
Contents lists available at ScienceDirect

Forest Ecology and Management

journal homepage: www.elsevier.com/locate/foreco

Modeling the historical distribution of American chestnut (Castanea dentata)
for potential restoration in western New York State, US
Stephen J. Tulowiecki
SUNY Geneseo, 1 College Circle, Geneseo, NY 14454, United States

A R T I C L E I N F O

Keywords:
American chestnut
Castanea dentata
GAP analysis
Presettlement
Restoration
Species distribution models

A B S T R A C T

American chestnut (Castanea dentata) once held great economic and ecological importance in eastern US forests
before its demise due to an invasive blight fungus. Backcross breeding and genetic engineering methods are
currently developing a blight-resistant tree with mostly American chestnut traits. With the potential re-
introduction of chestnut, research has sought to understand the geographic distribution of chestnut to locate
potential restoration sites, but less research has compared ideal restoration sites to underlying land ownership.
This research models the historical distribution of chestnut in western New York State (NYS, approximately
27,617 km2), containing a portion of the original range of chestnut, in order to determine suitable areas for
chestnut reintroduction. This study models chestnut distribution using original land survey record (OLSR) data
(ca. 1797–1799 CE) and species distribution models (SDMs), then compares model predictions to current pro-
tected lands. Results indicate that depending upon modeling technique, predicted suitable habitat for chestnut
ranges 27.9–49.7% of the study area, and that 8.0–11.5% of suitable area is within protected land parcels. SDMs
suggest that within the study area, the two predictors most important to chestnut distribution are soil pH and
terrain slope, with chestnut favoring acidic soils and steeper slopes. By identifying sites for potential re-
introduction of chestnut, this study highlights that reintroduction will depend upon cooperation of private
landowners along with governments and non-governmental agencies. This study offers a revision to the his-
torical distribution of chestnut in western NYS, and provides insight into land ownership and management issues
facing its restoration.

1. Introduction

American chestnut (Castanea dentata; hereafter “chestnut”) once
held great economic and ecological importance in the eastern United
States (US) before its functional extinction due to an invasive blight
fungus (Wang et al., 2013). A tree with immense size potential (Collins
et al., 2017), chestnut was found in virtually all US states east of the
Mississippi River and into southern Ontario, Canada (Little and Viereck,
1971), achieving its highest abundance in the Appalachian Mountains
(Braun, 1950). Chestnut was generally an upland tree species found in
temperate climates on well-drained, acidic soils (Russell, 1987), limited
in its northern distribution by frost sensitivity (Gurney et al., 2011). The
tree species likely avoided calcium-rich soils throughout its geo-
graphical range (Russell, 1987). In the middle of its range, historical
records suggest that chestnut was found on ridges (Nowacki and
Abrams, 1992), and on sites with low moisture, high topographic
roughness, and loam or sandy loam (Thomas-Van Gundy and Strager,

2012). In southern Ontario, chestnut is found today on acidic, sandy
soils and gently sloping terrain (Tindall et al., 2004). Efforts led by The
American Chestnut Foundation (TACF, 2020) have sought to develop
blight-resistant chestnut through either backcross breeding with Chi-
nese chestnut (Castanea mollissima) to retain mostly American chestnut
traits (Griffin, 2000), or through the introduction of blight resistance
via genetic engineering (Powell et al., 2019; Steiner et al., 2017). With
the potential restoration of chestnut, research has sought to understand
its potential impacts on ecosystems, such as with respect to biotic in-
teractions (e.g. Goldspiel et al., 2019; Newhouse et al., 2018), carbon
storage (e.g. Gustafson et al., 2018), and fire regimes (e.g. Kane et al.,
2019).

Research has modeled the past or current geographic distribution of
chestnut, contributing further knowledge on the factors shaping the
tree’s geographical range. Fei et al. (2007) modeled at 10 m resolution
the current distribution of chestnut based on field observational data in
Mammoth Cave National Park, US, finding that chestnut sprouts were
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generally found on steeper slopes and on mid-slopes or ridges.
Chambers et al. (2013) modeled at 1 km resolution the relative abun-
dance of 105 tree species in the eastern US using the Forest Inventory
and Analysis (FIA) database; chestnut was one of the poorest-per-
forming models out of all tree species in their study. Tulowiecki and
Larsen (2015) created models at 100 m resolution using data from
original land survey records (OLSRs; ca. 1800 CE) to predict the past
distribution of chestnut in Chautauqua County, New York State, finding
its distribution was correlated with distance to Native American set-
tlement along with environmental predictors. Barnes and Delborne
(2019) created models at 2.5 min resolution (≈4.5 km at the equator)
using occurrence data from the Global Biodiversity Information Facility
and the FIA database to predict the current distribution of chestnut
across its entire range, finding that precipitation, temperature, and
seasonality predictors were most predictive of its distribution. Other
studies have used modeling or statistical methods to assess niche
overlap among Castanea species (Fei et al., 2012) or to assess en-
vironmental correlates of blight resistance (Van Drunen et al., 2018).

Though fine-resolution modeling and mapping of chestnut’s geo-
graphical range is likely to be important to successfully restore
chestnut, previous research is limited in two ways. First, research (e.g.
Barnes and Delborne, 2019; Chambers et al., 2013; Fei et al., 2007) has
often used current data on chestnut distribution as training data for
modeling, meaning that effects such as sampling bias and Euro-Amer-
ican land use may complicate the understanding of historical relation-
ships between chestnut and environmental predictors. Second, with the
exception of Zhang et al. (2019), studies have not sought to rigorously
understand the underlying land management or ownership coinciding
with potential chestnut restoration sites. This second limitation is no-
teworthy because management and administrative issues are crucial
considerations in the successful reintroduction of chestnut to eastern US
forests (Clark et al., 2014).

This study models the historical geographic distribution of chestnut
to determine suitable chestnut habitat in western New York State
(NYS), and assesses how much suitable habitat is within private versus
public lands. Modeling suitable habitat is performed using species dis-
tribution models (SDMs) that correlate historical observations of
chestnut with environmental conditions. To the author’s knowledge, no
study has yet compared the distribution of suitable habitat for chestnut
with underlying land ownership and management using historical ob-
servations of chestnut distribution. This study advances research into
chestnut distribution and management considerations for its restora-
tion.

2. Study area

The study area is western NYS (approximately 27,617 km2),
bounded by Lake Ontario on the north, the State of Pennsylvania on the
south, Lake Erie and the Niagara River on the west, and by Seneca Lake
on the east (Fig. 1). It contains portions or the entirety of 15 modern-
day counties. It is comprised of the warmer-drier Erie-Ontario Lowland
in the north and west with generally flat terrain, and the cooler-moister
Allegheny Plateau in the south and east with gently to steeply sloping
terrain (Fenneman, 1938). Across the study area, mean annual pre-
cipitation ranges from 80 to 131 cm and mean annual temperature
ranges from 6° to 10° C (PRISM Climate Group, 2013). Generally
speaking, the two physiographic provinces dictate soil characteristics,
with more acidic and shallow Inceptisols on the Allegany Plateau, and
less acidic and deeper Alfisols on the Erie-Ontario Lowland (Natural
Resources Conservation Service, 2014).

Historically, chestnut was found throughout the study area but
likely at low relative abundance (Fig. 1). When compared to Little and
Viereck’s range map for chestnut (1971), 13 out of 15 counties in the
study area are partially or completely within chestnut’s range, and 6 out
of 8 counties with OLSR data used in this study (Fig. 2) are partially or
completely within its range (Fig. 1a). Paciorek et al. (2016) and OLSRs

used in this study (see also Seischab, 1992) suggest localized presence
of chestnut even in areas where Little and Viereck (1971) suggest its
absence. A compilation of older range maps by Russell (1987) suggests
that chestnut was continuously present throughout the study area.
Wang (2007) estimated from witness-tree data within OLSRs that
chestnut had a relative abundance of 1.2% in the western portion of the
study area. Paciorek et al.’s (2016) 8-km resolution interpolation of
historical relative abundance for chestnut based on OLSRs estimated
local peaks as high as 17.2% (Fig. 1b). Researchers at The State Uni-
versity of New York College of Environmental Science and Forestry are
developing a transgenic chestnut (State University of New York, 2019),
and NYS hosts numerous backcross-breeding orchards (TACF, 2020),
further making the study area a potentially important release site for
chestnut.

3. Materials and methods

This study was performed in two main steps. This study first de-
veloped SDMs to predict the historical distribution of chestnut (inter-
preted as suitable habitat), and then compared predictions to under-
lying land ownership and management. Tasks requiring geographic
information systems (GIS) software were performed using Esri ArcGIS
(Esri, 2017), and SDM development was performed using R statistical
computing (R Core Team, 2018).

3.1. Developing SDMs

SDMs were developed to predict the historical distribution of
chestnut and therefore environmentally-suitable habitat for chestnut
restoration, by relating chestnut presence/absence (dependent vari-
able) to environmental predictors (independent variables). SDMs are
quantitative techniques for predicting geographic distributions of spe-
cies, often using species presence/absence records as training data
(Franklin and Miller, 2009).

To derive a sample of historical chestnut distribution, surveyor
“field notes” from OLSRs were used. OLSRs are records of the first land
surveys in the US, which delineated land into townships and lots for
sale and settlement (Wang, 2005; Whitney, 1996). OLSRs contain
timber descriptions along survey lines, and records of trees marked
along survey lines or at township or lot corners (witness-trees or
bearing-trees). Though they can contain uncertainty (e.g. Mladenoff
et al., 2002) and bias (e.g. Kronenfeld and Wang, 2007), OLSRs are one
of the most valuable and utilized datasets for mapping the historical
distribution of tree species in the US. Previous work has used OLSRs to
understand historical distribution and abundance of chestnut
throughout its range (Nowacki and Abrams, 1992; Paciorek et al., 2016;
Rentch and Hicks, 2005; Thomas-Van Gundy and Strager, 2012;
Tulowiecki and Larsen, 2015; Wang, 2007).

This study used timber descriptions from OLSRs of the Holland Land
Company (HLC) township survey (1797–1799 CE) from the western
portion of the study area (Fig. 2), which were previously transcribed
and mapped as a GIS data layer (Tulowiecki et al., 2015; Wang, 2007).
The HLC surveyed townships from 1797 to 1799 CE typically along a
9.7 × 9.7 km (6 × 6 mi) grid. Positional error for these OLSRs is es-
timated at approximately 10 m (Tulowiecki et al., 2015). The layer
depicted 2,668 line segments containing timber descriptions (e.g.
“chestnut, hemlock, white oak, black oak, and white pine”) with up to
14 tree taxa per description, and ranging from 20 m to 12,946 m
(median = 626 m) in length. Each timber description in the HLC
township survey was believed to correspond to relatively consistent
environmental conditions (e.g. a slope with “2nd quality soil”, a
“swamp”, a “bottomland”), and timber descriptions are believed to
describe species found evenly along the entire length of the segment
corresponding to the description. OLSRs were not obtained for the
eastern portion of the study area, but this portion was determined to
contain similar environmental conditions by creating multivariate
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environmental similarity surfaces using MaxEnt software, version 3.4.1
(Phillips et al., 2017).

To create a sample of chestnut presence/absence, a GIS-format point
layer was superimposed with points at 2-km spacing along the GIS-
format lines representing timber descriptions. If a timber description at
a point mentioned chestnut then the point was assigned a value of “1”
(present); otherwise, the point was assigned a value of “0” (absent).
This procedure yielded 1,239 points with complete environmental data
(see next paragraph), of which 211 were chestnut presences (Fig. 2).
The 2-km spacing was chosen to ensure an adequate number of chestnut
presences for training and testing SDMs (n > 100), and to minimize
spatial autocorrelation that might result from close spacing. A random
25% of points (n = 310), stratified to maintain the same prevalence
rate, were reserved as common test data to evaluate all final SDMs, and
the remaining 75% (n = 929) were used as training and validation
data. Timber descriptions were similarly used to develop a sample of
presence/absence locations in one study (Tulowiecki, 2014); that study
also suggested that timber descriptions led to more accurate SDMs than

those trained with presence/absence points developed from witness-
tree data.

A total of 19 predictors representing climate, soil, and topographic
characteristics were initially considered for inclusion in SDMs, and
were acquired in and/or transformed into GIS-format raster data
(Table 1). All predictors were aggregated or resampled to a resolution
of 100 m. Soil predictors were originally converted from vector to raster
format at a resolution of 10 m, and then mean-aggregated to 100 m.
Terrain predictors, along with compound topographic index (CTI), were
originally created at a resolution of 10 m and then mean-aggregated to
100 m. Climate predictors were downscaled from an initial resolution of
approximately 800 m using cubic convolution resampling. Of the 19
predictors originally considered, 6 were omitted due to collinearity
with other predictors (Pearson’s r > |0.70|). While this study used
current climate data, previous research in the study area has suggested
that these data capture the same general patterns in climate as the ca.
19th century, and differ only modestly in actual temperature or pre-
cipitation amounts (Tulowiecki et al., 2020, Supplemental Content).

Fig. 1. (a) Study area, along with Little and Viereck’s map of American chestnut (Castanea dentata) range (1971). (b) Paciorek et al.’s interpolated historical relative
abundance data for chestnut based on original land survey records (2016); this interpolation was based on aggregated witness-tree counts including those from
Holland Land Company (HLC) surveys.
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Though chestnut is sensitive to frost damage (Gurney et al., 2011), this
study did not include winter (e.g. January) temperature as a predictor
since all monthly temperature variables are highly correlated with an-
nual temperature in the study area (Pearson’s r > 0.9).

Nine SDM techniques (summarized in Franklin and Miller, 2009)
were used to model chestnut distribution: artificial neural networks
(ANN), classification tree analysis (CTA), flexible discriminant analysis
(FDA), generalized additive models (GAM), gradient boosting models
(GBM), generalized linear models (GLM), multiple adaptive regression
splines (MARS), maximum entropy modeling (MaxEnt), and random
forests (RF). These SDM techniques encompass different approaches to
modeling species distributions. SDM techniques varied by whether they
were based on statistical or machine-learning methods, whether they
could model linear and/or non-linear relationships between dependent

and independent variables, and whether they could model variable
interactions.

Sample points on chestnut presence/absence and raster layers of
predictors were imported into R statistical computing platform (R Core
Team, 2018) for SDM development. All SDMs were trained using the
“biomod2” package (Thuiller et al., 2013, 2009). For each of the nine
SDMs created (i.e. one per technique), the same procedure was fol-
lowed. Presence/absence data (n = 929) not reserved for model testing
were first randomly partitioned into training (80%; n = 743) and va-
lidation (20%; n = 186) data. The model was then developed using the
training data, and applied to predict chestnut presence/absence in the
validation data. This procedure was repeated 25 times, and the model
that best predicted presence/absence in the validation data was chosen
as the final model. Technique-specific modeling parameters were tuned

Fig. 2. Locations of Holland Land Company (HLC) township survey lines ca. 1797–1799 CE, and chestnut presence/absence points derived from timber descriptions
along survey lines (used for training species distribution models in this study).

Table 1
Predictors initially considered in species distribution models (SDMs). “Predictor codes” are abbreviations for predictors elsewhere in this study. The final column
indicates whether predictors were retained after checking for collinearity among predictors. NRCS = Natural Resources Conservation Service SSURGO database
(2014), USGS = United States Geological Survey (2013).

Type Predictor (unit) Value range within study area Predictor code Source Considered in final SDMs?

Climate Mean precipitation, May-September 37–61 cm climate_precip0509 PRISM Climate
Group

Yes

Mean annual temperature 6.2–9.8° C climate_tempann PRISM Climate
Group

No

Soil Available water supply, 0 to 100 cm 2.1–40.0 cm soil_aws100cm NRCS Yes
Available water supply, 0 to 150 cm 2.7–40.0 cm soil_aws150cm NRCS No
Bulk density 0.2–1.7 g/cm soil_bulkdensity NRCS Yes
Compound topographic index (unitless;
lower = drier)

1.9–33.1 soil_cti USGS Yes

Depth to restrictive layer 30.0–201.0 cm soil_depthrestrictive NRCS No
Ranked drainage class (unitless; 1 = driest,
7 = wettest)

1–7 soil_drainageclass NRCS Yes

Erodibility factor (unitless; higher = more erodable) < 0.1–0.5 soil_kffact NRCS No
Saturated hydraulic conductivity (permeability rate) < 0.1–139.0 mm/hr soil_ksat NRCS Yes
Organic matter 0.1–87.0% (by weight) soil_organicmatter NRCS Yes
Clay 0.5–48.7% (by weight) soil_percentclay NRCS No
Sand 0.0–94.5% (by weight) soil_percentsand NRCS Yes
Degree of acidity or alkalinity (pH) 4.4–8.0 soil_ph NRCS Yes
Passing sieve no. 10 (coarse) (% by weight) 25.6–100.0% (by weight) soil_sieve10 NRCS No
Passing sieve no. 200 (fine) (% by weight) 0.0–100.0% (by weight) soil_sieve200 NRCS Yes

Topography Eastness of aspect (unitless; −1 = west, 1 = east) −1.0–1.0 topography_eastness USGS Yes
Northness of aspect (unitless; −1 = south,
1 = north)

−1.0–1.0 topography_northness USGS Yes

Mean terrain slope angle 0.0–75.2° topography_slope USGS Yes
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and variable selection procedures were performed using the “BIO-
MOD_tuning” function (Thuiller et al., 2013, 2009).

SDMs outputted two types of predictions of historical chestnut dis-
tribution, which were also interpreted as suitability measures: predicted
probabilities of chestnut presence, and binary presence/absence pre-
dictions. To create binary predictions, a threshold value in predicted
probabilities was chosen that maximized the true skill statistic (TSS);
TSS = sensitivity + specificity −1 (Allouche et al., 2006). TSS ranges
from −1 to 1, with 0 being a model that is no better than a random
guess. SDM predictions of chestnut distribution were then visually
compared with existing published maps on historical chestnut dis-
tribution. These comparisons were made with Little and Viereck’s range
map (1971; Fig. 1a) and Paciorek et al.’s interpolation of relative
abundance (2016; Fig. 1b). These comparisons were made to assess the
strength of the SDM predictions, but also to critically examine these two
previous chestnut range reconstructions.

Various SDM diagnostics and predictive performance measures were
examined. Partial dependence plots characterized the relationship be-
tween each predictor and chestnut distribution, by plotting the pre-
dicted probability across the range of a predictor’s values while holding
all other predictors at their median value (Elith et al., 2005; Thuiller
et al., 2013, 2009). Variable importance was calculated using the per-
mutation importance measure (Liaw and Wiener, 2002; Thuiller et al.,
2013, 2009). Permutation importance is calculated by first applying the
model to predict probabilities at the sample point locations with the
values of a single predictor randomly shuffled, then calculating the
correlation (Pearson’s r) between the original predictions and the pre-
dictions using the shuffled dataset; permutation importance = 1 -
Pearson’s r. TSS and the area under the receiver operating characteristic
curve (AUC) measure were used to assess predictive performance. AUC
ranges from 0 to 1, and the measure equals the probability of assigning
a predicted probability value at a random presence point that is higher
than assigning a predicted probability value at a random absence point
(Fawcett, 2006). To offer different estimates of predictive performance,
TSS and AUC were calculated using each SDM’s unique validation data
and the common test data.

3.2. Comparing SDM predictions to land ownership and management

To understand how predicted suitable habitat for chestnut coincides
with private and currently protected lands, SDM predictions were
compared to protected land parcels in the Protected Areas Database of
the United States (USGS Gap Analysis Project, 2018) using GIS soft-
ware. This database contains the locations of protected public lands and
private lands protected under conservation easements. This analysis
also served to assess if and where permanently protected areas existed
that possessed suitable habitat for chestnut. Other studies have simi-
larly assessed potential overlap between protected lands and the

geographic range of candidate species for de-extinction (Peers et al.,
2016).

Three main analyses were performed. First, SDM predictions were
compared to protected land parcels to quantify how much predicted
suitable habitat is found on protected lands versus unprotected private
lands. Second, mean committee average was calculated within each
protected land parcel to understand which parcels would be most sui-
table for chestnut reintroduction. Committee average (Thuiller et al.,
2013; 2009) is the number of SDMs that predicted suitable habitat for
chestnut at a location (based on binary predictions; Section 3.1). Mean
committee average, therefore, is the mean number of SDMs that pre-
dicted the presence of chestnut across all locations within a parcel (e.g.
if a parcel’s mean committee average is 8, locations throughout the
parcel have, on average, 8 of 9 SDMs predicting suitable habitat for
chestnut). Smaller parcels were omitted from this analysis; mean
committee average was calculated for all parcels ≥1 km2. Third, this
study mapped contiguous patches with high SDM consensus regarding
suitability for chestnut to identify large high-quality areas. “High-con-
sensus” was defined as locations where 7+ out of 9 SDMs predicted
suitable habitat.

4. Results

4.1. SDM performance and diagnostics

SDMs of historical chestnut distribution showed fair to good ability
to predict chestnut presence/absence (Table 2). When SDMs were ap-
plied to predict presence/absence in their unique validation datasets,
AUC ranged from 0.721 to 0.799 and TSS ranged from 0.400 to 0.529.
When SDMs were applied to predict chestnut presence/absence in the
common test data, SDMs demonstrated slightly lower predictive per-
formance: 0.660–0.743 for AUC, and 0.255–0.380 for TSS. Note that
some have interpreted AUC values of 0.6–0.7 as “fair” models and
0.7–0.8 as “good” models (Swets, 1988). GBM, GLM, and GAM emerged
as the most predictive SDMs based on their predictive measures when
calculated using the common test data.

SDMs suggest that chestnut distribution was most influenced by soil
and topographic conditions. Soil pH and terrain slope angle were the
most important predictors of chestnut distribution as judged by per-
mutation importance measures (Table 3), and their modeled relation-
ships with chestnut distribution were the most consistent across mod-
eling techniques as determined from partial dependence plots (Table 4).
Soil pH (median importance rank = 1) was the most or second-most
important variable in 8 out of 9 models, was chosen by every SDM, and
demonstrated a negative relationship with chestnut distribution across
all SDMs (more acidic = more probable). One model (i.e. FDA) chose
only soil pH as a predictor of chestnut distribution. Terrain slope angle
was the first- to fourth-most important predictor among SDMs that
chose the predictor (median importance rank = 2), was chosen by 7 out
of 9 SDMs, and demonstrated a positive relationship with chestnut
distribution across SDMs (steeper = more probable). No other pre-
dictors aside from soil pH and terrain slope angle demonstrated con-
sistent modeled relationships with chestnut distribution across all
modeling techniques. Soil percent sand, soil organic matter, and
growing-season (May-September) precipitation were the next most
important predictors as judged from permutation importance measures
across all modeling techniques, although SDMs did not agree on the
nature of their relationships with chestnut. Soil bulk density (median
rank = 6) displayed a positive relationship with chestnut distribution
(denser = more probable) for nearly every SDM that chose this pre-
dictor; soils low in bulk density within the study area are associated
with swamplands rich in organic matter, suggesting that chestnut was
does not grow in swampy locations.

Table 2
Performance of species distribution models (SDMs) as judged against each
model’s unique validation data, and against the common test data. AUC = area
under the curve, TSS = true skill statistic. Refer to Section 3.1 for SDM tech-
nique abbreviations.

AUC TSS

Technique Validation data Test data Validation data Test data

ANN 0.749 0.682 0.497 0.265
CTA 0.783 0.660 0.529 0.291
FDA 0.721 0.680 0.484 0.295
GAM 0.745 0.717 0.477 0.351
GBM 0.799 0.741 0.490 0.380
GLM 0.762 0.743 0.490 0.328
MARS 0.774 0.674 0.484 0.255
MaxEnt 0.744 0.668 0.400 0.257
RF 0.751 0.726 0.490 0.258
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4.2. Chestnut distribution, and comparisons with land ownership and
management

SDMs generally agreed on the distribution of chestnut across the
study area: chestnut habitat is most notably predicted in upland con-
ditions of the Allegheny Plateau, and along an upland region spanning
southern Erie County and northwestern Chautauqua County (Fig. 3).
Depending upon modeling technique, predicted suitable habitat (his-
torical chestnut distribution) ranges from approximately
7,502–13,391 km2 (27.9–49.7%) of the study area (Table 5), based on
binary predictions (Section 3.1). GBM, GLM, and GAM were the top
SDMs as judged by their predictive performance, and they predicted
8,194 km2 (30.4%), 8,172 km2 (30.4%), and 9,234 km2 (34.3%) of the
study area to contain suitable habitat, respectively. SDM predictions
showed only a vague correspondence with previously-published maps
of historical chestnut distribution (Fig. 1a) and relative abundance
(Fig. 1b) in the study area.

Fig. 3b shows the amount of agreement among SDMs in designating
areas of potential suitable habitat. All 9 SDMs were in agreement about
the suitability of 3,002 km2 and the unsuitability of 8,957 km2. Areas
with high consensus among modeling techniques (i.e. where 7 + out of
9 modeling techniques predicted suitable habitat) total 5,553 km2 of
the study area (20.6%), of which 690 km2 is located on protected land
parcels. Areas where the top three models (i.e. GAM, GBM, and GLM)
all predicted suitable habitat totaled 4,822 km2 (17.9%), of which
596 km2 is located on protected lands. All estimates in this section

exclude waterbodies and areas missing soil data, such as the urban
areas of the City of Buffalo and the City of Rochester.

8.0–11.5% of total suitable area falls within protected land parcels,
whereas the remainder of suitable area is located on unprotected pri-
vate lands (Table 5). Generally speaking, larger and more suitable
protected land parcels are found in the southern portion of the study
area, typically on state lands (Fig. 4). Parcels managed by NYS emerge
as the protected areas with the highest potential to restore chestnut to
its historical range. Land parcels protected by NYS contain 89.9%
(620 km2) of total high-consensus predicted suitable habitat on pro-
tected lands, and 96.6% of the total when considering only contiguous
patches of high-consensus predicted suitable habitat ≥1 km2 (Table 6).
These numbers represent a disproportionate share of total protected
lands within the study area. NYS lands also possess the largest con-
tiguous patches of high-consensus predicted suitable habitat on pro-
tected lands: the top 30 largest patches, and 45 of the top 50 largest
patches, are on NYS lands. Allegany State Park emerges as an especially
large protected land that possesses by far the largest contiguous patch
of high-consensus suitable habitat (250 km2, compared to the second-
largest patch of 16 km2), and locations within the park on average have
at least 8 out of 9 SDMs predicting suitability for chestnut.

5. Discussion

This study provides insight at a fine spatial resolution into the his-
torical distribution of chestnut and where chestnut could be potentially

Table 3
A summary of variable importance measures for species distribution models of American chestnut (Castanea dentata). Shown are permutation importance measures,
ranging from 0.00 (least important or not selected by model) to 1.00 (most important). Refer to Section 3.1 for SDM technique abbreviations, and to Table 1 for
predictor codes.

Modeling technique

Predictor ANN CTA FDA GAM GBM GLM MARS MaxEnt RF

climate_precip_0509 0.12 0.00 0.00 0.22 0.03 0.14 0.00 0.04 0.02
soil_aws100cm 0.23 0.00 0.00 0.01 0.05 0.00 0.00 0.04 0.03
soil_bulkdensity 0.00 0.00 0.00 0.08 0.03 0.07 0.00 0.05 0.04
soil_cti 0.06 0.00 0.00 0.02 0.01 0.00 0.00 0.05 0.02
soil_drainageclass 0.06 0.00 0.00 0.09 0.01 0.00 0.00 0.09 0.01
soil_ksat 0.43 0.00 0.00 0.02 0.01 0.00 0.00 0.04 0.02
soil_organicmatter 0.05 0.33 0.00 0.01 0.09 0.00 0.00 0.16 0.04
soil_percentsand 0.34 0.00 0.00 0.18 0.06 0.00 0.09 0.20 0.04
soil_ph 0.03 0.64 0.98 0.25 0.18 0.86 0.34 0.30 0.09
soil_sieve200 0.21 0.00 0.00 0.04 0.02 0.00 0.09 0.10 0.02
topography_eastness 0.03 0.00 0.00 0.01 0.02 0.00 0.00 0.08 0.03
topography_northness 0.12 0.28 0.00 0.00 0.03 0.00 0.00 0.04 0.02
topography_slope 0.37 0.00 0.00 0.18 0.21 0.22 0.36 0.27 0.08

Table 4
A summary of partial dependence plots describing the relationship between predictors and the probability of observing American chestnut (Castanea dentata). “pos”
= generally positive relationship, “neg” = generally negative relationship, “?” = relationship was difficult to generalize, and “()” = predictor was not included in
the model. Refer to Section 3.1 for SDM technique abbreviations.

Modeling technique

Predictor ANN CTA FDA GAM GBM GLM MARS MaxEnt RF

climate_precip_0509 pos () () ? neg neg () ? ?
soil_aws100cm neg () () pos neg () () neg ?
soil_bulkdensity () () () pos pos pos () pos ?
soil_cti pos () () neg ? () () pos ?
soil_drainageclass () () () ? neg () () neg ?
soil_ksat pos () () neg ? () () ? neg
soil_organicmatter ? ? () neg ? () () ? ?
soil_percentsand neg () () ? neg () pos ? neg
soil_ph () neg neg neg neg neg neg neg neg
soil_sieve200 neg () () ? pos () pos ? pos
topography_eastness () () () neg ? () () ? ?
topography_northness () ? () pos ? () () ? ?
topography_slope pos () () pos pos pos pos pos pos
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reintroduced to its historical range in western NYS (Figs. 3 and 4). This
study provides more detailed depictions of historical chestnut dis-
tribution within the study area than previous studies. SDM performance
was fair to good, meaning that the SDM predictions should be inter-
preted as providing general guidance on historical chestnut distribution
using OLSR data.

This study’s results suggest that chestnut was predominantly found
in the southern portion of the study area, and more sporadically else-
where (Fig. 3); previous literature furthermore suggests that it was
present at generally low relative abundance where present (Paciorek
et al., 2016). SDM predictions of chestnut’s historical distribution dif-
fered noticeably from both a commonly-utilized source on tree species
ranges (Fig. 1a; Little and Viereck, 1971) and coarse-resolution his-
torical interpolations from OLSR data (Fig. 1b; Paciorek et al., 2016).
Three points are warranted pertaining to differences with Little and
Viereck’s map. First, generalization in their map may have introduced
error, since their work produced continental-extent range maps for
hundreds of species. Second, their work acknowledged the possibility of

Fig. 3. Spatial predictions of American chestnut distribution made by species distribution models (SDMs). (a) Mean SDM predictions weighted by area under the
curve (AUC) measures when SDMs were applied to each technique’s unique validation data. (b) Committee average of SDM predictions (i.e. number of SDMs
predicting the historical presence of chestnut).

Table 5
Total area for predicted suitable habitat within the study area, and within
protected land parcels. Refer to Section 3.1 for SDM technique abbreviations.

Predicted suitable area Predicted suitable area, within protected
land parcels

Technique km2 % of study
area

km2 % of predicted suitable area

ANN 10,255 38.1% 913 8.9%
CTA 7622 28.3% 803 10.5%
FDA 7502 27.9% 797 10.6%
GAM 9234 34.3% 880 9.5%
GBM 8194 30.4% 837 10.2%
GLM 8172 30.4% 799 9.8%
MARS 6177 22.9% 710 11.5%
MaxEnt 10,570 39.3% 912 8.6%
RF 13,391 49.7% 1072 8.0%
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error, stating that their maps may “suggest corrections” and “localities
where further field work is needed for revision and where range ex-
tensions and State records may be sought” (Little and Viereck, 1971, p.
7). Third, in creating range maps for New York State, Little and Viereck
created their maps through herbarium records, State publications, and
field trips, but did not consult OLSRs. In light of these issues, this

study’s SDM results may provide an important revision to chestnut
distribution in western NYS and motivate additional study of chestnut
range there.

Regarding differences between SDM predictions and the Paciorek
et al. map (2016; Fig. 1b), ecological processes dictating species pre-
sence versus abundance may differ, leading to the observed

Fig. 4. A proportional symbol map showing the locations of protected land parcels and predictions of suitable habitat made by species distribution models. (a) Size of
protected land parcel and mean committee average. (b) Size of contiguous patches of high-consensus predicted suitable habitat within protected land parcels.
Allegany SP = Allegany State Park.

Table 6
A summary of protected lands, along with high-consensus predicted suitable habitat for chestnut within protected lands, across different land managers within the
study area. “High-consensus” suitable habitat is where ≥ 7 out of 9 species distribution models predicted suitable habitat. NGO = non-governmental organization.

State Local NGO Federal Tribal Other

Total protected land (km2) 1251.2 239.5 131.0 176.2 84.5 10.2
Percent of total protected land 66.1% 12.7% 6.9% 9.3% 4.5% 0.5%
High-consensus predicted suitable habitat (km2) 620 37 20 7 3 2
Percent of total high-consensus predicted suitable habitat 89.9% 5.4% 2.9% 1.0% 0.5% 0.3%
High-consensus predicted suitable habitat (km2), ≥1 km2 patches only 532 13 6 – – –
Percent of total high-consensus suitable habitat, ≥1 km2 patches only 96.6% 2.3% 1.1% – – –
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dissimilarities between maps. At least one study found that while plant
SDMs provided some insight into where relative abundance would be
high, they overestimated the range of habitats where high species
abundance would occur (Van Couwenberghe et al., 2013). Similarly in
this study, high estimated relative abundance in previous work
(Paciorek et al., 2016) coincided with high-consensus suitable areas
predicted by SDMs, but not always vice-versa. Future work could ex-
plore estimating chestnut abundance at fine-resolution using timber
descriptions from OLSRs, since research has suggested that the order of
taxa listed in timber descriptions might approximate relative abun-
dance in accordance with rank abundance distribution models (Larsen
et al., 2015).

This study contributes to an understanding of which environmental
conditions are favored by chestnut. SDMs agreed with previous
knowledge regarding the importance of acidic soils and steeper, well-
drained upland sites to chestnut distribution (see literature in Section
1), including in regions bordering the study area (i.e. southern Ontario;
Tindall et al., 2004). Given the high importance of these two predictors
across most SDMs (Table 3), and the disagreement on the importance
and nature of the relationship between chestnut and other predictors
(Table 4), results suggest that within the study area, soil acidity and
terrain slope were the main drivers of chestnut distribution at the extent
and resolution of analysis. Unlike previous studies (Thomas-Van Gundy
and Strager, 2012; Tindall et al., 2004), this study did not find that soil
sand was an important predictor of chestnut distribution, although
sandy soils within the study area often correspond with acidic soils. In
focusing on environmentally-suitable sites for chestnut reintroduction,
this study did not incorporate Native American variables as predictors
of chestnut; Native American land use may have promoted chestnut in
the study area within approximately 10 km of village sites (Black et al.,
2006; Tulowiecki and Larsen, 2015).

Despite containing a portion of the northerly limit of chestnut, this
study’s SDMs suggest that the observed limit in the study area is due to
soil and topography rather than climate conditions as might be ex-
pected. Even though chestnut is sensitive to frost (Gurney et al., 2011),
the northern portion of the study area where chestnut is absent is ac-
tually warmer (including warmer winters) than the southern portion.
The warmer northern portion, however, contains flat terrain and mildly
acidic to neutral soils that are less preferable to chestnut, with only
highly localized sites favorable for chestnut (Fig. 3). Supporting this
study’s findings is the observation that chestnut is presently found at
higher latitudes on gentle slopes and sandy acidic soils in neighboring
southern Ontario (Tindall et al., 2004). Older range maps for chestnut
compiled by Russell (1987) also suggest a higher latitudinal limit for
chestnut.

This study shows that predicted suitable habitat for chestnut in the
study area falls largely on private lands (Table 5). While chestnut re-
storation has been explored largely on federal lands (Clark et al., 2014),
the results suggest that within the study area, chestnut restoration may
require the participation of mainly private landowners to facilitate re-
introduction. Where it is desired to reintroduce chestnut to protected
lands, results suggest that it should occur largely on those managed by
New York State. This study did not evaluate actual land cover at each
protected land parcel to assess the feasibility of reintroducing chestnut
into existing forests or within afforestation sites, but rather provided a
more parcel-level understanding of protected lands that may contain
suitable habitat for chestnut.

One potential limitation in using historical data to model suitable
sites for chestnut is that hybrid or transgenic chestnut might have dif-
ferent habitat requirements than pure American chestnut. However,
one modeling study suggested that the climatic requirements of Chinese
chestnut and American chestnut strongly overlap (Fei et al., 2012). At
least one seedling growth study found that optimal habitat for pure
American chestnut and hybrid chestnut were statistically the same in
Virginia, and that both preferred dry upper slopes and ridges (Griscom
and Griscom, 2012). Another study found comparable survival of pure

American chestnut and hybrid chestnut growing on acidic abandoned
surface mines (Skousen et al., 2013). Other guides suggest Chinese
chestnut prefers acidic, well-drained soils similar to American chestnut
(Gilman and Watson, 1993).

6. Conclusion

In a novel synthesis of historical data, SDMs, and current data on
land ownership, this study expands upon the body of literature con-
cerning the distribution of chestnut and issues surrounding its potential
reintroduction to eastern US forests. Within the study area, this study
found that chestnut prefers acidic soils on steeper terrain, and offers a
revision to chestnut range at a fine resolution. The study suggests that
the historical distribution of chestnut falls mostly on private lands,
manifesting that chestnut reintroduction will depend upon the co-
operation of private landowners along with governmental and non-
governmental agencies. The maps and findings of this study serve to
identify sites to prioritize for potential reintroduction of chestnut to
maximize success.

CRediT authorship contribution statement

Stephen J. Tulowiecki: Conceptualization, Data curation, Formal
analysis, Investigation, Methodology, Writing - original draft, Writing -
review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

The author wishes to thank three anonymous reviewers for their
comments on earlier versions of this paper.

References

Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution
models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43,
1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x.

Barnes, J.C., Delborne, J.A., 2019. Rethinking restoration targets for American chestnut
using species distribution modeling. Biodivers. Conserv. 28, 3199–3220.

Black, B.A., Ruffner, C.M., Abrams, M.D., 2006. Native American influences on the forest
composition of the Allegheny Plateau, northwest Pennsylvania. Can. J. For. Res.-Rev.
Can. Rech. For. 36, 1266–1275. https://doi.org/10.1139/x06-027.

Braun, E.L., 1950. Deciduous forests of Eastern North America. Blakiston, Philadelphia,
PA USA.

Chambers, D., Périé, C., Casajus, N., de Blois, S., 2013. Challenges in modelling the
abundance of 105 tree species in eastern North America using climate, edaphic, and
topographic variables. For. Ecol. Manage. 291, 20–29.

Clark, S.L., Schlarbaum, S.E., Pinchot, C.C., Anagnostakis, S.L., Saunders, M.R., Thomas-
Van Gundy, M., Schaberg, P., McKenna, J., Bard, J.F., Berrang, P.C., Casey, D.M.,
Casey, C.E., Crane, B., Jackson, B.D., Kochenderfer, J.D., Lewis, R.F., MacFarlane, R.,
Makowski, R., Miller, M.D., Rodrigue, J.A., Stelick, J., Thornton, C.D., Williamson,
T.S., 2014. Reintroduction of American chestnut in the National Forest system. J.
Forest. 112, 502–512.

Collins, R.J., Copenheaver, C.A., Kester, M.E., Barker, E.J., DeBose, K.G., 2017. American
chestnut: Re-examining the historical attributes of a lost tree. J. Forest. 116, 68–75.

Elith, J., Ferrier, S., Huettmann, F., Leathwick, J., 2005. The evaluation strip: a new and
robust method for plotting predicted responses from species distribution models.
Ecol. Model. 186, 280–289.

Esri, 2017. ArcGIS 10.5.1. Redlands, CA USA.
Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874.

https://doi.org/10.1016/j.patrec.2005.10.010.
Fei, S., Liang, L., Paillet, F.L., Steiner, K.C., Fang, J., Shen, Z., Wang, Z., Hebard, F.V.,

2012. Modelling chestnut biogeography for American chestnut restoration. Divers.
Distrib. 18, 754–768.

Fei, S., Schibig, J., Vance, M., 2007. Spatial habitat modeling of American chestnut at
Mammoth Cave National Park. For. Ecol. Manage. 252, 201–207.

Fenneman, N.M., 1938. Physiography of Eastern United States. McGraw-Hill Book
Company, New York, NY USA.

Franklin, J., Miller, J.A., 2009. Mapping Species Distributions: Spatial Inference and

S.J. Tulowiecki Forest Ecology and Management 462 (2020) 118003

9

https://doi.org/10.1111/j.1365-2664.2006.01214.x
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0010
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0010
https://doi.org/10.1139/x06-027
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0020
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0020
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0025
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0025
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0025
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0030
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0030
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0030
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0030
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0030
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0030
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0035
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0035
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0040
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0040
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0040
https://doi.org/10.1016/j.patrec.2005.10.010
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0055
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0055
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0055
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0060
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0060
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0065
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0065
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0070


Prediction. Cambridge University Press, New York, NY USA.
Gilman, E.F., Watson, D.G., 1993. Castanea mollissima, Chinese Chestnut (No. Fact Sheet

ST-128). Environmental Horticulture Department, Florida Cooperative Extension
Service, Institute of Food and Agricultural. Sciences, University of Florida,
Gainesville, FL USA.

Goldspiel, H.B., Newhouse, A.E., Powell, W.A., Gibbs, J.P., 2019. Effects of transgenic
American chestnut leaf litter on growth and survival of wood frog larvae. Restor.
Ecol. 27, 371–378.

Griffin, G.J., 2000. Blight control and restoration of the American chestnut. J. Forest. 98,
22–27.

Griscom, H.P., Griscom, B.W., 2012. Evaluating the ecological niche of American chestnut
for optimal hybrid seedling reintroduction sites in the Appalachian ridge and valley
province. New Forest. 43, 441–455.

Gurney, K.M., Schaberg, P.G., Hawley, G.J., Shane, J.B., 2011. Inadequate cold tolerance
as a possible limitation to American chestnut restoration in the northeastern United
States. Restor. Ecol. 19, 55–63.

Gustafson, E.J., Sturtevant, B.R., de Bruijn, A.M.G., Lichti, N., Jacobs, D.F., Kashian, D.M.,
Miranda, B.R., Townsend, P.A., 2018. Forecasting effects of tree species reintroduc-
tion strategies on carbon stocks in a future without historical analog. Glob. Change
Biol. 24, 5500–5517.

Kane, J.M., Varner, J.M., Saunders, M.R., 2019. Resurrecting the lost flames of the
American chestnut. Ecosystems 22, 995–1006.

Kronenfeld, B.J., Wang, Y.-C., 2007. Accounting for surveyor inconsistency and bias in
estimation of tree density from presettlement land survey records. Can. J. For. Res.-
Rev. Can. Rech. For. 37, 2365–2379. https://doi.org/10.1139/x07-068.

Larsen, C.P.S., Tulowiecki, S.J., Wang, Y.-C., Trgovac, A.B., 2015. Predicting historic
forest composition using species lists in presettlement land survey records, western
New York. Appl. Veg. Sci. 18, 481–492.

Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. News 2,
18–22.

Little, E.L., Viereck, L.A., 1971. Atlas of United States Trees. United States Department of
Agriculture, Washington, DC USA.

Mladenoff, D.J., Dahir, S.E., Nordheim, E.V., Schulte, L.A., Guntenspergen, G.G., 2002.
Narrowing historical uncertainty: probabilistic classification of ambiguously identi-
fied tree species in historical forest survey data. Ecosystems 5, 539–553. https://doi.
org/10.1007/s10021-002-0167-8.

Natural Resources Conservation Service, 2014. Description of SSURGO database [WWW
Document]. URL http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?
cid=nrcs142p2_053627.

Newhouse, A.E., Oakes, A.D., Pilkey, H.C., Roden, H.E., Horton, T.R., Powell, W.A., 2018.
Transgenic American chestnuts do not inhibit germination of native seeds or colo-
nization of mycorrhizal fungi. Front. Plant Sci. 9, 1046.

Nowacki, G.J., Abrams, M.D., 1992. Community, edaphic, and historical analysis of
mixed oak forests of the Ridge and Valley Province, in central Pennsylvania. Can. J.
For. Res. 22, 790–800.

Paciorek, C.J., Goring, S.J., Thurman, A.L., Cogbill, C.V., Williams, J.W., Mladenoff, D.J.,
Peters, J.A., Zhu, J., McLachlan, J.S., 2016. Statistically-estimated tree composition
for the northeastern United States at the time of Euro-American settlement. PLoS ONE
11, e0150087. https://doi.org/10.1371/journal.pone.0150087.

Peers, M.J.L., Thornton, D.H., Majchrzak, Y.N., Bastille-Rousseau, G., Murray, D.L., 2016.
De-extinction potential under climate change: Extensive mismatch between historic
and future habitat suitability for three candidate birds. Biol. Conserv. 197, 164–170.

Phillips, S.J., Dudik, M., Schapire, R.E., 2017. Maxent software for modeling species ni-
ches and distributions.

Powell, W.A., Newhouse, A.E., Coffey, V., 2019. Developing blight-tolerant American
chestnut trees. Cold Spring Harbor Perspect. Biol. 11, a034587.

PRISM Climate Group, 2013. Gridded climate data for the contiguous USA [WWW
Document]. URL http://www.prism.oregonstate.edu/.

Core Team, R., 2018. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria.

Rentch, J.S., Hicks, R.R., 2005. Changes in presettlement forest composition for five areas
in the central hardwood forest, 1784–1990. Natural Areas J. 25, 228–238.

Russell, E.W.B., 1987. Pre-blight distribution of Castanea dentata (Marsh.) Borkh. Bull.
Torrey Bot. Club 114, 183–190.

Seischab, F.K., 1992. Forests of the Holland Land Company in western New York, circa
1798. In: Marks, P.L., Gardescu, S., Seischab, F.K. (Eds.), Late Eighteenth Century
Vegetation of Central and Western New York State on the Basis of Original Land
Survey Records, New York State Museum, Bulletin 484. University of the State of

New York, Albany, NY USA, New York State Museum, pp. 36–53.
Skousen, J., Cook, T., Wilson-Kokes, L., Pena-Yewtukhiw, E., 2013. Survival and growth

of chestnut backcross seeds and seedlings on surface mines. J. Environ. Qual. 42,
690–695.

State University of New York, 2019. The American Chestnut Research & Restoration
Project at ESF [WWW Document]. SUNY College of Environmental Science and
Forestry. URL https://www.esf.edu/chestnut/.

Steiner, K.C., Westbrook, J.W., Hebard, F.V., Georgi, L.L., Powell, W.A., Fitzsimmons,
S.F., 2017. Rescue of American chestnut with extraspecific genes following its de-
struction by a naturalized pathogen. New Forest. 48, 317–336.

Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science 240,
1285–1293. https://doi.org/10.1126/science.3287615.

TACF, 2020. Using Science to Save the American Chestnut Tree [WWW Document]. The
American Chestnut Foundation. URL https://www.acf.org/science-strategies/3bur/.

Thomas-Van Gundy, M.A., Strager, M.P., 2012. European settlement-era vegetation of the
Monongahela National Forest, West Virginia (No. General Technical Report NRS-
101). United States Department of Agriculture - United States Forest Service -
Northern Research Station, Newton Square, PA USA.

Thuiller, W., Georges, D., Engler, R., 2013. biomod2: Ensemble platform for species
distribution modeling. Available at: http://cran.r-project.org/web/packages/
biomod2/index.html.

Thuiller, W., Lafourcade, B., Engler, R., Araujo, M.B., 2009. BIOMOD - a platform for
ensemble forecasting of species distributions. Ecography 32, 369–373. https://doi.
org/10.1111/j.1600-0587.2008.05742.x.

Tindall, J.R., Gerrath, J.A., Melzer, M., McKendry, K., Husband, B.C., Boland, G.J., 2004.
Ecological status of American chestnut (Castanea dentata) in its native range in
Canada. Canadian J. Forest Res.-Revue Canadienne De Recherche Forestière 34,
2554–2563.

Tulowiecki, S.J., 2014. Using vegetation data within presettlement land survey records
for species distribution modeling: A tale of two datasets. Ecol. Model. 291, 109–120.

Tulowiecki, S.J., Larsen, C.P.S., 2015. Native American impact on past forest composition
inferred from species distribution models, Chautauqua County, New York. Ecol.
Monogr. 85, 557–581. https://doi.org/10.1890/14-2259.1.

Tulowiecki, S.J., Larsen, C.P.S., Wang, Y.-C., 2015. Effects of positional error on modeling
species distributions: A perspective using presettlement land survey records. Plant
Ecol. 216, 67–85.

Tulowiecki, S.J., Robertson, D.S., Larsen, C.P.S., 2020. Oak savannas in western New York
State, circa 1795: Synthesizing predictive spatial models and historical accounts to
understand environmental and Native American influences. Ann. American
Association Geographers 110, 184–204.

USGS, 2013. The National Map Viewer and download platform [WWW Document]. URL
http://nationalmap.gov/viewer.html.

USGS Gap Analysis Project, 2018. PAD-US Data Download [WWW Document]. Protected
Areas Database of the United States (PAD-US). URL https://www.usgs.gov/core-
science-systems/science-analytics-and-synthesis/gap/science/pad-us-data-
download?qt-science_center_objects=0#qt-science_center_objects.

Van Couwenberghe, R., Collet, C., Pierrat, J.C., Verheyen, K., Gégout, J.C., 2013. Can
species distribution models be used to describe plant abundance patterns? Ecography
36, 665–674. https://doi.org/10.1111/j.1600-0587.2012.07362.x.

Van Drunen, S.G., McCune, J.L., Husband, B.C., 2018. Distribution and environmental
correlates of fungal infection and host tree health in the endangered American
chestnut in Canada. For. Ecol. Manage. 427, 60–69.

Wang, G.G., Knapp, B.O., Clark, S.L., Mudder, B.T., 2013. The Silvics of Castanea dentata
(Marsh.) Borkh., American Chestnut, Fagaceae (Beech Family) (General Technical
Report No. SRS-173). U.S. Department of Agriculture Forest Service, Asheville, NC
USA.

Wang, Y.-C., 2007. Spatial patterns and vegetation-site relationships of the presettlement
forests in western New York. USA. J. Biogeogr. 34, 500–513. https://doi.org/10.
1111/j.1365-2699.2006.01614.x.

Wang, Y.-C., 2005. Presettlement land survey records of vegetation: geographic char-
acteristics, quality and modes of analysis. Prog. Phys. Geogr. 29, 568–598. https://
doi.org/10.1191/0309133305 pp463ra.

Whitney, G.G., 1996. From coastal wilderness to fruited plain: A history of environmental
change in temperate North America, 1500 to the Present. Cambridge University
Press, New York, NY USA.

Zhang, S., Bettinger, P., Cieszewski, C., Merkle, S., Merry, K., Obata, S., He, X., Zheng, H.,
2019. Evaluation of sites for the reestablishment of the American chestnut (Castanea
dentata) in northeast Georgia, USA. Landscape Ecol. 34, 943–960.

S.J. Tulowiecki Forest Ecology and Management 462 (2020) 118003

10

http://refhub.elsevier.com/S0378-1127(19)32485-5/h0070
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0075
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0075
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0075
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0075
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0080
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0080
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0080
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0085
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0085
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0090
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0090
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0090
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0095
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0095
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0095
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0100
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0100
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0100
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0100
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0105
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0105
https://doi.org/10.1139/x07-068
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0115
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0115
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0115
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0120
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0120
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0125
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0125
https://doi.org/10.1007/s10021-002-0167-8
https://doi.org/10.1007/s10021-002-0167-8
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/%3fcid%3dnrcs142p2_053627
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/%3fcid%3dnrcs142p2_053627
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0140
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0140
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0140
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0145
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0145
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0145
https://doi.org/10.1371/journal.pone.0150087
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0155
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0155
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0155
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0165
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0165
http://www.prism.oregonstate.edu/
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0175
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0175
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0180
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0180
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0185
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0185
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0190
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0190
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0190
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0190
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0190
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0195
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0195
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0195
https://www.esf.edu/chestnut/
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0205
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0205
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0205
https://doi.org/10.1126/science.3287615
https://www.acf.org/science-strategies/3bur/
http://cran.r-project.org/web/packages/biomod2/index.html
http://cran.r-project.org/web/packages/biomod2/index.html
https://doi.org/10.1111/j.1600-0587.2008.05742.x
https://doi.org/10.1111/j.1600-0587.2008.05742.x
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0235
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0235
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0235
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0235
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0240
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0240
https://doi.org/10.1890/14-2259.1
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0250
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0250
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0250
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0255
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0255
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0255
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0255
http://URLttp://nationalmap.gov/viewer.html
http://URLttp://nationalmap.gov/viewer.html
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/pad-us-data-download%3fqt-science_center_objects%3d0%23qt-science_center_objects
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/pad-us-data-download%3fqt-science_center_objects%3d0%23qt-science_center_objects
https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/pad-us-data-download%3fqt-science_center_objects%3d0%23qt-science_center_objects
https://doi.org/10.1111/j.1600-0587.2012.07362.x
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0275
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0275
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0275
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0280
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0280
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0280
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0280
https://doi.org/10.1111/j.1365-2699.2006.01614.x
https://doi.org/10.1111/j.1365-2699.2006.01614.x
https://doi.org/10.1191/0309133305 pp463ra
https://doi.org/10.1191/0309133305 pp463ra
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0295
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0295
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0295
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0300
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0300
http://refhub.elsevier.com/S0378-1127(19)32485-5/h0300

	Modeling the historical distribution of American chestnut (Castanea dentata) for potential restoration in western New York State, US
	Introduction
	Study area
	Materials and methods
	Developing SDMs
	Comparing SDM predictions to land ownership and management

	Results
	SDM performance and diagnostics
	Chestnut distribution, and comparisons with land ownership and management

	Discussion
	Conclusion
	CRediT authorship contribution statement
	mk:H1_12
	Acknowledgments
	References




