mosses. This dataset was used to analyze the phylogeny of
the CAD gene family. We also analyzed the organization,
the structure, and the expression of CAD genes in Populus.
This provided insight into the evolution of their structure
and function as well as mechanisms that contributed to
gene duplications.

Results
CAD gene family organization
In model species for which the genome is completely
sequenced, 71 CAD genes have been identified to date
(see Additional file 1): 9 in Arabidopsis [36], 12 in Oryza
[30], 15 in Populus (this study), 18 in Vitis (this study),
and 17 in Medicago (this study). Furthermore, we identi-
fied 54 more CAD genes in 31 other species, which
include a variety of eudicots, monocots, basal
angiosperms, and gymnosperms. Additional file 1
includes the list of these CAD gene names based on the
standard established by the International Populus Genome
Consortium (IPGC)[35] with the names of species (Poptr
for Populus trichocarpa for example), the protein name
(CAD), and a designation of family and clade member-
ships derived from this study. Additional file 1 also pro-

vides the accession number and database source for each
gene.

Analysis of the physical gene distribution in the Arabidop-
sis and Populus genomes showed that most CAD genes
were located on duplicated blocks. In Arabidopsis only one
gene (AtCAD5) is not located on duplicated chromo-
somal blocks. Almost all of the genes are still in conserved
positions within the duplicated blocks. In Populus, we
found 14 of the 15 CAD genes distributed on duplicated
regions. The Populus CAD genes were distributed on seven
chromosomes with chromosomes I, IX, and XVI having
three or more genes each (Fig. 1). PoptrCAD9 was located
on a scaffold not yet assigned to a chromosome (see Addi-
tional file 1). Homologous pairs from the nine duplicated
genes (PoptrCAD6, PoptrCAD11, PoptrCAD3, PoptrCAD4,
PoptrCAD15, PoptrCAD16, PoptrCAD8, PoptrCAD2, and
PoptrCAD5) remain in conserved positions on homeolo-
gous duplicated blocks. Duplicates of PoptrCAD1,
PoptrCAD12, PoptrCAD7, and PoptrCAD14 appear to be
lost from the Populus genome by an unknown gene death
mechanism. PoptrCAD8, PoptrCAD16, and PoptrCAD15
seem to be generated via tandem duplications from one of
the genes. Only PoptrCAD13 and PoptrCAD10 were not
located on duplicated blocks.

In Oryza five CAD genes (OsCAD2, OsCAD9, OsCAD10,
OsCAD11, and OsCAD8) were located on duplicated seg-
ments. Four CAD genes in rice (OsCAD8A, OsCAD8B,
OsCAD8C, and OsCAD8D) were distributed one after the
other at the same locus [30] indicating a possible tandem
duplication origin.

Intron-exon structure of CAD genes
Gene structure analysis of Populus CAD genes (Fig. 2)
revealed the existence of three patterns of intron-exon
structures. Pattern 1 (PoptrCAD5, PoptrCAD10,
PoptrCAD3, PoptrCAD9, PoptrCAD1, PoptrCAD13,
PoptrCAD8, PoptrCAD6, PoptrCAD15, and PoptrCAD16),
pattern 2 (PoptrCAD4), and pattern 3 (PoptrCAD2,
PoptrCAD11, PoptrCAD12, PoptrCAD14, and PoptrCAD7)
were composed by 5, 5, and 6 exons, respectively. Pattern
1 and pattern 2 present a difference in length of exon 3
and exon 4. Genes within these patterns present a similar
number and size of exons. All Populus duplicated genes
show a similar structure. PoptrCAD16 and PoptrCAD8,
which may have risen from PoptrCAD15 by tandem dupli-
cation, also showed the same structure. While the intron
length is conserved between some homeologous introns,
others exhibit a great deal of variation. The increase in
length could be due to transposable element insertions.
Homeologous duplicate pairs (PoptrCAD11 – PoptrCAD2,
PoptrCAD5 – PoptrCAD3, and PoptrCAD6 – PoptrCAD8)
genes also show similar structure between homologs (Fig.
2).
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The number of different intron/exon patterns for Populus
(this study), Oryza [30], and Arabidopsis [31] totaled three,
four, and six, respectively. Pattern 1 and pattern 3 of
intron-exon structure were common to eudicots and
monocots, while pattern 2 was found only in eudicots. It
is important to note that Oryza has the greatest number of
intron-exon structure variants even though rice has fewer
CAD genes than Populus and apparently less overall chro-
mosomal duplications.

Promoter sequence analysis
Analysis of promoter sequences of the Populus CAD genes
allowed us to identify several motifs that are known to be
involved in the regulation of gene expression in various
developmental and physiological processes (Table 1 and
see Additional file 2). Some of those motifs interact with
known regulators of genes involved in lignin biosynthesis
such as Myb and Zinc finger genes [37]. The other motifs
are involved in the response to various hormones
involved in responses to biotic and abiotic stresses such as
auxin, ethylene, abscisic acid (ABA), salicylic acid, and
Methyl Jasmonate (MeJA) (Brill et al., 1999; Mur et al.,

1996; Yasuda et al., 2008; Lawrence et al., 2006).
PoptrCAD4 and PoptrCAD10, which are both preferen-
tially expressed in xylem, possess transcription factor
binding motifs involved in development and in response
to various stresses, but showed some differences in their
sets of motifs and in the distribution of the motifs in their
promoter regions. For instance, PoptrCAD4 has motifs
involved in response to ABA, stress, MeJA, wounding, and
light. Unlike PoptrCAD4, PoptrCAD10 has motifs that bind
to Myb and zinc finger proteins or are involved in
response to auxin. Some CAD genes such as PoptrCAD1,
PoptrCAD2, PoptrCAD10, and PoptrCAD11 possess pro-
moter motifs involved in the response to fungal elicitors.
Other genes (PoptrCAD2, PoptrCAD4, PoptrCAD5,
PoptrCAD7, PoptrCAD9, PoptrCAD10, PoptrCAD16) pos-
sess motifs involved in response to wounding, herbivore
stress, as well as other stresses.

Evolution of CAD genes
Maximum Likelihood (ML) bootstrap trees (based on nt
and AA alignments) indicate that the CAD genes of land
plants consist of three classes (Fig. 3). The distribution of

Distribution of CAD genes on Populus chromosomesFigure 1
Distribution of CAD genes on Populus chromosomes. The names of the chromosomes and their sizes (Mb) are indi-
cated below each chromosome. Segmental duplicated homeologous blocks [39] are indicated with the same color. The posi-
tion of genes is indicated with an arrowhead.
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these three classes was supported by relatively high boot-
strap values. Similar results were obtained using Neighbor
joining (NJ) phylogenetic analyses (data not shown).
Class I is represented by species from monocots, eudicots,
and gymnosperms. Class II and Class III are represented
by only sequences from angiosperms. The subdivision of
Class I in two subclades is the result of a duplication event
that happened in the ancestor of gymnosperms. The only
known basal angiosperm (Saruma henryi) CAD
(SheCAD_A) [38] is located in Class II. Class I contains the
two Arabidopsis (AtCAD5 and AtCAD4) [32] CAD genes
previously shown to be associated with lignin biosynthe-
sis. It also includes PoptrCAD4 which we found to be pref-

erentially expressed in xylem (this study). All the other
genes from Populus trichocarpa and Arabidopsis were dis-
tributed in Class II and Class III. Clustering of several
genes from monocots, eudicots, and gymnosperms sug-
gest within-species duplications.

Histochemistry of lignin deposition in P. trichocarpa 
tissues
Before analyzing the expression of CAD genes using Real
time RT-PCR, we analyzed lignin deposition patterns in
the tissues of plants by staining with phloroglucinol and
observation by light and fluorescent microscopy. The
lignin distribution pattern under UV light was similar to

Intron-exon structures of CAD genes from PopulusFigure 2
Intron-exon structures of CAD genes from Populus. Exons and introns are indicated by open boxes and lines respec-
tively. Numbers above boxes indicate the exon sizes. The intron sizes are not to scale. The names of CAD genes and intron-
exon structure are indicated at the left and right sides respectively.
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that of staining with acidified phloroglucinol, indicating
that the same tissues were lignified. In leaf tissues lignin
was detected mainly in the xylem of vascular bundles and
in schlerenchyma fibers surrounding vascular tissues (Fig.
4a, b). Petioles were lignified only in secondary cell walls
of xylem and in the extensive hypodermal band of schler-
enchyma (Fig. 4c, d). The most heavily lignified tissues
were observed in stem segments. The bark of the stem,
including phloem sieve tube cells, and parenchyma were
not lignified (Fig. 4e). In the bark, lignin was detected
only in schlerenchyma fibers at the outer part of phloem
(Fig. 4e, f). Secondary xylem with thickened secondary
cell walls showed the strongest reaction, demonstrating
large amounts of lignin distributed in the tracheary vessels
and fibers (Fig. 4g, h).

Expression analysis of Populus CAD genes
Of the 15 CAD genes found in Populus, we analyzed the
expression of 13 (see Additional file 1) in several different
tissues that were selected based on the previous histo-
chemical studies (Fig. 4). Expression analysis using quan-
titative real-time RT-PCR (Fig. 5) showed that all CAD
genes are expressed in leaves, petioles, bark and xylem,
but at different levels among the tissues. PoptrCAD7, for
example, is expressed in leaves and petioles, but presents
a very low expression in the bark and xylem. The expres-
sion patterns vary widely between genes, which were
sorted into four groups based on the expression profiles
observed in different tissues (Fig. 3). Group 1 (PoptrCAD4;
PoptrCAD10) is represented by genes strongly expressed in
xylem (lignin associated) – 100 times more highly
expressed in xylem than the other CAD genes. Statistical
analysis using the Ward linkage method showed that
group 1 is significantly different in expression from the

other three groups. One-way ANOVA analysis showed
that the expression of PoptrCAD4 and PoptrCAD10 (group
1) in the xylem was statistically different from each other
(p < 0.005) with PoptrCAD10 more expressed. Group 2
(PoptrCAD13, PoptrCAD7, PoptrCAD12) genes are
expressed in all tissues but are most highly expressed in
leaves. The group 3 (PoptrCAD9) gene is preferentially
expressed in leaves and xylem. Genes from group 4
(PoptrCAD2, PoptrCAD3, PoptrCAD5, PoptrCAD6,
PoptrCAD11, PoptrCAD14, PoptrCAD15) did not show any
significant expression differences between tissues. As indi-
cated in Fig. 3, group 1 genes are distributed in Class I and
Class II, group 2 and group 4 genes are distributed in Class
II and Class III, while gene from group 3 belong to Class
II.

Analysis of gene duplicates in Populus showed that
PoptrCAD2 and PoptrCAD11 presented similar expression
patterns in that they both did not show any significant
expression differences between tissues. Similarly,
PoptrCAD3 and PoptrCAD5 presented similar expression
profiles in the tissues analyzed.

Discussion
Organization of CAD genes in Populus
Previous studies reported the identification of complete
sets of CAD genes from the model plant species Arabidop-
sis and Oryza [29,30], along with several sequences from
non-model species [29,30,36]. Those studies [29,30,35]
reported also preliminary phylogenetic trees for CAD
genes based on a limited set of sequences mainly from
Arabidopsis, Populus, and Oryza lineages. Moreover, no
phylogenetic study including genome organization, gene
structure, phylogeny, and expression profiling has been

Table 1: List of motifs found in the promoter regions of Populus CAD genes.

Salicylic 
acid

Auxin Defense
/stress 

responsi
veness

Fungal 
elicitor

Methyl-
jasmonate

Myb 
binding

Wound Transcript
ion 

Enhancer

Zinc 
finger 

binding

Ethylene Herbivore 
defense

Abscisic 
Acid

Light 
responsi
veness

PoptrCAD1 X X X X
PoptrCAD2 X X X X
PoptrCAD3 X X X X X X X
PoptrCAD4 X X X X X X
PoptrCAD5 X X X X
PoptrCAD6 X X X X
PoptrCAD7 X X X X X X X X
PoptrCAD8 X X X X X X X
PoptrCAD9 X X X X X X
PoptrCAD10 X X X
PoptrCAD11 X X X X X
PoptrCAD12 X X X
PoptrCAD13 X X
PoptrCAD14 X X X
PoptrCAD15 X X
PoptrCAD16 X X X X X
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Maximum Likelihood bootstrap tree phylogeny based on amino acid sequences of CAD genes in various land plantsFigure 3
Maximum Likelihood bootstrap tree phylogeny based on amino acid sequences of CAD genes in various land 
plants. Numbers above branches refer to NJ bootstrap values. Brackets highlight the three classes of CAD genes. Colors indi-
cate gene groups determined based on their expression in various Populus plant tissues. Red (group 1), green (group 2), and 
blue (group 3) indicate genes preferentially expressed in xylem, leaves, as well as leaves and xylem respectively. Pink (group 4) 
represents genes that showed no preferential expression between Populus tissues.
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Lignification pattern in Populus tissues selected for qRT-PCR studiesFigure 4
Lignification pattern in Populus tissues selected for qRT-PCR studies. Far left column displays organs and tissues used 
(Leaf blade, Petiole, bark, Xylem). Middle column shows lignin deposition, visualized under the light microscope after phloro-
glucine-HCl staining (red color). Right column shows lignin distribution by fluorescent microscopy (autofluorescence). a, b – 
cross section of leaf vascular bundle, c, d – petiole cross section, e, f – transverse section of stem segment, g, h – secondary 
xylem from stem. Abbreviations: x – xylem, ph – phloem, s – schlerenchyma. Bars = 100 μm.
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Quantitative expression of Populus CAD genesFigure 5
Quantitative expression of Populus CAD genes. The name of each gene is indicated at the top of each histogram. Tissues 
studied are shown at the bottom of the diagrams. Means designated by the same letter do not differ significantly according to 
Tukey's HSD test; P < 0.05).
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reported to date on the model tree species Populus. Here,
we report the analysis of the phylogeny of CAD genes
using five complete genome sequences and a set of genes
from various land plant lineages. We also analyzed the
structure of CAD genes and their promoters as well as
their physical organization on Populus chromosomes and
their expression patterns in various plant tissues.

Our study of the organization of CAD genes showed that
chromosome duplications contributed significantly to the
duplication of CAD genes in the Populus genome. Similar
results were reported for Arabidopsis and Oryza [30,31].
Almost 80% of genes in Arabidopsis and Populus were dis-
tributed on duplicated regions. We cannot be sure if those
duplications happened independently in both species or
if some of them have occurred in the ancestor of those
species. The distribution of several Populus duplicates on
segmental duplications reported previously [35,39] asso-
ciated with the Salicoid duplication event that occurred 65
million years (myrs) ago indicates that most CAD gene
duplications happened in the ancestor of Populus. Dating
duplications in Populus using a rate of 1.5 × 10-8 synony-
mous substitutions per synonymous site per year as pro-
posed by Koch et al., (2000) showed that most of them
have occurred between 4 and 15 myrs ago. At least three
other duplication events may have occurred prior to the
large duplication event at ~20, ~30, and ~38 myrs ago.
This timing corresponds to the large duplication event
reported previously (~13 myrs) [35,40] that occurred in
the ancestor of Populus. However, based on the molecular
clock timing, all duplication events seem to be postdating
the earliest fossils of Populus, which are dated at ~58-myr
ago (Eckenwalder, 1996). The comparative timing of the
duplication event reported in previous work [40] and in
this study suggest that the timing of Populus duplications
is not accurate as the Populus genome is evolving slowly
compared to Arabidopsis. Nevertheless, the distribution of
Populus CAD genes on segmental duplications associated
with the Salicoid duplication, the agreement between our
duplication timing result and those reported previously
(Streck et al., 2005), and the distribution of CAD genes on
the phylogenetic tree suggest that most of those duplica-
tions happened in the ancestor of Salicaceae. The retention
of duplicate genes in the Populus genome is not surprising
as the genome of this species has been suggested to evolve
at a slow rate compared to Arabidopsis[35]. However, this
retention seems to be common to several species such as
Arabidopsis [36], Oryza [30,36], Populus (this tudy), Vitis
(this study), and Medicago (this study). Whether the
duplicated CAD genes correspond to genetic redundancy
or have evolved divergent functions, they must be
involved in important processes in the plant to be
retained in these two very different eudicot species. In
sharp contrast, only one rice CAD gene was found on a
large duplicated block We are not sure if Oryza CAD genes

did not experience large duplications or if most of the
duplicates have already been lost. It is noteworthy that
four Oryza CAD genes located at the same locus evidently
evolved by inverted duplications. This may represent an
alternative mechanism of CAD gene family evolution in
rice versus Eurosids.

Three patterns of intron-exon structure were observed
among CAD genes. Patterns 1 and 2 are characterized by
5 exons and 4 introns, while Pattern 3 CAD genes have 6
exons and 5 introns. Pattern 1 was detected in eudicots
(Arabidopsis, Populus) and monocots (rice), while pattern 2
was found in eudicots (Arabidopsis and Populus) and a
basal angiosperm, i.e Liriodendron tulipifera (Haiying
Liang, personal communication). Pattern 3 was detected
in eudicots and monocots (this study) as well as in gym-
nosperms [41]. Pattern 2 was found in several bona fide
CAD genes (Class I) as well as some genes from Class II.
Based on these results, at least pattern 2 and pattern 3
existed in the ancestor of angiosperms. This is confirmed
by the dating of the duplication events of Populus genes, as
the duplications that generated genes with pattern 1 were
recent compared to the one that generated genes with pat-
tern 2 and pattern 3. Furthermore, Oryza seems to have
several other specific variant patterns of introns/exons
that may have evolved in rice or the ancestor of the
Poaceae, some lacking introns which were apparently gen-
erated by transposable elements. This diversification in
rice could be linked to the high evolution rate of Poaceae
genes compared to the two eudicot model species.

CAD gene family is divided into three main classes
Phylogenetic analyses showed that CAD genes are divided
into three classes based on their AA and nt sequences.
CAD class I included sequences from monocots, eudicots,
and gymnosperms clades. Class II and Class III include
sequences from monocots and eudicots. This indicates
that the evolution of Class II and Class III happened in the
ancestor of angiosperms, or at least prior to the split of
monocots and dicots. This result is similar to the one pub-
lished recently by Tuskan and collaborators [35] using
mainly sequences from monocots and eudicots. The tree
obtained in this study differs from previous analyses
[29,35] which grouped the CAD genes in Arabidopsis into
three classes, with the gymnosperm sequences clustering
in a separate class [29]. It is also different from the tree
published previously [30] showing a distribution of CAD
genes in two mains classes. The difference between our
phylogeny and the ones published previously [29,30,35]
could be due to the inclusion of a broader set of species in
this study. Several sequences from various species cluster
close to each other; suggesting that there are species- or
lineage-specific CAD gene duplications. This is in accord-
ance with the distribution of ~80% of CAD genes from
Arabidopsis and Populus on duplicated blocks, some of
Page 10 of 15
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which may have been generated by lineage-specific dupli-
cations. It is noteworthy that except for the bona fide genes
(AtCAD4 and AtCAD5) which belong to Class I, all the
other Arabidopsis CAD genes (previously known as "CAD-
like genes") fell into Class II and Class III in our analysis.
Other known bona fide CAD genes which were grouped
into Class I in our study included Populus tremuloides
PtrCAD_B (PtCAD) (Li et al., 2001), Oryza OsCAD2
(OsCAD2) (Tobias et al., 2005), and Eucalyptus Egu_A
(EuCAD2 or EgCAD) (Grima-Pettennati et al., 1993). Pop-
ulus tremuloides SAD gene (Li et al., 2001) and Arabidopsis
genes (AtCAD4 and AtCAD5) [33], which were reported as
being involved in lignin biosynthesis were located in class
II in our study. PoptrCAD4 and PoptrCAD10, which were
highly preferentially expressed in xylem, were found in
Class I and Class II respectively. Based on the close distri-
bution of PoptrCAD10 to Populus tremuloides SAD on the
phylogenetic tree; it seems that PoptrCAD10 is the
ortholog of Populus tremuloides SAD gene. This result con-
firms previous results (Li et al., 2001) showing that there
are two genes (CAD and SAD) involved in lignin biosyn-
thesis in xylem from Populus trichocarpa and Populus trem-
uloides. Class III is represented by ATCAD1 which was
reported presenting similar expression profile as bona fide
genes (AtCAD4 and AtCAD5) in Arabidopsis plant tissues
[33] even though their CAD catalytic activity could not be
proven.

Previous studies reported the distribution of CAD genes in
several classes and suggest that with the exception of bona
fide lignin biosynthesis genes, all others are involved in
plant defense (Tuskan et al., 2006). The distribution of
most bona fide CAD genes from various species in Class I
in this study favors such a functional distinction between
Class I and II genes. However, the exceptions of
PoptrCAD10 (SAD) from Populus trichocarpa, PtrCAD1
(SAD) from Populus tremuloides, and AtCAD8 and AtCAD7
[33], which were reported as being lignin associated and
are distributed in class II, rule against this hypothesis. The
most probable hypothesis is that some genes from class II
evolved a modified expression profile or function such as
plant defense against pathogens. The gain of function
hypothesis for the genes from Class II is supported by the
fact that some genes from this class are still associated
with lignin biosynthesis in xylem. Two alternate hypothe-
ses could explain the evolution of defense function of
CAD genes. The first hypothesis is that CAD genes evolved
defense function after the split of Class II and Class III
from Class I genes. The second hypothesis is that the func-
tional divergence of CAD genes occurred before the split
of Class II and Class III from Class I. Further functional
analysis of genes from Class I and Class II will be needed
to answer this question.

CAD genes show different expression profiles in various 
Populus tissues and possibly divergent functions
The high rate of duplication of CAD genes and the reten-
tion of most duplicates raises the question of their func-
tional redundancy. Quantitative expression analysis
showed that among the CAD genes studied, four expres-
sion patterns were presented in the tissues studied.
PoptrCAD4 and PoptrCAD10 from expression-group 1
were differentially expressed in xylem tissues and are asso-
ciated with lignin biosynthesis. This conclusion is sup-
ported by the distribution of PoptrCAD4 into Class I with
several previously reported bona fide CAD genes [33].
PoptrCAD10 clusters in Class II closely with the Populus
tremuloides SAD gene and Arabidopsis AtCAD8 and
AtCAD7, which has been reported as being involved in
lignin biosynthesis [14,33]. Promoter analysis (Table 1)
showed that PoptrCAD4 possess several motifs involved in
stress response such as defense/stress responsiveness,
MeJA, ABA, and light responsiveness. In contrast,
PoptrCAD10 possess motifs involved in the interaction
with zinc finger binding transcription factor and in the
response to auxin. This result suggests that while both
genes are involved in lignin biosynthesis, PoptrCAD4
expression may be modulated under biotic stress condi-
tions. Genes from expression-groups 2 and 3, which are
preferentially expressed in leaves could correspond to a
defense-related lignin- biosynthesis pathway or other
defense pathway as suggested previously [42,43]. They
possess motifs involved in response to herbivory, wound,
and MeJA. MeJA plays a key role in plant defense against
various biotic and abiotic stresses [44,45]. Preliminary
expression profiling of these genes in Populus under stress
conditions confirmed this hypothesis as some of those
genes increase their expression under herbivore (Gypsy
moth) stress (data not shown). This result is not surpris-
ing as most pathogen invasions occur in the leaves. It is
also in accordance with previous studies showing that
CAD-like genes are involved in plant defense [43]. CAD
genes from expression-group 4, which did not present any
expression difference between various plant tissues, pos-
sess several motifs that are involved in response to MeJA,
wound, fungal elicitor, stress and defense responsiveness,
and ethylene. Those genes may function in lignin biosyn-
thesis under other stress conditions. Comparison of gain/
loss of motifs in the promoter region did not allow the
identification of probable motifs underlying the differ-
ence in expression profiles between bona fide CAD genes
and the CAD-like genes.

From a functional perspective, the lingering question is
why diverse copies of CAD genes from Class II and Class
III have been maintained within plant genomes. One can
ask if CAD genes from Class II and Class III, except
PoptrCAD10, are involved only in plant defense or some
of them can still compensate the function of bona fide
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CAD genes (PoptrCAD4 and PoptrCAD10) in lignin bio-
synthesis in xylem. The expression profile differences
between CAD-like genes from Class II and Class III in the
various tissues analyzed, added to the differential distri-
bution of several motifs involved in various developmen-
tal and physiological processes in their promoter regions
suggests that there is a functional specialization of CAD
genes in various tissues and under various development
and stress conditions. Expression analysis of two pairs of
paralogs (PoptrCAD3 and PoptrCAD5, PoptrCAD2 and
PoptrCAD11) showed that they have similar expression
profiles. This suggests that the duplication of those genes
did not result in divergence of their expression profile and
function. However, we cannot rule out this hypothesis as
these duplicate genes present different motifs for
responses to various stresses in their promoter regions.
Moreover, the expression of those duplicate genes could
be regulated at the protein level. Therefore, the quantifica-
tion of protein corresponding to those genes is needed to
confirm this hypothesis.

Conclusion
In conclusion, we identified 15 CAD genes in Populus and
found that most of them were located in the genome on
duplicated blocks. We demonstrated that CAD genes in
land plants were distributed in three phylogenetic classes
of which two may have originated from duplications in
the ancestry of all angiosperms. Class I genes function in
lignin biosynthesis in xylem while genes from Classes II
and III may function under stresses conditions. Promoter
sequence analysis and preliminary results on expression
profiling of CAD genes in tissues suggest CAD genes have
evolved divergent expression profiles or functions.

Methods
CAD sequences used in phylogenetic analysis
CAD sequences used in phylogenetic analyses (see Addi-
tional file 1) include sequences generated in this study as
well as sequences retrieved from different databases. We
used sequences from plants with fully sequenced genomes
as well as other taxons representing key positions on the
angiosperm phylogenetic tree. CAD sequences from Ara-
bidopsis, Oryza, and Populus were retrieved from TAIR
http://www.Arabidopsis.org/, TIGR http://www.tigr.org,
and the Joint Genome Institute http://www.jgi.doe.gov.
CAD sequences from the newly sequenced genomes of
Carica papaya, Vitis vinifera, and Medicago truncatula were
retrieved from The Hawaii Papaya Genome Project [46],
the Vitis genome [47], and the Medicago Sequencing
Resources http://www.medicago.org/genome/, respec-
tively. CAD sequences from various non model species
were retrieved from TIGR Plant Genomics databases http:/
/www.tigr.org, GeneBank http://www.ncbi.nlm.nih.gov
TIGR http://www.tigr.org, and the floral genome project

database [38] databases. Sequences were carefully
inspected and corrected for annotation errors before use.

Intron-exon structure and promoter analysis of CAD genes
The exon/inron structure of CAD genes was retrieved from
the Joint Genome Institute http://www.jgi.doe.gov web
site. For genes for which complementary DNA (cDNA)
sequences were available, the structure is checked by
aligning genomic and cDNA sequences. Promoter analy-
sis was done by querying all CAD genes against TRANS-
FAC [48] and PlantCARE [49].

CAD sequences alignment and phylogenetic analyses
CAD nucleotide cDNA sequences were translated into
protein sequences. The inferred protein sequences were
then aligned using Muscle with default parameters [50],
and manually adjusted. Phylogenetic analyses were per-
formed on the aligned amino acid (AA) sequences, as well
as on the nucleotide sequences that were aligned to match
the AAa. The GTR model [51] was found to be optimal for
nt datasets, assuming among site rate heterogeneity and a
proportion of invariable sites (GTR+G+I), while the WAG
model [52], assuming among site rate heterogeneity
(WAG+G), was found to be the best fit for the aa
sequences. These models were used for Maximum Likeli-
hood (ML) analyses implemented in PHYML v. 2.4.4 [53].
250 bootstrap replicates were run to estimate branch sup-
port. Neighbor-joining (NJ) analyses were performed in
MEGA4. Since the models of best fit were not available
here, we chose the JTT and Tajima-Nei models, using pair-
wise deletion and assuming gamma distributed site rates.
500 bootstrap replicates were run to estimate branch sup-
port.

Histochemistry of lignin deposition analyses
For visualization of lignin distribution, plant material
(leaf blades, petioles, and stem) was free-hand sectioned
with a razor blade. Sections were stained with phloroglu-
cinol (2% w/v phloroglucinol acidified in 6 M HCl),
mounted in glycerol and observed under an Olympus
BX51 light and fluorescent microscope, equiped with a
SPOT II RT digital camera.

RNA isolation and cDNA synthesis
Leaves, petioles, stem secondary cortex and stem xylem
were collected from young hybrid Populus OGY (P. del-
toides × P. nigra) young trees grown in a culture chamber
at 25°C and 18°C in the day and night, respectively. The
plants were grown at 16 h/8 h day/night regime and at
60% humidity. Tissues were harvested and immediately
frozen in liquid nitrogen and stored at -80°C until used
for RNA isolation. Total RNA was isolated using CTAB
method [54] with minor modifications. The RNA quality
and concentration was assessed using an Agilent 2100
Bioanalyzer (Agilent Technologies). To remove any con-
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taminating genomic DNA, RNA samples were treated with
RNAse free DNAse (Applied Biosystems) before real time
RT-PCR experiments. RNA was reverse transcribed using
random primers from the High Capacity cDNA Reverse
Transcription kit (Applied Biosystems) and random prim-
ers following the manufacturer's recommendations. One
microgram of total RNA from each sample was reverse-
transcribed to generate cDNA.

CAD expression analysis using quantitative real time RT-
PCR
Quantitative real time PCR reactions were prepared using
the SYBR Green Master Mix kit (Applied Biosystems) and
performed in an Applied Biosystems 7500 Fast Real-Time
PCR system (Applied Biosystems) with default parame-
ters. Primers used in this study (see Additional file 3) were
designed using Primer Express® software (Applied Biosys-
tems) or primer 3 software (The Whitehead Institute for
Biomedical Research, Cambridge, MD, USA). We used the
gene encoding the 18S rRNA as an endogenous control to
normalize for template quantity. The real-time PCR proto-
col was performed as following: denaturation by a hot
start at 95°C for 10 min, followed by 40 cycles of a two-
step program (denaturation at 95°C for 15 sec and
annealing/extension at 60°C for 1 min). Dissociation
curves were used to verify the specificity of PCR amplifica-
tion. For each tissue, samples from three different trees
were used. Triplicate experiments were analyzed for each
tissue and each tree. Data was evaluated using the 7500
Fast System SDS software procedures (Applied Biosys-
tems). Statistical analyses were performed using Statistica
6.0 software (StatSoft Poland Inc., Tulsa, OH, USA).

Abbreviations
CAD: Cinnamyl alcohol dehydrogenase; nt: nucleotide;
AA: amino acids; cDNA: complementary DNA; RT-PCR:
Reverse transcriptase polymerase chain reaction; PAL:
phenylalanine ammonia-lyase; HCT: hydroxycin-
namoyl:CoA shikimate/quinate hydroxycinnamoyl trans-
ferase; 4CL: 4-coumarate:CoA ligase; CCR : cinnamoyl-
CoA reductase; C3H: p-coumarate 3-hydrolase.
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