(19)
 United States

Patent Application Publication
Ellis et al.

Pub. Date:
Aug. 8, 2019
(54) MAIZE EVENT MON87429 AND METHODS OF USE THEREOF
(71)
$\begin{aligned} \text { Applicant: } & \text { Monsanto Technology LLC, St. Louis, } \\ & \text { MO (US) }\end{aligned}$
(72) Inventors: Christine M. Ellis, Manchester, MO (US); Michael E. Goley, St. Charles, MO (US); Jintai Huang, Chesterfield, MO (US); Tracy E. Klingaman, St. Charles, MO (US); Clayton T. Larue, Chesterfield, MO (US); Youlin Qi, Chesterfield, MO (US); Oscar C. Sparks, Florissant, MO (US); Brook M. Van Scoyoc, O'Fallon, MO (US); Heping Yang, Chesterfield, MO (US)
(21) Appl. No.: 16/259,985
(22) Filed: Jan. 28, 2019

Related U.S. Application Data
(60) Provisional application No. 62/625,537, filed on Feb. 2, 2018.

Publication Classification

(51) Int. Cl.

C12N 15/82 (2006.01)
C12Q 1/6876 (2006.01)
C12Q 1/6874 (2006.01)
C12Q 1/686 (2006.01)
CPC C12N 15/8274 (2013.01); C12Q 1/6876
(2013.01); C12N 15/8223 (2013.01); C12Q

1/686 (2013.01); C12Q 1/6874 (2013.01)

(57)

ABSTRACT
The invention provides recombinant DNA molecules that are unique to maize event MON87429 and transgenic maize plants, maize plant parts, maize seeds, maize cells, and agricultural products containing maize event MON87429 as well as methods of using and detecting maize event MON87429. Transgenic maize plants containing maize event MON87429 exhibit tolerance to inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group, synthetic auxins, inhibitors of glutamine synthetase, and inhibitors of 5-enolpyruvylshikimate-3phosphate synthase (EPSPS).

Specification includes a Sequence Listing.
SEQ IO NO: 7 SEQIINO: $9 \quad$ SQ51053 \Rightarrow PB50370

SEQ ID NO: 10

Figure 1

CP4-EPSPS RB

figure 2

PAT and DMO cassette testing
\square
FT cassette testing

CP4-EPSPS/mts-siRNA cassette testing

Figure 3

MAIZE EVENT MON87429 AND METHODS OF USE THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of priority of U.S. Provisional Application No. 62/625,537, filed Feb. 2, 2018, the disclosure of which is hereby incorporated by reference in its entirety.

INCORPORATION OF SEQUENCE LISTING

[0002] The sequence listing that is contained in the file named "MONS430US-seq.txt", which is 44.2 KB (measured in MS-Windows) and created on Jan. 17, 2019, is filed herewith by electronic submission and incorporated herein by reference.

FIELD OF THE INVENTION

[0003] The invention relates to recombinant DNA molecules of maize event MON87429. The invention also relates to transgenic maize plants, parts, seeds, cells, and agricultural products containing the maize event MON87429 as well as methods of using transgenic maize plants, parts, seeds, cells, and agricultural products containing the maize event MON87429 and detecting maize event MON87429. Transgenic maize plants, parts, seeds, and cells containing maize event MON87429 exhibit tolerance to inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group such as quizalofop and haloxyfop; synthetic auxins such as dicamba and 2,4-D; inhibitors of glutamine synthetase such as glufosinate; and inhibitors of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) such as glyphosate.

BACKGROUND OF THE INVENTION

[0004] Maize (Zea mays) is an important crop in many areas of the world, and the use of herbicides for weed control in crop production is a well-established tool. The methods of biotechnology have been used to produce transgenic maize that are tolerant to a specific herbicide due to the expression of a heterologous gene, also known as a transgene. An herbicide tolerance trait can be used alone or combined with other traits, such as tolerance to another herbicide or resistance to pests or pathogens. Combinations of herbicide tolerance traits are desirable to provide weed control options that increase grower flexibility and enable the use of multiple herbicide mode of actions for controlling challenging weeds. A combination of traits can be achieved by breeding together each individual trait. Breeding together individual traits in maize and maintain this combination during breeding with a diverse pool of elite germplasm is a timeconsuming and expensive process. A combination of traits can also be achieved by combining multiple traits at one location, or locus, in the genome, thereby simplifying the breeding process. One way to achieve this in through a single transgenic insertion containing multiple transgenes. The combination of multiple herbicide tolerance traits at a single locus in maize would provide a useful tool in weed control that is much simpler and less expensive to maintain during breeding with a diverse pool of elite germplasm.
[0005] The expression of a transgene in a transgenic plant, part, seed, or cell, and therefore its effectiveness, may be influenced by many different factors, such as the elements
used in the transgene's expression cassette and the interaction of those elements. This is complicated further for a transgenic insertion containing two or more expression cassettes with each expression cassette having a transgene conferring a separate trait, also known as a multi-gene transgenic event. A commercially useful multi-gene transgenic event requires that each of the transgenes in the transgenic insertion express in the manner necessary for each trait. To achieve this, individual expression cassettes first are designed and tested in plants, and the best expression cassettes are selected for each trait. Next, the selected expression cassettes for one trait are combined with the selected expression cassettes for the other trait(s) into one construct, and the construct is tested to ensure that all the expression cassettes function well together and each transgene is properly expressed. Then, the selected combination of expression cassettes is used as a single transgenic insert to produce hundreds of multi-gene transgenic events, each event the result of a random insertion of the foreign DNA in a different genomic location.
[0006] Each transgenic event is unique. The unique events are then analyzed through multiple generations of plants to select a superior event for commercial use. The performance of an event in a transgenic plant, part, seed, or cell, and therefore its effectiveness, may be influenced by the genomic location of the transgenic insertion. Events can have the same transgenic insertion and nonetheless have different transgene expression levels and performance across tissues and developmental stages, in various germplasm, or under specific growth conditions. The creation of a multi-gene event for commercial use requires rigorous molecular characterization, greenhouse testing, and field trials over multiple years, in multiple locations, and under a variety of conditions so extensive agronomic, phenotypic, and molecular data may be collected. The resulting data must then be analyzed by scientists and agronomists to select an event that is useful for commercial purposes. The commercial multi-gene event can then be introgressed as a single locus having multiple herbicide tolerance traits into new germplasm using plant breeding methods.

BRIEF SUMMARY OF THE INVENTION

[0007] The invention provides recombinant DNA molecules comprising a sequence selected from the group consisting of SEQ ID NO:10, SEQ ID NO:9, SEQ ID NO:8, SEQ ID NO:7, SEQ ID NO:6, SEQ ID NO:5, SEQ ID NO:4, SEQ ID NO:3, SEQ ID NO:2, and SEQ ID NO:1. In one embodiment, the recombinant DNA molecule is derived from a plant, seed, or cell comprising maize event MON87429, a representative sample of seed comprising the event having been deposited as ATCC Accession No. PTA124635. In another embodiment, the recombinant DNA molecule is in a plant, cell, seed, or plant part comprising maize event MON87429, a representative sample of seed comprising the event having been deposited as ATCC PTA124635. In another embodiment, the recombinant DNA molecule is an amplicon diagnostic for the presence of maize event MON87429.
[0008] The invention provides a DNA construct comprising four expression cassettes, wherein the first expression cassette comprises in operable linkage (I) a ubiquitin promoter, leader, and intron from Erianthus ravennae, (II) a phosphinothricin N -acetyltransferase coding sequence, and (III) a fructose-bisphosphate aldolase 3^{\prime} UTR from Setaria
italica; the second expression cassette comprises in operable linkage (I) a ubiquitin promoter, leader, and intron from Coix lacryma-jobi, (II) an albino and pale green 6 chloroplast transit peptide coding sequence from Arabidopsis thaliana, (III) a dicamba monooxygenase coding sequence, and (IV) a metallothionein-like protein 3^{\prime} UTR from Oryza sativa; the third expression cassette comprises in operable linkage (I) a ubiquitin promoter, leader, and intron from Arundo donax, (II) a malate dehydrogenase chloroplast transit peptide coding sequence from Arabidopsis thaliana, (III) a FT_T protein coding sequence, and (IV) a no apical meristem protein 3' UTR from Oryza sativa; and the fourth expression cassette comprises in operable linkage (I) a CaMV 35S promoter and leader, (II) a chlorophyll a/b-binding protein leader from Triticum aestivum, (III) an actin 1 intron from Oryza sativa, (IV) a ShkG chloroplast transit peptide coding sequence from Arabidopsis thaliana, (V) a glyphosate tolerant 5 -enolpyruvylshikimate-3-phosphate synthase coding sequence from Agrobacterium sp strain CP4, (VI) a male tissue specific siRNA target from Zea mays, and (VII) a glycine-rich RNA binding protein $3^{\prime} \mathrm{UTR}$ from Oryza sativa.
[0009] The invention provides a DNA molecule having a sufficient length of contiguous nucleotides of SEQ ID NO:10 to function as a DNA probe specific for SEQ ID NO:10 in a sample of DNA derived from a maize plant, maize seed, or maize cell. In one embodiment, the DNA probe comprises SEQ ID NO:13.
[0010] The invention provides a pair of DNA molecules comprising a first DNA molecule and a second DNA molecule, wherein the first and second DNA molecules each comprise a fragment SEQ ID NO:10 and function as DNA primers when used together in an amplification reaction with DNA containing maize event MON87429 to produce an amplicon diagnostic for maize event MON87429 in a sample. In one embodiment, at least one DNA primer comprises a fragment of a sequence selected from the group consisting of SEQ ID NO:7 and SEQ ID NO:8. In another embodiment, the first DNA molecule comprises SEQ ID NO:11 and the second DNA molecule comprises SEQ ID NO: 12 .
[0011] The invention provides a method of detecting the presence of maize event MON87429 in a sample of DNA derived from a maize plant, maize seed, or maize cell, the method comprising: contacting the sample with a DNA probe; subjecting the sample and the DNA probe to stringent hybridization conditions; and detecting hybridization of the DNA probe to a DNA molecule in the sample, wherein the hybridization of the DNA probe to the DNA molecule indicates the presence of maize event MON87429 in the sample of DNA.
[0012] The invention provides a method of detecting the presence of maize event MON87429 in a sample of DNA derived from a maize plant, maize seed, or maize cell, the method comprising: contacting the sample with a pair of DNA molecules that function as DNA primers; performing an amplification reaction sufficient to produce a DNA amplicon comprising a sequence selected from the group consisting of SEQ ID NO:10, SEQ ID NO:9, SEQ ID NO:8, SEQ ID NO:7, SEQ ID NO:6, SEQ ID NO:5, SEQ ID NO:4, SEQ ID NO:3, SEQ ID NO:2, and SEQ ID NO:1; and detecting the presence of the DNA amplicon, wherein the presence of the DNA amplicon indicates the presence of maize event MON87429 in the sample.
[0013] The invention provides a method of detecting the presence of maize event MON87429 in a sample derived from a maize plant, maize seed, or maize cell, the method comprising: contacting the sample with at least one antibody specific for at least one or more protein encoded by maize event MON87429; and detecting binding of the antibody to the protein in the sample, wherein the binding of the antibody to the protein indicates the presence of maize event MON87429 in the sample. In another embodiment, the method comprises additionally contacting the sample with at least a second antibody specific for a second protein encoded by maize event MON87429. In another embodiment, the method comprises additionally contacting the sample with at least a second antibody and a third antibody specific for a second protein and a third protein, respectively, encoded by maize event MON87429. In another embodiment, the method comprises additionally contacting the sample with at least a second antibody, a third antibody, and a fourth antibody specific for a second protein, a third protein, and a fourth protein, respectively, encoded by maize event MON87429.
[0014] The invention provides a kit for detecting the presence of maize event MON87429 comprising a DNA probe specific for SEQ ID NO:10, a pair of DNA primers that produce an amplicon diagnostic for maize event MON87429, or at least one antibody specific for at least one protein encoded by maize event MON87429.
[0015] The invention provides a plant, seed, cell, plant part, or commodity product comprising a DNA molecule comprising a sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, and SEQ ID NO:10. In one embodiment, the plant, seed, cell, or plant part is tolerant to at least one herbicide selected from the group consisting of inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group, synthetic auxins, inhibitors of glutamine synthetase, and inhibitors of 5-enolpyruvylshiki-mate-3-phosphate synthase (EPSPS), or any combination thereof. In another embodiment, the plant, seed, cell, or plant part is tolerant to quizalofop, haloxyfop, dicamba, 2,4-D, and glufosinate.
[0016] The invention provides a method for controlling weeds in a crop-growing area comprising planting maize comprising maize event MON87429 in the crop-growing area and applying to the crop-growing area, or any portion thereof, an effective amount of at least one herbicide selected from the group consisting of inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group, synthetic auxins, inhibitors of glutamine synthetase, and inhibitors of 5-enolpyruvylshikimate-3phosphate synthase (EPSPS), or any combination thereof, to control the weeds in the area without injuring the maize. In one embodiment, the method comprises applying at least two or more herbicides selected from the group consisting of inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group, synthetic auxins, inhibitors of glutamine synthetase, and inhibitors of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) over a growing season. In another embodiment, the method comprises applying an herbicide selected from the group consisting of quizalofop, haloxyfop, dicamba, 2,4-D, glufosinate, and glyphosate, or any combination thereof. In one embodiment, the effective amount of dicamba is about 0.1 lb
ae/acre to about 16 lb ae/acre over a growing season. In one embodiment, the effective amount of dicamba is about 0.5 lb ae/acre to about 2 lb ae/acre over a growing season. In one embodiment, the effective amount of glufosinate is about 0.1 lb ae/acre to about 16 lb ae/acre over a growing season. In one embodiment, the effective amount of glufosinate is about 0.4 lb ae/acre to about 1.59 lb ae/acre over a growing season. In one embodiment, the effective amount of 2,4-D is about 0.1 lb ae/acre to about 10 lb ae/acre over a growing season. In one embodiment, the effective amount of $2,4-\mathrm{D}$ is about 0.75 lb ae/acre to 1.0 lb ae/acre over a growing season. In one embodiment, the effective amount of the FOP herbicide is about 0.01 lb ai$/$ acre to about $1.0 \mathrm{lb} \mathrm{ai} /$ acre over a growing season. In one embodiment, the effective amount of the FOP herbicide is about 0.034 lb ai/acre to about 0.083 lb ai/acre of quizalofop over a growing season. In one embodiment, the effective amount of the FOP herbicide is about $0.018 \mathrm{ai} /$ acre to about 0.07 lb ai/acre of haloxyfop over a growing season.
[0017] The invention provides a method for controlling volunteer maize comprising maize event MON87429 in an area comprising applying an herbicidally effective amount of at least one cyclohexanedione (DIM) herbicide, where the herbicide application prevents growth of maize comprising maize event MON87429. In one embodiment, the cyclohexanedione (DIM) herbicide is selected from the group consisting of clethodim, sethoxydim, and tralkoxydim.
[0018] The invention provides a method of producing a plant that is tolerant to at least one herbicide selected from the group consisting of inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group, synthetic auxins, inhibitors of glutamine synthetase, and inhibitors of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), or any combination thereof, the method comprising: breeding a plant comprising maize event MON87429 with itself or a second plant to produce seed; and identifying progeny seed that comprise maize event MON87429. In one embodiment, identifying progeny seed that comprise maize event MON87429 is by growing the progeny seed to produce progeny plants; treating the progeny plants with an effective amount of at least one herbicide selected from the group consisting of quizalofop, haloxyfop, dicamba, 2,4-D, glufosinate, glyphosate, or any combination thereof; and selecting a progeny plant that is tolerant to at least one herbicide selected from the group consisting of inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group, synthetic auxins, inhibitors of glutamine synthetase, and inhibitors of 5-enolpyruvylshiki-mate-3-phosphate synthase (EPSPS). In one embodiment, identifying progeny seed that comprise maize event MON87429 is by detecting the presence of maize event MON87429 in a sample derived from the progeny seed. In one embodiment, identifying progeny seed that comprise maize event MON87429 is by detecting the presence of at least one protein encoded by maize event MON87429 in a sample derived from the progeny seed.
[0019] The invention provides a method of producing hybrid seed comprising: growing a plant comprising SEQ ID NO:10; applying an effective amount of glyphosate prior to or during the development of the male reproductive tissue of the plant thereby inducing male-sterility in the plant; fertilizing the plant with pollen from a second plant; and harvesting hybrid seed from the plant. In one embodiment, the glyphosate is applied prior to or during the development at
an effective amount of about 0.25 lb ae/acre to about 11.0 lb ae/acre. In one embodiment, the glyphosate is applied prior to or during the development at an effective amount of about 0.5 lb ae/acre to about 2.5 lb ae/acre total in one or more applications. In one embodiment, the effective amount of glyphosate is applied at a developmental stage selected from the group consisting of the V4, V5, V6, V7, V8, V9, V10, V11, V12, V13, and V14 stage of maize plant development. The invention provides hybrid seed comprising SEQ ID NO:10 and produced by using the method of producing hybrid seed comprising: growing a plant comprising SEQ ID NO:10; applying an effective amount of glyphosate prior to or during the development of the male reproductive tissue of the plant thereby inducing male-sterility in the plant; fertilizing the plant with pollen from a second plant; and harvesting hybrid seed from the plant.
[0020] The invention provides a method of determining zygosity of a plant for maize event MON87429 comprising: contacting a sample comprising DNA derived from the plant with a primer set capable of producing a first amplicon diagnostic for the presence of maize event MON87429 and a second amplicon diagnostic for the wild-type maize genomic DNA not comprising maize event MON87429; performing a nucleic acid amplification reaction; detecting the first amplicon and the second amplicon, wherein the presence of both amplicons indicates the sample is heterozygous for maize event MON87429 and the presence of only the first amplicon indicates the sample is homozygous for maize event MON87429. In one embodiment, the primer set comprises SEQ ID NO:11 and SEQ ID NO:12.
[0021] The invention provides a method of improving tolerance to at least one herbicide selected from the group consisting of inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group, synthetic auxins, inhibitors of glutamine synthetase, and inhibitors of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), or any combination thereof, in a maize plant comprising: (a) obtaining a DNA construct comprising four expression cassettes, wherein the first expression cassette comprises in operable linkage (I) a ubiquitin promoter, leader, and intron from Erianthus ravennae, (II) a phosphinothricin N-acetyltransferase coding sequence, and (III) a fructose-bisphosphate aldolase 3' UTR from Setaria italica; the second expression cassette comprises in operable linkage (I) a ubiquitin promoter, leader, and intron from Coix lacrymajobi, (II) an albino and pale green 6 chloroplast transit peptide coding sequence from Arabidopsis thaliana, (III) a dicamba monooxygenase coding sequence, and (IV) a met-allothionein-like protein 3' UTR from Oryza sativa; the third expression cassette comprises in operable linkage (I) a ubiquitin promoter, leader, and intron from Arundo donax, (II) a malate dehydrogenase chloroplast transit peptide coding sequence from Arabidopsis thaliana, (III) a FT_T protein coding sequence, and (IV) a no apical meristem protein 3' UTR from Oryza sativa; and the fourth expression cassette comprises in operable linkage (I) a CaMV 35S promoter and leader, (II) a chlorophyll a/b-binding protein leader from Triticum aestivum, (III) an actin 1 intron from Oryza sativa, (IV) a ShkG chloroplast transit peptide coding sequence from Arabidopsis thaliana, (V) a glyphosate tolerant 5 -enolpyruvylshikimate-3-phosphate synthase coding sequence from Agrobacterium sp strain CP4, (VI) a male tissue specific siRNA target from Zea mays, and (VII) a glycine-rich RNA binding protein 3'UTR from Oryza sativa;
(b) inserting the DNA construct into the genome of a maize cell; (c) regenerating the maize cell into a maize plant; and (d) selecting a maize plant comprising the DNA construct. In one embodiment, selecting is by treating the maize plant with an effective amount of at least one herbicide selected from the group consisting of quizalofop, haloxyfop, dicamba, 2,4-D, glufosinate, or glyphosate. In one embodiment, the invention provides a maize plant, maize seed, or maize cell tolerant to at least one herbicide selected from the group consisting of inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group, synthetic auxins, inhibitors of glutamine synthetase, and inhibitors of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), or any combination thereof, and obtainable by the method, wherein the maize plant, maize seed, or maize cell comprises the DNA construct. In a further embodiment, the maize plant, maize seed, or maize cell produced by the method comprises SEQ ID NO:10.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] FIG. 1 represents the sequence of maize event MON87429. Horizontal lines correspond to the positions of SEQ ID NO: 1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, and SEQ ID NO:9 relative to SEQ ID NO:10; the horizontal arrows labeled SQ51062 (SEQ ID NO:11) and SQ51053 (SEQ ID NO:12) represent the approximate position of a pair of primers that can be used to detect maize event MON87429; and the horizontal line labeled PB50370 (SEQ ID NO:13) represents the approximate position of a DNA probe that can be used to detect maize event MON87429.
[0023] FIG. 2 represents the four expression cassettes of maize event MON87429 relative to SEQ ID NO:9 with their respective genetic elements labeled as described in Table 1. [0024] FIG. 3 represents the creation, testing, characterization, and selection of the MON87429 event as described herein. All times are approximate.

BRIEF DESCRIPTION OF THE SEQUENCES

[0025] SEQ ID NO:1 is a thirty nucleotide DNA sequence representing the 5^{\prime} junction of maize genomic DNA and the transgene insert. SEQ ID NO:1 corresponds to nucleotide positions 1015 to 1044 of SEQ ID NO:10.
[0026] SEQ ID NO:2 is a thirty nucleotide DNA sequence representing the 3^{\prime} junction of maize genomic DNA and the transgene insert. SEQ ID NO:2 corresponds to nucleotide positions 15023 to 15052 of SEQ ID NO:10.
[0027] SEQ ID NO:3 is a sixty nucleotide DNA sequence representing the 5^{\prime} junction of maize genomic DNA and the transgene insert. SEQ ID NO:3 corresponds to nucleotide positions 1000 to 1059 of SEQ ID NO:10.
[0028] SEQ ID NO:4 is a sixty nucleotide DNA sequence representing the 3^{\prime} junction of maize genomic DNA and the transgene insert. SEQ ID NO:4 corresponds to nucleotide positions 15008 to 15067 of SEQ ID NO:10.
[0029] SEQ ID NO:5 is a one-hundred nucleotide DNA sequence representing the 5^{\prime} junction of maize genomic DNA and the transgene insert. SEQ ID NO: 5 corresponds to nucleotide positions 980 to 1079 of SEQ ID NO:10.
[0030] SEQ ID NO:6 is a one-hundred nucleotide DNA sequence representing the 3^{\prime} junction of maize genomic DNA and the transgene insert. SEQ ID NO: 6 corresponds to nucleotide positions 14988 to 15087 of SEQ ID NO:10.
[0031] SEQ ID NO:7 is a 1350 nucleotide DNA sequence representing 1029 nucleotides of the 5^{\prime} flanking maize genomic DNA and 321 nucleotides of the 5^{\prime} end of the transgene insert.
[0032] SEQ ID NO:8 is a 1069 nucleotide DNA sequence representing 38 nucleotides of the 3^{\prime} end of the transgene insert and 1031 nucleotides of the 3^{\prime} flanking maize genomic DNA.
[0033] SEQ ID NO:9 is a 14008 nucleotide DNA sequence corresponding to the transgene insert of the maize MON87429 event.
[0034] SEQ ID NO:10 is a 16068 nucleotide DNA sequence corresponding to the maize MON87429 event; the sequence contains the 5^{\prime} flanking genomic DNA sequence from positions 1 to 1029, the transgenic DNA insert from positions 1030 to 15037 , and the 3^{\prime} flanking genomic DNA sequence from positions 15038 to 16068.
[0035] SEQ ID NO:11 is a 29 nucleotide DNA sequence corresponding to a primer referred to as SQ51062 and used to identify maize MON87429 event DNA in a sample; it corresponds to positions 15038 to 15066 of SEQ ID NO:10.
[0036] SEQ ID NO:12 is a 17 nucleotide DNA sequence corresponding to a primer referred to as SQ51053 and used to identify maize MON87429 event DNA in a sample; it corresponds to positions 14987 to 15003 of SEQ ID NO:10. [0037] SEQ ID NO:13 is a 16 nucleotide DNA sequence corresponding to a probe referred to as PB50370 and used to identify maize MON87429 event DNA in a sample; it corresponds to positions 15009 to 15024 of SEQ ID NO:10.

DETAILED DESCRIPTION OF THE INVENTION

[0038] The following definitions and methods are provided to better define the invention and to guide those of ordinary skill in the art in the practice of the invention. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art.
[0039] Plant transformation techniques are used to insert foreign DNA (also known as transgenic DNA) randomly into a chromosome of the genome of a cell to produce a genetically engineered cell, also referred to as "transgenic" or "recombinant" cell. Using this technique, many individual cells are transformed, each resulting in a unique transgenic event due to the random insertion of the foreign DNA into the genome. A transgenic plant is then regenerated from each individual transgenic cell. This results in every cell of the transgenic plant containing the uniquely inserted transgenic event as a stable part of its genome. This transgenic plant can then be used to produce progeny plants, each containing the unique transgenic event. Maize event MON87429 was produced by: (i) transformation of thousands of maize cells with a DNA construct that includes four expression cassettes (each expression cassette having been selected after individual testing followed by testing in combination with the other three expression cassettes), (ii) regeneration of a population of transgenic plants each containing a unique transgenic event, and (iii) rigorous multiyear event selection involving the testing and analysis of molecular characteristics, herbicide tolerance efficacy, and agronomic properties in a variety of genetic backgrounds for thousands of events through tens of thousands of plants.

Maize event MON87429 was thus produced and selected as a uniquely superior event useful for broad-scale agronomic commercial purposes.
[0040] As used herein, a "transgenic event" or an "event" is a DNA molecule created by the act of inserting a transgenic DNA molecule into the genomic DNA of a plant cell using plant transformation methods known in the art. This insertion creates a new, transgenic genomic DNA sequence that consists of the inserted foreign DNA (referred to as the "transgenic insert") and the genomic DNA immediately adjacent to, or "flanking", the transgenic insert on either side of the insertion location (referred to as the "flanking DNA"). The DNA sequence of an event is unique to and specific for the event and can be readily identified when compared to other DNA sequences, such as that of other events or untransformed maize genomic DNA. Maize event MON87429 has the new and unique DNA sequence provide as SEQ ID NO:10, which contains the transgenic insert sequence provided as SEQ ID NO:9 and the 5^{\prime} and 3^{\prime} flanking DNA sequence provided in SEQ ID NO:7 and SEQ ID NO:8, respectively. Maize event MON87429 is thus a DNA molecule that is an integral part of the chromosome of transgenic maize cells and plants comprising the event and as such is static and may be passed on to progeny cells and plants.
[0041] The present invention also provides progeny of the original transformed cell and plant that comprise maize
event MON87429. Such progeny may be produced by cell tissue culture, by selfing of a maize plant comprising the maize event MON87429, or by sexual outcrossing between a maize plant comprising maize event MON87429 and another plant that does or does not contain the event. Such other plant may be a transgenic plant comprising the same or different event(s) or a nontransgenic plant, such as one from a different variety. Maize event MON87429 is passed from the original parent through each generation to the progeny.
[0042] As used herein, the term "maize" means Zea mays (also referred to as corn) and includes all plant varieties that can be bred with Zea mays.
[0043] The invention provides maize event MON87429, which provides to maize cells, plants, and seeds that comprise the event tolerance to inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group such as quizalofop and haloxyfop; synthetic auxins such as dicamba and 2,4-D; inhibitors of glutamine synthetase such as glufosinate; and the 5 -enolpyruvylshiki-mate-3-phosphate synthase (EPSPS) inhibitor glyphosate. Maize event MON87429 contains four expression cassettes. As used herein, an "expression cassette" or "cassette" is a recombinant DNA molecule comprising a combination of distinct elements that are to be expressed by a transformed cell. Table 1 provides a list of the elements contained in SEQ ID NO:10 and as illustrated in FIG. 2.

TABLE 1

Description of maize event MON87429		
Element	Position in SEQ ID NO: 10	Description
5' Flanking DNA	1-1029	DNA sequence flanking the 5^{\prime} end of the transgenic insert
Left Border	1030-1288	DNA region from Agrobacterium tumefaciens
Region		containing the left border sequence
Intervening	1289-1359	Sequence used in DNA cloning
Sequence		
P-Ea.ubq	1360-3541	Promoter, 5' UTR, and intron sequences of a ubiquitin gene from Erianthus ravennae
Intervening	3542-3546	Sequence used in DNA cloning
Sequence		
CS-Sv.pat	3547-4098	Coding sequence for the phosphinothricin N acetyltransferase (PAT) protein
T-Si.fba	4099-4475	3' UTR sequence of the fructose-bisphosphate aldolase gene from Setaria italica
Intervening	4476-4537	Sequence used in DNA cloning
Sequence		
P-Clj.ubq	4538-6463	Promoter, 5' UTR, and intron sequences of a ubiquitin gene from Coix lacryma-jobi
Intervening	6464-6473	Sequence used in DNA cloning
Sequence		
TS-At.apg6	6474-6677	Codon optimized targeting sequence of the Albino and pale green 6 gene from Arabidopsis thaliana
CS-Sm.dmo	6678-7700	Coding sequence for the dicamba monooxygenase (DMO) protein
Intervening	7701-7708	Sequence used in DNA cloning
Sequence		
T-Os.mt	7709-8008	3' UTR sequence of the metallothionein-like protein from Oryza sativa
Intervening	8009-8016	Sequence used in DNA cloning
Sequence		
P-Ad.ubq	8017-9973	Promoter, 5' UTR, and intron sequences of a ubiquitin gene from Arundo donax
Intervening	9974-9986	Sequence used in DNA cloning
Sequence		
TS-At.mdh	9987-10229	Sequence of the transit peptide of the malate dehydrogenase gene from Arabidopsis thaliana

TABLE 1-continued

	Description of maize event MON87429	
	Position in	
SEQ ID NO: 10	Description	

[0044] As used herein, the term "recombinant" refers to a non-natural DNA, protein, or organism that would not normally be found in nature and was created by human intervention. As used herein, a "recombinant DNA molecule" is a DNA molecule comprising a combination of DNA molecules that would not naturally occur together and is the result of human intervention, for example, a DNA molecule that is comprised of a combination of at least two DNA molecules heterologous to each other, such as a DNA molecule that comprises a transgene and the plant genomic DNA adjacent to the transgene. An example of a recombinant DNA molecule is a DNA molecule comprising at least one sequence selected from SEQ ID NO:1-10. As used herein, a "recombinant plant" is a plant that would not normally exist in nature, is the result of human intervention, and contains a transgenic DNA molecule. As a result of such genomic alteration, the recombinant plant is something new and distinctly different from the related wild-type plant. An example of a recombinant plant is a maize plant containing the maize event MON87429.
[0045] As used herein, the term "transgene" refers to a DNA molecule artificially incorporated into an organism's genome as a result of human intervention, such as by plant transformation methods. A transgene may be heterologous to the organism. The term "transgenic insert" as used herein refers to the foreign DNA inserted by plant transformation techniques into the maize genome to produce maize event

MON87429. The sequence for the transgenic insert of maize event MON87429 is provided as SEQ ID NO:9. The term "transgenic" refers to comprising a transgene, for example a "transgenic plant" refers to a plant comprising a transgene. [0046] As used herein, the term "heterologous" refers to a first molecule not normally associated with a second molecule or an organism in nature. For example, a DNA molecule may be from a first species and inserted into the genome of a second species. The DNA molecule would thus be heterologous to the genome and the organism.
[0047] As used herein, the term "chimeric" refers to a single DNA molecule produced by fusing a first DNA molecule to a second DNA molecule, where neither first nor second DNA molecule would normally be found in that configuration fused to the other. The chimeric DNA molecule is thus a new DNA molecule not normally found in nature. An example of a chimeric DNA molecule is a DNA molecule comprising at least one sequence selected from SEQ ID NO:1-10.
[0048] As used herein, the term "isolated" refers to separating a molecule from other molecules that are normally associated with it in its native or natural state. The term "isolated" thus may refer to a DNA molecule that has been separated from other DNA molecule(s) that it is associated with it in its native or natural state. Such a DNA molecule may be present in a recombined state, such as a recombinant DNA molecule. Thus, a DNA molecule removed from its
natural state and fused to another DNA molecule with which it is not normally associated would be an isolated DNA molecule. Such an isolated DNA molecule could result from the use of biotechnology techniques, such as making recombinant DNA or integrating a foreign DNA molecule into the chromosome of a cell, plant, or seed.
[0049] The invention provides DNA molecules and their corresponding DNA sequences. As used herein, the terms "DNA" and "DNA molecule" refer to a deoxyribonucleic acid (DNA) molecule. A DNA molecule may be of genomic or synthetic origin and is by convention from the 5 ' (upstream) end to the 3^{\prime} (downstream) end. As used herein, the term "DNA sequence" refers to the nucleotide sequence of a DNA molecule. The nomenclature used is that required by Title 37 of the United States Code of Federal Regulations § 1.822 and set forth in the tables in WIPO Standard ST. 25 (1998), Appendix 2, Tables 1 and 3. By convention, the DNA sequences of the invention and fragments thereof are disclosed with reference to only one strand of the two complementary DNA sequence strands. By implication and intent, the complementary sequences of the sequences provided here (the sequences of the complementary strand), also referred to in the art as the reverse complementary sequences, are within the scope of the invention and are expressly intended to be within the scope of the subject matter claimed. Thus, as used herein references to SEQ ID $\mathrm{NO}: 1-10$ and fragments thereof include and refer to the sequence of the complementary strand and fragments thereof.
[0050] As used herein, the term "fragment" refers to a smaller piece of a whole. For example, fragments of SEQ ID $\mathrm{NO}: 10$ would include sequences that are at least about 10 consecutive nucleotides, at least about 11 consecutive nucleotides, at least about 12 consecutive nucleotides, at least about 13 consecutive nucleotides, at least about 14 consecutive nucleotides, at least about 15 consecutive nucleotides, at least about 16 consecutive nucleotides, at least about 17 consecutive nucleotides, at least about 18 consecutive nucleotides, at least about 19 consecutive nucleotides, at least about 20 consecutive nucleotides, at least about 25 consecutive nucleotides, at least about 30 consecutive nucleotides, at least about 35 consecutive nucleotides, at least about 40 consecutive nucleotides, at least about 45 consecutive nucleotides, at least about 50 consecutive nucleotides, at least about 60 consecutive nucleotides, at least about 70 consecutive nucleotides, at least about 80 consecutive nucleotides, at least about 90 consecutive nucleotides, or at least about 100 consecutive nucleotides of the complete sequence of SEQ ID NO:10.
[0051] The DNA sequence for the transgenic insert of maize event MON87429 is provided as SEQ ID NO:9. The DNA sequence of the transgenic insert and the maize genomic DNA flanking each side of the transgenic insert is provided as SEQ ID NO:10. The DNA sequences of a portion of flanking DNA and the 5 ' end of the transgenic insert are provided as SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, and SEQ ID NO:7. The DNA sequences of a portion of flanking DNA and the 3^{\prime} end of the transgenic insert are provided as SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, and SEQ ID NO:8.
[0052] The DNA sequence of the region spanning the connection by phosphodiester bond linkage of one end of the transgenic insert to the flanking maize genomic DNA is referred to herein as a "junction". A junction is the connec-
tion point of the transgenic insert and flanking DNA as one contiguous molecule. One junction is found at the 5^{\prime} end of the transgenic insert and the other is found at the 3^{\prime} end of the transgenic insert, referred to herein as the 5^{\prime} and 3^{\prime} junction, respectively. A "junction sequence" refers to a DNA sequence of any length that spans the 5^{\prime} or 3^{\prime} junction of an event. Junction sequences of maize event MON87429 are apparent to one of skill in the art using SEQ ID NO:10. Examples of junction sequences of maize event MON87429 are provided as SEQ ID NO:1-8. FIG. 1 illustrates the physical arrangement of SEQ ID NO:1-10 arranged from 5^{\prime} to 3^{\prime}. The junction sequences of maize event MON87429 may be present as part of the genome of a plant, seed, or cell containing maize event MON87429. The identification of any one or more of SEQ ID NO:1-8 or 10 in a sample from a plant, plant part, seed, or cell indicates that the DNA was obtained from maize containing maize event MON87429 and is diagnostic for the presence of maize event MON87429.
[0053] The plants, seeds, cells, plant parts, and commodity products of the invention may be used for detection of DNA or protein molecules indicative of the presence of maize event MON87429. Provided are exemplary DNA molecules that can be used either as primers or probes for detecting the presence of maize event MON87429 in a sample. Such primers or probes are specific for a target nucleic acid sequence and as such are useful for the identification of maize event MON87429 by the methods described here. Detection of the presence of maize event MON87429 may be done by using methods known in the art, such as thermal amplification of nucleic acid or nucleic acid hybridization techniques (such as northern blotting and southern analysis).
[0054] A "primer" is a DNA molecule that is designed for use in annealing or hybridization methods that involve an amplification reaction. An amplification reaction is an in vitro reaction that amplifies template DNA to produce an amplicon. As used herein, an "amplicon" is a DNA molecule that has been synthesized using amplification techniques. Amplicons of the invention have a DNA sequence comprising one or more of SEQ ID NO:1-10, or fragments thereof. A pair of primers may be used with template DNA, such as a sample of maize genomic DNA, in an amplification reaction, such as polymerase chain reaction (PCR), to produce an amplicon, where the amplicon produced would have a DNA sequence corresponding to sequence of the template DNA located between the two sites where the primers hybridized to the template. A primer is typically designed to hybridize to a complementary target DNA strand to form a hybrid between the primer and the target DNA strand. The presence of a primer is a point of recognition by a polymerase to begin extension of the primer using as a template the target DNA strand. Primer pairs refer to use of two primers binding opposite strands of a double stranded nucleotide segment for the purpose of amplifying the nucleotide segment between them. Examples of primer sequences are provided as SEQ ID NO:11 (SQ51062) and SEQ ID NO:12 (SQ51053). The primer pair provided as SEQ ID NO:11 and SEQ ID NO: 12 are useful as a first DNA molecule and a second DNA molecule, where the first DNA molecule is a fragment of the transgenic insert DNA sequence of SEQ ID NO:10 and the second DNA molecule is a fragment of the flanking DNA sequence of SEQ ID NO:10, and each are of sufficient length to function as DNA primers when used together in an amplification reaction with

DNA containing maize event MON87429 to produce an amplicon diagnostic for maize event MON87429 in a sample. Primer pairs of the present invention may in certain embodiments also be defined as comprising a first and second DNA molecule, wherein the first DNA molecule is a fragment of the maize genomic portion of SEQ ID NO:10 and the second DNA molecule is a fragment of the transgene portion of SEQ ID NO:10, and each are of sufficient length to function as DNA primers when used together in an amplification reaction with DNA containing maize event MON87429 to produce an amplicon diagnostic for maize event MON87429 in a sample.
[0055] A "probe" is a nucleic acid molecule that is complementary to a strand of a target nucleic acid and useful in hybridization detection methods. Probes according to the invention include not only deoxyribonucleic or ribonucleic acids but also polyamides and other probe materials that bind specifically to a target DNA sequence and the detection of such binding can be useful in detecting the presence or absence of the target DNA sequence. A probe may be attached to a conventional detectable label or reporter molecule, such as a radioactive isotope, ligand, chemiluminescent agent, or enzyme. An exemplary DNA sequence useful as a probe for detecting maize event MON87429 is provided as SEQ ID NO:13 (PB50370).
[0056] Methods for designing and using primers and probes are well known in the art. DNA molecules comprising the full length of or fragments of SEQ ID NO:1-10 are useful as primers and probes for detecting maize event MON87429 and can readily be designed by one of skill in the art using the sequences provided herein.
[0057] Probes and primers according to the invention may have complete sequence identity with the target sequence, although primers and probes differing from the target sequence that retain the ability to hybridize preferentially to target sequences may be designed by conventional methods. In order for a nucleic acid molecule to serve as a primer or probe it need only be sufficiently complementary in sequence to be able to form a stable double-stranded structure under the particular solvent and salt concentrations employed. Any conventional nucleic acid hybridization or amplification method can be used to identify the presence of transgenic DNA from maize event MON87429 in a sample. Probes and primers are generally at least about 11 nucleotides, at least about 18 nucleotides, at least about 24 nucleotides, or at least about 30 nucleotides or more in length. Such probes and primers hybridize specifically to a target DNA sequence under stringent hybridization conditions. Conventional stringency conditions are described by M R Green and J Sambrook, Molecular cloning: a laboratory manual, $4^{\text {th }}$ Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012). As used herein, two nucleic acid molecules are capable of specifically hybridizing to one another if the two molecules are capable of forming an anti-parallel, double-stranded nucleic acid structure. A nucleic acid molecule is the "complement" of another nucleic acid molecule if they exhibit complete complementarity. As used herein, two molecules exhibit "complete complementarity" if when aligned every nucleotide of the first molecule is complementary to every nucleotide of the second molecule. Two molecules are "minimally complementary" if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under at least conventional "low-stringency" conditions.

Similarly, the molecules are "complementary" if they can hybridize to one another with sufficient stability to permit them to remain annealed to one another under conventional "high-stringency" conditions. Departures from complete complementarity are therefore permissible, as long as such departures do not completely preclude the capacity of the molecules to form a double-stranded structure.
[0058] Appropriate stringency conditions that promote DNA hybridization, for example, $6.0 \times$ sodium chloride/sodium citrate (SSC) at about $45^{\circ} \mathrm{C}$., followed by a wash of $2.0 \times \mathrm{SSC}$ at $50^{\circ} \mathrm{C}$., are known to those skilled in the art or can be found in Current Protocols in Molecular Biology, John Wiley \& Sons, N.Y. (1989), 6.3.1-6.3.6. For example, the salt concentration in the wash step can be selected from a low stringency of about $2.0 \times \mathrm{SSC}$ at $50^{\circ} \mathrm{C}$. to a high stringency of about $0.2 \times \mathrm{SSC}$ at $50^{\circ} \mathrm{C}$. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about $22^{\circ} \mathrm{C}$., to high stringency conditions at about $65^{\circ} \mathrm{C}$. Both temperature and salt may be varied, or either the temperature or the salt concentration may be held constant while the other variable is changed.
[0059] Provided are proteins that can be used to produce antibodies for detecting the presence of maize event MON87429 in a sample. Such antibodies are specific for one or more of the proteins that are encoded by maize event MON87429. The DNA sequence encoding such proteins is provided in SEQ ID NO:10 and the start positions and stop positions of the coding sequence are indicated in Table 1. The DNA sequence encoding each protein and the protein encoded by the sequence are useful to produce antibodies for detecting the presence of maize event MON87429 by the methods described here. Detection of the presence of maize event MON87429 may be done by using any protein detection techniques known in the art, such as western blotting, immuno-precipitation, enzyme-linked immunosorbent assay (ELISA), antibody attachment to a detectable label or reporter molecule (such as a radioactive isotope, ligand, chemiluminescent agent, or enzyme), or enzymatic action on a reporter molecule. One method provides for contacting a sample with an antibody that binds to the DMO, PAT, FT_T, or CP4-EPSPS protein encoded by maize event MON87429 and then detecting the presence or absence of antibody binding. The binding of such antibody is diagnostic for the presence of one or more proteins encoded by maize event MON87429.
[0060] Protein and nucleic acid detection kits for detecting the presence of maize event MON87429 are provided. Variations on such kits can also be developed using the compositions and methods disclosed herein and the methods well known in the art of protein and nucleic acid detection. Protein and nucleic acid detection kits can be applied to methods for breeding with plants containing maize event MON87429. Such kits contain primers or probes comprising fragments of SEQ ID NO:1-10 or antibodies specific for a protein encoded by maize event MON87429.
[0061] One example of a detection kit comprises at least one DNA molecule of sufficient length of contiguous nucleotides of SEQ ID NO:10 to function as a DNA probe useful for detecting the presence or absence of maize event MON87429 in a sample. An exemplary DNA molecule sufficient for use as a probe is one comprising the sequence provided as SEQ ID NO:13. Other probes may be readily designed by one of skill in the art. Another example of a
detection kit comprises at least one primer pair useful for producing an amplicon useful for detecting the presence or absence of maize event MON87429 in a sample. Such a method may also include sequencing the amplicon or a fragment thereof. Exemplary DNA molecules sufficient for use as a primer pair are ones comprising the sequences provided as SEQ ID NO:11 and SEQ ID NO:12, respectively. Other primer pairs may be readily designed by one of skill in the art. Kits of the invention may optionally also comprise reagents for performing the detection or diagnostic reactions described herein. Another example of a detection kit comprises at least one antibody specific for at least one protein encoded by maize event MON87429. For example, such a kit may utilize a lateral flow strip comprising reagents activated when the tip of the strip is contacted with an aqueous solution. Exemplary proteins sufficient for use in antibody production are ones encoded by the sequence provided as SEQ ID NO:10, or any fragment thereof.
[0062] The invention provides maize plants, progeny, seeds, cells, and plant parts containing maize event MON87429, and commodity products produced using these. The plants, progeny, seeds, cells, plant parts, and commodity products of the invention contain a detectable amount of DNA having at least one of the sequences provided as SEQ ID NO:1-8 and SEQ ID NO:10.
[0063] Plants, progeny, seeds, cells, and plant parts of the invention may also contain one or more additional transgenic traits, particularly those introduced by crossing a maize plant containing maize event MON87429 with another plant containing the additional transgenic trait(s). Such traits include but are not limited to increased insect resistance, increased water use efficiency, increased yield performance, increased drought resistance, increased seed quality, improved nutritional quality, hybrid seed production, and/or increased herbicide tolerance, in which the trait is measured with respect to a maize plant lacking such transgenic trait.
[0064] Plants of the invention may be used to produce progeny that contain maize event MON87429. As used herein, "progeny" includes any plant, seed, and cell comprising maize event MON87429 inherited from an ancestor plant, indicated by the plant comprising a DNA molecule having at least one sequence selected from SEQ ID NO:1-8 and SE ID NO:10. Plants, seeds, and cells may be homozygous or heterozygous for maize event MON87429. Progeny plants may be grown from seeds produced by a maize plant containing maize event MON87429 or from seeds produced by a maize plant fertilized with pollen containing maize event MON87429.
[0065] As used herein, a "plant part" of the invention is any part from a plant containing maize event MON87429. Plant parts include but are not limited to tissue samples, pollen, ovule, pod, flower, roots, stems, fibers, and leaves in whole or part. Plant parts may be viable or nonviable.
[0066] The invention provides a commodity product that is produced from plants containing maize event MON87429. Commodity products of the invention contain a detectable amount of DNA comprising a DNA sequence selected from the group consisting of SEQ ID NO:1-10. As used herein, a "commodity product" refers to any composition or product which is comprised of material from plant, seed, cell, or plant part comprising maize event MON87429. Commodity products include but are not limited to processed seeds, grains, plant parts, and meal. A commodity product of the
invention will contain a detectable amount of DNA corresponding to maize event MON87429. Detection of one or more of this DNA in a sample may be used for determining the content or the source of the commodity product. Any standard method of detection for DNA molecules may be used, including methods of detection disclosed herein.
[0067] Maize event MON87429 contains four expression cassettes that together provide tolerance to inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group; synthetic auxins; inhibitors of glutamine synthetase; and inhibitors of 5-enolpyruvylshiki-mate-3-phosphate synthase (EPSPS).
[0068] As used herein, inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group (referred to as "FOP herbicide(s)") include, but are not limited to, clodinafop, clodinafop-ethyl, clodinafop-propargyl, cyhalofop, cyhalofop-butyl, diclofop, diclofop-methyl, diclofop-P, diclofop-P-methyl, fenoxaprop, fenoxaprop-P, fenoxaprop-P-ethyl, fenthiaprop, fluazifop, fluazifop-butyl, fluazifop-P, fluazifop-P-butyl, fluroxypyr, haloxyfop, haloxyfop.etotyl, haloxyfop-methyl, haloxyfop-P, haloxy-fop-P-methyl, isoxapyrifop, metamifop, propaquizafop, quizalofop, quizalafop-ethyl, quizalofop-P, quizalafop-Pethyl, quizalafop-P-tefuryl, and trifop.
[0069] As used herein, synthetic auxins include, but are not limited to, benzoic acid herbicides, phenoxy acid herbicides, arylpicolinate herbicides, and pyridinyloxy acid herbicides. Examples of a benzoic acid herbicides include, but are not limited to, dicamba (3,6-dichloro-2-methoxybenzoic acid), dicamba salts, dicamba-butotyl, dicamba-diglycolamine salt, dicamba-dimethylammonium, dicamba-diethanolammonium, dicamba-isopropylammonium, dicamba-potassium, dicamba-sodium, and dicamba-trolamine. Examples of phenoxy acid herbicides are 2,4-D (2,4dichlorophenoxyacetic acid), 2,4-D-butotyl, 2,4-D-butyl, 2,4-D-choline, 2,4-D-dimethylammonium, 2,4-D-diolamin, 2,4-D-ethyl, 2,4-D-2-ethylhexy1, 2,4-D-isobuty1, 2,4-D-isoctyl, 2,4-D-isopropyl, 2,4-D-isopropylammonium, 2,4-Dpotassium, 2,4-D-sodium, 2,4-D-triisopropanolammonium, 2,4-D-trolamine, clomeprop, dichlorprop, fenoprop, MCPA, MCPA-butotyl, MCPA-dimethylammonium, MCPA-2-ethylhexyl. MCPA-isopropylammonium, MCPA-potassium, MCPA-sodium, MCPA-thioethyl, 2,4-DB, MCPB, MCPBmethyl, MCPB-ethyl-sodium, and mecoprop. Examples of arylpicolinate herbicides are halauxifen, halauxifen-methyl, and florpyrauxifen-benzyl. Examples of pyridinyloxy acid herbicides are triclopyr, fluroxypyr, aminopyralid, clopyralid, and picloram.
[0070] As used herein, inhibitors of glutamine synthetase include, but are not limited to, phosphinothricin, glufosinate, glufosinate salts, glufosinate-ammonium, glufosinate-sodium, glufosinate-P, L-glufosinate-ammonium, and L-glu-fosinate-sodium.
[0071] As used herein, inhibitors of 5-enolpyruvylshiki-mate-3-phosphate synthase (EPSPS) include, but are not limited to, glyphosate, glyphosate salts, glyphosate-isopropylammonium, glyphosate-ammonium, glyphosate-dimethylammonium, glyphosate-trimesium (=sulfosate), glypho-sate-diammonium, glyphosate-potassium, and glyphosatesodium.
[0072] As used herein, "herbicide tolerant" or "herbicide tolerance" or "tolerance" means the ability to be wholly or partially unaffected by the presence or application of one of more herbicide(s), for example to resist the toxic effects of
an herbicide when applied. A cell, seed, or plant is "herbicide tolerant" or has "improved tolerance" if it can maintain at least some normal growth or phenotype in the presence of one or more herbicide(s). A trait is an herbicide tolerance trait if its presence can confer improved tolerance to an herbicide upon a cell, plant, or seed as compared to the wild-type or control cell, plant, or seed. Crops comprising an herbicide tolerance trait can continue to grow in the presence of the herbicide and may be minimally affected by the presence of the herbicide. A protein confers "herbicide tolerance" if expression of the protein can confer improved tolerance to an herbicide upon a cell, plant, or seed as compared to the wild-type or control cell, plant, or seed. Examples of herbicide tolerance proteins are phosphinothricin N -acetyltransferase, dicamba monooxygenase coding sequence, the FT_T protein, and glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase coding sequence from Agrobacterium sp strain CP4. Herbicide tolerance may be complete or partial insensitivity to a particular herbicide and may be expressed as a percent (\%) tolerance or insensitivity to a particular herbicide.
[0073] As used herein, a "weed" is any undesired plant. A plant may be considered generally undesirable for agriculture or horticulture purposes (for example, Amaranthus species) or may be considered undesirable in a particular situation (for example, a crop plant of one species in a field of a different species, also known as a volunteer plant). Weeds are commonly known in the art and vary by geography, season, growing environment, and time. Lists of weed species are available from agricultural and scientific societies and efforts (such as the Weed Science Society of America, the Canadian Weed Science Society, the Brazilian Weed Science Society, the International Weed Science Society, and the International Survey of Herbicide Resistant Weeds), government agencies (such as the United States Department of Agriculture and the Australia Department of the Environment and Energy), and industry and farmer associations (such as the National Corn Growers Association).
[0074] The invention provides methods for controlling weeds in an area for maize cultivation by applying at least one herbicide selected from the group consisting of (i) inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group such as quizalofop and haloxyfop; (ii) synthetic auxins such as dicamba and 2,4-D; (iii) inhibitors of glutamine synthetase such as glufosinate; and (iv) the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitor glyphosate, where seeds or plants comprising maize event MON87429 are planted in the area before, at the time of, or after applying the herbicide and the herbicide application prevents or inhibits weed growth and does not injure the maize plants. The plant growth area may or may not comprise weed plants at the time of herbicide application. The herbicide(s) used in the methods of the invention can be applied alone or in combination with one or more herbicide(s) during the growing season. The herbicide(s) used in the methods of the invention can be applied in combination with one or more herbicide(s) temporally (for example, as a tank mixture or in sequential applications), spatially (for example, at different times during the growing season including before and after maize seed planting), or both. For example, a method for controlling weeds is provided that consists of planting seed comprising maize event MON87429 in an area and applying
an herbicidally effective amount over the growing season of one or more of dicamba, glufosinate, glyphosate, 2,4-D, or a FOP herbicide, alone or in any combination with another herbicide, for the purpose of controlling weeds in the area without injuring the plants containing maize event MON87429. Such application of herbicide(s) may be preplanting (any time prior to planting seed containing maize event MON87429, including for burn-down purposes, that is application to emerging or existing weeds prior to seed plant), pre-emergence (any time after seed containing maize event MON87429 is planted and before plants containing maize event MON87429 emerge), or post-emergence (any time after plants containing maize event MON87429 emerge). Multiple applications of one or more herbicides, or a combination of herbicides together or individually, may be used over a growing season, for example, two applications (such as a pre-planting application and a post-emergence application, or a pre-emergence application and a postemergence application) or three or more applications (such as a pre-planting application and two post-emergence applications).
[0075] Herbicide application in practicing the methods of the invention may be at the recommended commercial rate or any fraction or multiple thereof, such as twice the recommended commercial rate. Herbicide rates may be expressed as acid equivalent per pound per acre (1 b ae/acre) or active ingredient per pound per acre ($\mathrm{lb} \mathrm{ai} / \mathrm{acre}$), depending on the herbicide and the formulation. The herbicide application may be the recommended commercial rate or a fraction or multiple thereof. The use of acres in the herbicide application rates as provided herein is merely instructive; herbicide application rates in the equivalent dosages to any rate provided herein may be used for areas larger or smaller than an acre. The herbicide application comprises at least one herbicide selected from the group consisting of (i) inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group such as quizalofop and haloxyfop; (ii) synthetic auxins such as dicamba and 2,4-D; (iii) inhibitors of glutamine synthetase such as glufosinate; and (iv) the 5 -enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitor glyphosate. The plant growth area may or may not comprise weed plants at the time of herbicide application. An herbicidally effective amount of the FOP herbicides for use in the area for controlling weeds should consist of a range from about 0.01 lb ai/acre to about 1.0 lb ai/acre over a growing season (for example, quizalofop could be applied at a rate of about 0.034 lb ai/acre to about 0.083 lb ai/acre and haloxyfop could be applied at a rate of about 0.018 ai/acre to about 0.07 lb ai/acre). An herbicidally effective amount of the synthetic auxin phenoxy acid herbicides for use in the area for controlling weeds should consist of a range from about 0.1 lb ae/acre to about 10 lb ae/acre over a growing season (for example, 2,4-D could be applied at a rate of about 0.75 lb ae/acre to 1.0 lb ae/acre). An herbicidally effective amount of the synthetic auxin pyridinyloxy acid herbicides for use in the area for controlling weeds should consist of a range from about 0.05 lb ae/acre to about 5.0 lb ae/acre over a growing season (for example, fluroxypyr could be applied at a rate of about 0.14 lb ae/acre to about 0.49 lb ae/acre). An herbicidally effective amount of a synthetic auxin benzoic acid herbicide for use in the area for controlling weeds should consist of a range from about 0.1 lb ae/ac to as much as about 16 lb ae/ac over a growing season (for example, dicamba could be applied at
a rate of about 0.5 lb ae/acre to about 2.0 lb ae/acre). An herbicidally effective amount of glutamine synthetase inhibitors for use in the area for controlling weeds should consist of a range from about 0.1 lb ae/acre to as much as about 10 lb ae/acre over a growing season (for example, glufosinate could be applied at a rate of about 0.4 lb ai/acre to about 1.59 lb ai/acre). An herbicidally effective amount of EPSPS inhibitors for use in the area for controlling weeds should consist of a range from about 0.5 lb ae/ac to about 12 lb ae/ac over a growing season (for example, glyphosate could be applied at a rate of about 0.75 lb ae/acre to about 2.25 lb ae/acre).
[0076] The invention provides methods for controlling volunteer maize comprising maize event MON87429 in an area for crop cultivation by applying an herbicidally effective amount of at least one cyclohexanedione (DIM) herbicide, such as clethodim, sethoxydim, and tralkoxydim, where the herbicide application prevents growth of maize comprising maize event MON87429. An herbicidally effective amount of a DIM herbicide for use in the area for controlling volunteer maize could be applied at a rate of about 0.03 lb ai/acre to about 2.75 lb ai/acre over a growing season (for example, clethodim could be applied from about 0.0625 lb ai/acre to about 0.125 lb ai/acre and sethoxydim could be applied from about 0.188 lb ai/acre to 0.281 about lb ai/acre).
[0077] Methods for producing plants and seeds containing maize event MON87429 are provided. Plants may be bred using any method known in the art, for example, descriptions of breeding methods that are commonly used can be found in W R Fehr, in Breeding Methods for Cultivar Development, Wilcox J. ed., American Society of Agronomy, Madison Wis. (1987). Plants may be self-pollinated (also known as "selfing") or cross-pollinated (also known as "crossing"). Plants containing maize event MON87429 may be self-pollinated to generate a true breeding line of plants that are homozygous for maize event MON87429. Selfing results in progeny known as "inbred" and can be used to produce inbred lines that are genetically uniform. Alternatively, plants containing maize event MON87429 may be cross-pollinated (bred with another plant that is transgenic or nontransgenic) to produce a varietal or a hybrid seed. Seed and progeny plants made by the methods of the invention contain maize event MON87429. Application of one or more herbicide for which maize event MON87429 confers tolerance may be used to select progeny that contain maize event MON87429. Alternatively, progeny may be analyzed using diagnostic methods to select for plants or seeds containing maize event MON87429. Progeny may be varietal or hybrid plants; may be grown from seeds produced by a plant containing maize event MON87429 or from seeds produced by a plant fertilized with pollen from a plant containing maize event MON87429; and may be homozygous or heterozygous for maize event MON87429.
[0078] Methods for producing hybrid seed using maize event MON87429 are provided. Plants comprising maize event MON87429 have expression of the glyphosate tolerant protein CP4-EPSPS in all tissues except male reproductive tissues. This results in glyphosate tolerance in vegetative and female reproductive tissues and glyphosate sensitivity in male reproductive tissues. This glyphosate sensitivity can be used to induce male-sterility through the proper application of glyphosate. Glyphosate is a systemic herbicide that is
translocated from source to sink tissues in plants. Due to the rate of glyphosate metabolism in maize, application to plants comprising maize event MON87429 prior to the development of the male reproductive tissue may prevent pollen development, pollen shed, or anther extrusion. This glypho-sate-induced male-sterility can be used to increase the efficiency of hybrid seed production, for example by eliminating or reducing the need to physically emasculate the maize plant used as a female in a given cross during hybrid seed production.
[0079] The invention provides a method of producing hybrid seed comprising (a) growing a plant comprising maize event MON87429, (b) applying an effective amount of glyphosate to the plant to induce male-sterility, wherein the herbicide application is prior to or during the development of the male reproductive tissue of the plant thereby inducing male-sterility in the plant; (c) fertilizing the plant with pollen from a second plant; and (d) harvesting hybrid seed from the plant. In one embodiment, the glyphosate is applied prior to or during the development at an effective amount of about 0.25 lb ae/acre to about 11.0 lb ae/acre total, applied in one or more application. In another embodiment, the step of fertilizing may be accomplished by allowing passive fertilization (for example through wind pollination), by other means such as mechanical or hand pollination, or by a combination of these. The herbicide application may be applied in one or more application prior to or during the development of the male reproductive tissue, such as at a stage selected from the group consisting of the V4, V5, V6, V7, V8, V9, V10, V11, V12, V13, and V14 stage of maize plant development and may prevent at least pollen development, pollen shed, or anther extrusion. The male-sterility may be partial or complete. In one embodiment, the effective amount of glyphosate would be about 0.5 lb ae/acre to about 2.5 lb ae/acre total (in one application or split into two or more applications) applied at the V4 through V8 stage or up to 100 growing degree units (GDU) before flowering.
[0080] Plants, progeny, seeds, cells, and plant parts of the invention may also contain one or more additional maize trait(s) or transgenic events, particularly those introduced by crossing a maize plant containing maize event MON87429 with another maize plant containing the additional trait(s) or transgenic events. Such trait(s) or transgenic events include, but are not limited to, increased insect resistance, increased water use efficiency, increased yield performance, increased drought resistance, increased seed quality, improved nutritional quality, hybrid seed production, and herbicide tolerance, in which the trait is measured with respect to a maize plant lacking such transgenic trait. Maize transgenic events are known to one of skill in the art; for example, a list of such traits is provided by the United States Department of Agriculture's (USDA) Animal and Plant Health Inspection Service (APHIS) and can be found on their website at www. aphis.usda.gov. Two or more transgenic events may thus be combined in a progeny seed or plant by crossing two parent plants each comprising one or more transgenic event(s), collecting progeny seed, and selecting for progeny seed or plants that contain the two or more transgenic events; these steps may then be repeated until the desired combination of transgenic events in a progeny is achieved. Back-crossing to a parental plant and out-crossing with a non-transgenic plant are also contemplated, as is vegetative propagation.
[0081] A deposit of a representative sample of seed comprising maize event MON87429 has been made according to
the Budapest Treaty with the American Type Culture Collection (ATCC(B) having an address at 10801 University Boulevard, Manassas, Va. USA, Zip Code 20110. The ATCC Patent Deposit Designation (accession number) for seeds comprising maize event MON87429 is PTA-124635 and the date of deposit was Jan. 12, 2018. The deposit will be maintained in the depository for a period of 30 years, or 5 years after the last request, or for the effective life of the patent, whichever is longer.
[0082] As used herein, the term "comprising" means "including but not limited to".

EXAMPLES

[0083] The following examples are included to more fully describe the invention. Summarized are the construction and testing of thirty-five expression constructs, the production of over fifteen thousand unique events, and the analysis of hundreds of thousands of individual plants over seven years through the rigorous molecular, agronomic, and field testing required for the creation and ultimate selection of maize event MON87429
[0084] It should be appreciated by those of skill in the art that many modifications can be made in the specific examples which are disclosed and still obtain a similar result. Certain agents which are both chemically and physiologically related may be substituted for the agents described herein while achieving the same or similar results. All such substitutions and modifications apparent to those skilled in the art are deemed to be within the scope of the invention.

Example 1: Expression Cassette Testing, Construct Design, and R0 Plant Testing

[0085] This example describes the design and testing in maize plants of thirty-five different constructs. Each construct contained four expression cassettes, each expression cassette used for expressing a different transgene. This testing was done to select the best construct to use for expressing all four transgenes in maize. Each construct had a unique configuration, varying by expression cassette orientation and expression elements.
[0086] Various individual expression cassettes with different expression element combinations and transgenes were designed, cloned into plant transformation vectors, and tested for trait efficacy in maize plants to create a pool of the best individual expression cassettes. Using this pool of individual expression cassettes, 35 different constructs were designed so that each contained four expression cassettes (each expression cassette having the transgene for PAT, DMO, CP4-EPSPS, or FT) and could be used to test the four-way combination of the different expression cassettes. The expression cassette combinations varied by expression elements, protein coding sequence, and orientation. This resulted in the testing of two PAT expression cassettes, 6 DMO expression cassettes, 5 FT expression cassettes, 18 CP4-EPSPS expression cassettes.
[0087] The 35 four-expression cassette constructs were cloned into plant transformation vectors, and these vectors were used for Agrobacterium-mediated transformation of LH244 maize immature embryos using methods known in the art to produce 15,326 unique transformation events, each made by a random insertion of the transgene insert into the maize genome. R0 plants were then regenerated from the
transgenic cells, and rooted plants with normal phenotypic characteristics were transferred to soil for growth and further assessment.
[0088] The 15,326 R0 plants were analyzed for having a single copy of the transgenic insert and absence of vector backbone sequence. Plants with a single copy of the insert were advanced for herbicide tolerance efficacy testing. Single copy R0 plants were assessed in the greenhouse for tolerance to quizalofop (0.16 lb ai/ac of Assure II® herbicide) followed by a tank mix of glufosinate (0.98 lb ae/ac of Ignite ${ }^{\circledR} 280$ herbicide), dicamba (2.0 lb ae/ac of Clarity ${ }^{\left({ }^{(}\right)}$ herbicide), or 2,4-D (2.0 lb ae/ac 2,4-D Amine 4® herbicide) (or a combination of any of these) sprayed at the V1/V2 growth stage. Plants that showed $>30 \%$ injury were discarded.
[0089] From the initial 15,326 unique transformation events produced using the 35 transformation vectors, 1,945 unique events were selected after analyzing the copy number and herbicide spray data. Data are provided in Table 2. The R0 plants for the selected events were self-pollinated to produce R1 seed or crossed to produce F1 seed that was advanced to first season field trials.

TABLE 2

First Season Field Trial Inbred Efficacy		
Construct	R0 Events	Events Advanced
HT4-1	515	39
HT4-2	263	30
HT4-3	158	53
HT4-4	340	79
HT4-5	97	20
HT4-6	121	24
HT4-7	49	10
HT4-8	88	16
HT4-9	853	112
HT4-10	366	55
HT4-11	600	78
HT4-12	729	73
HT4-13	459	63
HT4-14	1026	151
HT4-15	224	44
HT4-16	1877	76
HT4-17	365	39
HT4-18	127	24
HT4-19	94	27
HT4-20	23	4
HT4-21	409	74
HT4-25	123	13
HT4-26	57	
HT4-27	76	1
HT4-29	118	5
HT4-30	177	24
HT4-31	311	18
HT4-32	913	123
HT4-34	884	124
HT4-36	1364	185
HT4-37	1019	179
HT4-38	1021	129
HT4-39	98	15
HT4-50	250	26
HT4-51	132	9
Total	15326	1945

Example 2: First Season Field Trials

[0090] Field trials were conducted over many years with events advanced from the R0 analysis for each of the 35 constructs, and the performance of every plant for each
construct in their first season of field trials was then analyzed as a set. Each construct was thus represented by many unique events. This allowed a larger number of constructs to be tested in first season field trials while only advancing beyond the first season trial the top performing constructs. Separate first season field trials were conducted with R2 plants (homozygous for each event) for (1) inbred efficacy for glufosinate+dicamba, quizalofop, and 2,4-D tolerance, (2) Roundup Hybridization System (RHS) efficacy, and (3) herbicide pressure testing for tolerance to higher application rates of herbicides quizalofop, 2,4-D, glufosinate, and dicamba.
[0091] An inbred efficacy screen of plants to evaluate herbicide tolerance for glufosinate+dicamba, quizalofop, and $2,4-\mathrm{D}$ was carried out. Herbicide treatments consisted of: a tank-mix application of glufosinate at 0.8 lb ai/acre plus dicamba at 2.0 lb ae/acre; quizalofop at 0.16 lb ai/acre; or $2,4-\mathrm{D}$ at 2.0 lb ai/acre. Plots were visually rated for crop injury 10-14 days after herbicide treatment on a scale of $0-100$ with " 0 " being no crop injury and " 100 " being complete crop destruction. Plant height (PHT), ear height (EHT), days to 50% silk (S50D), days to 50% pollen (P50D), shell weight (SHW), test weight (TWT), moisture (MST), and grain yield (YLD) were also collected. All data were subjected to analysis of variance and means separation at $\mathrm{p}<0.05$. Overall averages for multiple plants containing the same event were used, and inbred efficacy was summarized for glufosinate+dicamba, quizalofop, and 2,4-D as excellent (4), good (3), fair (2), or poor (1) or not applicable (NA). Data are provided in Table 3.

TABLE 3

First Season Field Trial Inbred Efficacy					
	Construct			Glufosinate/Dicamba \quad Quizalofop	$2,4-\mathrm{D}$
:---:					
HT4-1					

TABLE 3-continued

First Season Field Trial Inbred Efficacy			
Construct	Glufosinate/Dicamba	Quizalofop	2,4-D
HT4-50	4	4	4
HT4-51	4	4	4

[0092] An RHS efficacy screen of plants was carried out to identify differences in glyphosate tolerance and glyphosateinduced tassel sterility of inbred material. A single herbicide treatment was used for screening and consisted of glyphosate at 1.5 lb ae/acre applied to V2 followed by 0.75 lb ae/acre to approximately V8 (875 growing degree days) followed by approximately V10 (1025 growing degree days). Plots were visually rated for \% crop injury (CIPV2, CIPV8, CIPV10, and CIPVT) 10-14 days after herbicide application on a scale of 0 to 100 plus a final injury rating at VT (after tassel emergence). Plots were also visually rated for \% silk emergence [(SES9A (S90) and SES9C (S90 plus 4 days) SES9E (S90 plus 8 days)] and \% anther extrusion [(AES9A (S90), AES9C (S90 plus 4 days), and AES9E (S90 plus 8 days)] on a similar scale of 0 to 100 with " 0 " being no silk emergence or anther extrusion and " 100 " being complete silk emergence or anther extrusion. Other agronomic parameters were collected, as in the inbred efficacy screen. Overall averages for multiple plants containing the same event were used, and glyphosate tolerance, tassel sterility, and yield were each summarized as excellent (4), good (3), fair (2), or poor (1) or not applicable (NA). Data are provided in Table 4.

TABLE 4

First Season Field Trial RHS Efficacy			
Construct	Glyphosate Tolerance	Tassel Sterility	Yield
HT4-1	4	2	NA
HT4-2	4	2	NA
HT4-3	2	2	NA
HT4-4	4	2	NA
HT4-5	2	2	NA
HT4-6	2	2	NA
HT4-7	4	2	NA
HT4-8	4	2	NA
HT4-9	2	2	NA
HT4-10	2	2	NA
HT4-11	2	2	NA
HT4-12	4	2	NA
HT4-13	4	2	NA
HT4-14	4	4	4
HT4-15	4	2	NA
HT4-16	3/2	4	1
HT4-17	4	2	NA
HT4-18	2	2	NA
HT4-19	1	NA	NA
HT4-20	1	NA	NA
HT4-21	4	2	NA
HT4-25	2	2	NA
HT4-26	NA	NA	NA
HT4-27	NA	NA	NA
HT4-29	1	NA	NA
HT4-30	4	2	NA
HT4-31	2	2	NA
HT4-32	4	4	4
HT4-34	4	4	4
HT4-36	4	2	NA
HT4-37	4	2	NA
HT4-38	4	2	NA
HT4-39	4	2	NA

TABLE 4-continued

First Season Field Trial RHS Efficacy			
Construct	Glyphosate Tolerance	Tassel Sterility	Yield
HT4-50	2	2	NA
HT4-51	2	2	NA

[0093] An herbicide pressure test was conducted to evaluate construct level crop tolerance to higher application rates of herbicides quizalofop, 2,4-D, glufosinate, and dicamba as follows. Quizalofop treatments consisted of: 1) quizalofop at 0.32 lb ai/acre ($4 \times$) plus $0.25 \% \mathrm{v} / \mathrm{v}$ non-ionic surfactant (NIS) applied to VE-V2 followed by V4 followed by V8; 2) quizalofop at 0.64 lb ai/acre ($8 \times$) plus $0.25 \% \mathrm{v} / \mathrm{v}$ NIS applied to VE-V2 followed by V4 followed by V8; or 3) quizalofop at 1.28 lb ai/acre (16 x) plus $0.25 \% \mathrm{v} / \mathrm{v}$ NIS applied to VE-V2 followed by V4 followed by V8. 2,4-D treatments consisted of 1) $2,4-\mathrm{D}$ amine at 2 lb ai/acre plus $0.25 \% \mathrm{v} / \mathrm{v}$ non-ionic surfactant (NIS) applied to VE-V2 followed by V4 followed by V8; 2) 2,4-D amine at 4 lb ai/acre plus 0.25% v / v NIS applied to VE-V2 followed by V4 followed by V8; 3) 2,4-D amine at 8 lb ai/acre plus $0.25 \% \mathrm{v} / \mathrm{v}$ NIS applied to VE-V2 followed by V4 followed by V8; or 4) 2,4-D amine at 16 lb ai/acre plus $0.25 \% \mathrm{v} / \mathrm{v}$ NIS applied to VE-V2 followed by V4 followed by V8. Glufosinate treatments consisted of: 1) glufosinate 1.0 lb ai/acre applied to V 2 followed by V4 followed by V8; 2) glufosinate 2.0 lb ai/acre applied to V2 followed by V4 followed by V8; 3) glufosinate 4.0 lb ai/acre applied to V 2 followed by V 4 followed by V 8 ; or 4) glufosinate 8.0 lb ai/acre applied to V 2 followed by V4 followed by V8. Dicamba treatments consisted of: 1) dicamba at 2.0 lb applied to V2 followed by V4 followed by V8; 2) dicamba at 4.0 lb applied to V2 followed by V4 followed by V8; or 3) dicamba at 8.0 lb applied to V2 followed by V4 followed by V8. 4) dicamba at 16 lb applied to V2 followed by V4 followed by V8. Plots were rated visually for crop injury and agronomic parameters were collected, as in the inbred efficacy screen. Overall averages for multiple plants containing the same event were used, and herbicide tolerance efficacy was summarized for each of the four herbicides as excellent (4), good (3), fair (2), or poor (1) or not applicable (NA). Data are provided in Table 5.

TABLE 5

First Season Field Trial Herbicide Pressure Test				
Construct	Glufosinate	Dicamba	Quizalofop	$2,4-\mathrm{D}$
HT4-1	4	4	3	3
HT4-2	4	4	4	4
HT4-3	4	4	4	4
HT4-4	4	4	4	4
HT4-5	4	4	4	4
HT4-6	4	4	4	4
HT4-7	4	4	4	4
HT4-8	4	4	4	4
HT4-9	4	4	4	4
HT4-10	4	4	4	4
HT4-11	4	4	4	4
HT4-12	4	4	4	4
HT4-13	4	4	4	4
HT4-14	4	4	4	4
HT4-15	4	4	4	4
HT4-16	4	4	4	4
HT4-17	4	4	4	4
HT4-18	4	4	4	4

TABLE 5-continued

	First Season Field Trial Herbicide Pressure Test			
	Glufosinate	Dicamba	Quizalofop	$2,4-\mathrm{D}$
Construct	Clum			
HT4-19	4	4	4	4
HT4-20	4	4	4	4
HT4-21	4	4	4	4
HT4-25	4	4	4	4
HT4-26	NA	NA	NA	NA
HT4-27	NA	NA	NA	NA
HT4-29	4	4	4	4
HT4-30	4	4	4	4
HT4-31	4	4	4	4
HT4-32	4	4	4	4
HT4-34	4	4	4	4
HT4-36	4	4	4	4
HT4-37	4	4	4	4
HT4-38	4	4	4	4
HT4-39	4	4	4	4
HT4-50	4	4	4	4
HT4-51	4	4	4	4

[0094] The data of the composite performance of R2 plants produced with each of 35 constructs was compiled and analyzed for (1) the inbred efficacy test for glufosinate+ dicamba, quizalofop, and 2,4-D tolerance, (2) the RHS efficacy test for glyphosate tolerance, tassel sterility, and yield, and (3) the herbicide pressure testing for tolerance to higher application rates of herbicides quizalofop, 2,4-D, glufosinate, and dicamba. Using this data, 3 constructs (HT4-14, HT4-32, and HT4-34) were selected for advancement from the 35 constructs tested. Events for these 3 constructs were then advanced to second season field trials.

Example 3: Molecular Analysis

[0095] Molecular analysis was conducted concurrently with the field trials on events that were advanced. DNA amplification and sequencing were used to confirm the insert sequence, insert copy number, and absence of backbone in the insert. The insertion site in the maize genome for each event was mapped. Northern analysis was done to detect and measure mRNA transcripts of the pat, dmo, ft_t, and cp4epsps genes. N-terminal protein sequencing of the PAT, DMO, FT_T, and CP4-EPSPS proteins purified from transgenic plants was done to confirm the recombinant protein sequence. Western blot analysis to detect the PAT, DMO, FT_T, and CP4-EPSPS proteins was done with transgenic plant samples. In depth Southern analysis was performed on genomic DNA from R1 plants to confirm copy number and the absence of backbone.

Example 4: Advanced Field Trials

[0096] Advanced field trials (second season testing and beyond) were conducted over many years with events advanced from the first season field trials for constructs HT4-14, HT4-32, and HT4-34. The performance of many individual plants for each event in each field trial was analyzed as a set. Each event was thus represented by many unique plants. This allowed the performance of each event to be analyzed under many conditions, in different locations and geographies, and for a variety of properties.
[0097] Field trials were conducted with inbred plants (homozygous for the event) and hybrid plants (hemizygous for the event) to assess (1) trait efficacy for commercial rates of glufosinate, dicamba, quizalofop, and 2,4-D tolerance, (2)
agronomic performance, (3) Roundup Hybridization System (RHS) efficacy and glyphosate, and (4) herbicide pressure testing for tolerance to higher application rates of quizalofop, 2,4-D, glufosinate, and dicamba herbicides.
[0098] In the Field Season 1 trials, 30 events were tested for construct HT4-14, 41 events were tested for construct HT4-32, and 21 events were tested for construct HT4-34. Using the composite data from these trials, events were selected for advancement. In the Field Season 2 trials, 15 events were tested for the HT4-14 construct, 38 events for the HT4-32 construct, and 38 events for the HT4-34 construct (this number included some events not tested in Field Season 1 due to because of seed shortages during that season). Events for construct HT4-14 were characterized by molecular analysis as described in Example 3 and this data was also used to select events. The composite data from these trials and the in depth molecular characterization of events for the HT4-14 construct was used to select 3 events for advancement for the HT4-14 construct. The composite data from these trials was used to select 24 events for advancement for the HT4-32 construct and to decide not to advance any events for the HT4-34 construct. In the Field Season 3 trials, the 3 events for construct HT4-14 and 24 events for the HT4-34 construct were tested. The composite data from these trials was used to select 2 events for advancement for the HT4-14 construct and to decide not to advance any events for the HT4-32. The Field Season 4 trials were used to compare the final two events in a large number of locations, under a variety of conditions, and in hybrid and inbred germplasm in order to produce the data necessary to select the superior event. Table 6 provides the number of unique events tested for each construct in the field trials conducted during each season.

TABLE 6

Advanced Field Trials Summary			
Milestone	HT4-14	HT4-32	HT4-34
Field Season 1	30	41	21
Field Season 2	15	38	38
Field Season 3	3	24	0
Field Season 4	2	0	0
Final event selection	1	0	0

[0099] The agronomic performance field trials were run during the same season as the trait efficacy field trials. All field trials used a randomized complete block design and were conducted at multiple locations. Field trials were conducted at locations in North America and South America. For both efficacy and agronomic field trials, agronomic scoring was collected throughout the field trial season, and at the end of the season yield was determined (efficacy yield or agronomic yield). Efficacy field trials were conducted to assess crop injury 10 to 14 days following herbicide application. The target crop injury rating was a score of less than 10% for advancement of an event. For agronomic field trials, the plots were maintained weed free and none of the test herbicides were applied during the growing season. The hybrid agronomic field trials included controls of a comparable hybrid (hybrid control) produced using the same parental maize lines used to make the transgenic hybrid cross, but not containing a transgenic event. Inbred controls were a comparable inbred to the transgenic inbred lines.
[0100] To compare the field trial data, meta-analysis was performed using the aggregate of all plants in the multiseason, multi-location field trial data. As an example, Table 7 illustrates over multiple seasons the number of replications (reps) for which an observation was repeated for two selected HT4-14 events and the total number of individual plants tested in each trial for each event.

TABLE 7

Field trial replications			
		Total	Total
Milestone	Event	Reps	Plants
Field Season 1	EVENT 2	235	16,450
Field Season 1	MON87429	235	16,450
Field Season 2	EVENT 2	100	7,000
Field Season 2	MON87429	100	7,000
Field Season 3	EVENT 2	529	37,030
Field Season 3	MON87429	513	35,910
Field Season 4	EVENT 2	228	15,960
Field Season 4	MON87429	228	15,960
Field Season 4	EVENT 2	56	3,920
Field Season 4	MON87429	2465	172,550

[0101] Meta-analysis of the multiple hybrid efficacy field trials was completed for comparison of the hybrid injury ratings. As an example, Table 8 provides the injury rating over multiple seasons for two selected HT4-14 events scored at V8 (where V8 analysis encompasses the cumulative injury from V2, V4, V6, and V8 herbicide applications) with a statistical least significant difference at 95% confidence level (LSD at $\mathrm{p}<0.05$). Plants containing maize event MON87429 and plants containing Event 2 both performed well in these trials.

TABLE 8

Meta-analysis of injury rating from hybrid efficacy field trials			
		V8	LSD
Milestone	Event	injury	$(\mathrm{P}<0.05)$
Field Season 1	MON87429	1.3	2.1
Field Season 1	EVENT 2	1.1	2.1
Field Season 2	MON87429	1.7	3.1
Field Season 2	EVENT 2	2.6	3.1
Field Season 3	MON87429	0.08	3.4
Field Season 3	EVENT 2	0.13	3.4

[0102] Meta-analysis of the multiple hybrid efficacy field trials was completed for comparison of yield as bushels/acre ($\mathrm{Bu} / \mathrm{ac}$). As an example, Table 9 provides yield from hybrids over multiple seasons for two selected HT4-14 events with a statistical least significant difference at 95% confidence level (LSD at $\mathrm{p}<0.05$). Plants containing maize event MON87429 and plants containing Event 2 both performed well in these trials.

TABLE 9

Meta-analysis of yield from hybrid efficacy field trials			
		Yield	LSD
Milestone	Event	(Bu/ac)	$(\mathrm{p}<0.05)$
Field Season 1	MON87429	222	12
Field Season 1	EVENT 2	222	12
Field Season 2	MON87429	197	15.4

TABLE 9-continued

Meta-analysis of yield from hybrid efficacy field trials			
Milestone	Event	Yield	LSD
		Bu/ac $)$	(p<0.05 $)$
	EVENT 2	197	15.4
Field Season 3	MON87429	210.9	9.1
Field Season 3	EVENT 2	211.5	9.1

[0103] Pressure testing field trials with herbicide applied at higher application rates than commercial use were conducted with hybrid and inbred plants containing a single transgenic event. The herbicides glufosinate (over the range of 1.6 to $6.4 \mathrm{lb} \mathrm{ai} /$ acre), dicamba (over the range of 2.0 to 16 lb ai/acre), quizalofop (over the range of 0.32 to 1.28 lb $\mathrm{ai} /$ acre), $2,4-\mathrm{D}$ (over the range of 2.0 to 8.0 lb ai/acre), and glyphosate (at 3.0 lb ae/acre) were applied in field trials for pressure testing of the efficacy of the herbicide tolerance traits. At the end of the season, the hybrid pressure testing field trials were harvested and yield ($\mathrm{Bu} / \mathrm{ac}$) was determined. As an example, Table 10 provides yield data from hybrids and inbreds in different trials for two selected HT4-14 events with a statistical least significant difference at 95% confidence level (LSD at $\mathrm{p}<0.05$). Plants containing maize event MON87429 and plants containing Event 2 both performed well in hybrid and inbred yield trials for all of the herbicide treatments. The results suggested that further field testing could identify an inbred yield advantage for maize event MON87429 over Event 2.

TABLE 10

Herbicide	Plant	Event	Yield ($\mathrm{Bu} / \mathrm{ac}$)	$\begin{gathered} \text { LSD } \\ (\mathrm{p}<0.05) \end{gathered}$
Glufosinate	Hybrid	MON87429	256	28.4
Glufosinate	Hybrid	EVENT 2	240	28.4
Dicamba	Hybrid	MON87429	264	39.2
Dicamba	Hybrid	EVENT 2	256	39.2
Quizalofop	Hybrid	MON87429	251	48.5
Quizalofop	Hybrid	EVENT 2	257	48.5
2,4-D	Hybrid	MON87429	261	38.4
2,4-D	Hybrid	EVENT 2	254	38.4
Glyphosate	Inbred	MON87429	90.1	46
Glyphosate	Inbred	EVENT 2	67.2	46

[0104] Hybrid agronomic field trials were conducted, agronomic measures were collected throughout the season, and agronomic yield was determined at the end of the season. Meta-analysis across the multi-season, multi-location hybrid agronomic field trials was used to compare the yield of the hybrid control and the hybrids. As an example, Table 11 provides yield data ($\mathrm{Bu} / \mathrm{ac}$) for two selected HT414 events with a statistical least significant difference at 95% confidence level (LSD at $\mathrm{p}<0.05$). Plants containing maize event MON87429 and plants containing Event 2 both performed well in these trials, and no statistical difference in hybrid yield was found for plants containing either of these events when compared to the control plants.

TABLE 11

Meta-analysis of yield from hybrid agronomic field trials			
		Yield	LSD
Milestone	Event	(Bu/ac)	$(\mathrm{p}<0.05)$
Field Season 1	Control - none	222	9
Field Season 1	MON87429	220	9
Field Season 1	EVENT 2	224	9
Field Season 2	Control - none	224.6	13.7
Field Season 2	MON87429	211	13.7
Field Season 2	EVENT 2	215	13.7
Field Season 3	Control - none	213.6	9.7
Field Season 3	MON87429	213.3	9.7
Field Season 3	EVENT 2	212.4	9.7

[0105] Inbred efficacy field trials were conducted for glyphosate tolerance and the Roundup Hybridization System (RHS) and yield was determined at the end of the season. Glyphosate was applied at a rate of 1.5 lb ae/acre for weed control followed by two sterility applications of glyphosate at 0.75 lb ae/acre at approximately V8 followed by 0.75 lb ae/acre at approximately V10. Meta-analysis across the multi-season, multi-location inbred efficacy field trials was used to compare the yield of plants. As an example, Table 12 provides yield data ($\mathrm{Bu} / \mathrm{ac}$) for two selected HT4-14 events with a statistical least significant difference at 95% confidence level (LSD at $\mathrm{p}<0.05$). Field Season 2 and Field Season 3 trials both showed a statistically significant decrease in yield in plants containing Event 2 when compared to plants containing the Event MON87429. These data indicated the superior performance in inbred efficacy yield trials of plants containing maize event MON87429.

TABLE 12

Meta-analysis of yield from glyphosate treated inbred efficacy field trials			
Milestone	Event	$\begin{gathered} \text { Yield } \\ (\mathrm{Bu} / \mathrm{ac}) \end{gathered}$	$\begin{gathered} \text { LSD } \\ (p<0.05) \end{gathered}$
Field Season 1	MON87429	89.9	14.3
Field Season 1	EVENT 2	87.5	14.3
Field Season 2	MON87429	119.6	18.0
Field Season 2	EVENT 2	99.0	18.0
Field Season 3	MON87429	105.6	10.5
Field Season 3	EVENT 2	90.13	10.5

[0106] Inbred agronomic field trials were conducted and yield was determined at the end of the season for untreated plants. The trials included controls of inbred lines comparable to the transgenic inbred lines. Meta-analysis across the multi-season, multi-location inbred agronomic field trials was conducted comparing yield for the paired control and the transgenic inbreds. As an example, Table 13 provides yield data ($\mathrm{Bu} / \mathrm{ac}$) for two selected HT4-14 events with a statistical least significant difference at 95% confidence level (LSD at $\mathrm{p}<0.05$). No statistical difference in inbred agronomic yield was found between the control plants and plants containing maize event MON87429. In contrast, for Field Season 3 trials, there was a statistically significant decrease in yield in plants containing Event 2 when compared to control plants and plants containing maize event MON87429. These data indicated the superior performance in inbred agronomic yield trials of plants containing maize event MON87429.

TABLE 13

Meta-analysis of yield from inbred agronomic field trials			
		Total	
Milestone	Event	LSD $(\mathrm{Bu} / \mathrm{ac})$	$(\mathrm{p}<0.05)$
Field Season 1	Control - none	105.2	8.9
Field Season 1	MON87429	104.1	8.9
Field Season 1	EVENT 2	102.5	8.9
Field Season 2	Control - none	103.7	15.3
Field Season 2	MON87429	93.4	15.3
Field Season 2	EVENT 2	91.4	15.3
Field Season 3	Control - none	116.6	6.2
Field Season 3	MON87429	112.8	6.2
Field Season 3	EVENT 2	106.1	6.2

[0107] Hybrid efficacy trials were conducted at four locations in Argentina to evaluate plant tolerance to glufosinate, dicamba, quizalofop, haloxyfop, 2,4-D, and glyphosate. Plants containing MON87429 were crossed with plants containing both maize event MON88017 and maize event MON89034 to produce progeny containing all three events (MON87429×MON88017×MON89034). Herbicide treatments consisted of 1) a non-treated control; 2) glufosinate at 0.448 kg ai/ha applied at the V2 stage followed by the same application to the V6 stage; 3) glufosinate at 0.896 kg ai/ha applied at the V2 stage followed by the same application to the V6 stage; 4) dicamba at 0.56 lb ae/acre applied at the V2 stage followed by the same application to the V6 stage; 5) dicamba at 1.12 lb ae/acre applied at the V2 stage followed by the same application to the V6 stage; 6) quizalofop at 0.09 kg ae/ha applied at the V2 stage followed by the same application to the V6 stage; 7) quizalofop at 0.18 kg ae/ha applied at the V2 stage followed by the same application to the V6 stage; 8) haloxyfop at 0.1 kg ae/ha applied at the V2 stage followed by the same application to the V6 stage; 9) haloxyfop at 0.2 kg ae/ha applied at the V 2 stage followed by the same application to the V6 stage; 10) 2,4-D at 1.12 lb ai/acre applied at the V2 stage followed by the same application to the V6 stage; 11) 2,4-D at 2.24 lb ae/acre applied at the V2 stage followed by the same application to the V6 stage; or 12) glyphosate at 2.24 lb ae/acre applied at the V2 stage followed by the same application to the V6 stage. Data collection consisted of crop injury 10 to 14 days after V2 and V6 herbicide applications and a final rating at VT, days to 50% pollen, days to 50% silk, plant height, ear height, shell weight, test weight, moisture, and grain yield. All data were subjected to analysis of variance and means separated at $\mathrm{p}<0.05$.
[0108] Herbicide tolerance of plants containing MON87429×MON88017×MON89034 was excellent ($<10 \%$ crop injury) over all rates of glyphosate, glufosinate, dicamba, quizalofop, haloxyfop, and 2,4-D tested. Herbicide treatment rates did not produce differences with respect to visual crop injury. Ear height was not significantly different for any of the treatments compared to the standard herbicide treatment 12 (glyphosate at 2.24 lb ae/acre). There was no significant reduction in plant height or test weight, increase in grain moisture, delay in maturity (measured as increase days to 50% pollen or silk), decrease in grain yield of the plants containing MON87429×MON88017×MON89034 within any treatment over that of non-treated plants. Hybrid plants produced through the cross of a plant containing MON87429 with a plant containing an event providing glyphosate tolerance in male tissues (such as commercially available maize events MON88017 or NK603) provide
excellent vegetative tolerance to glyphosate, glufosinate, dicamba, quizalofop, haloxyfop, and 2,4-D when applied at commercial label rates.
[0109] Three years of field trials were used to test for control of plants comprising maize event MON87429 using clethodim. These trials assessed the use in volunteer control methods of a DIM herbicide with plants containing maize event MON87429. Plants were treated with clethodim at commercial label rates and complete control of plants comprising maize event MON87429 was observed.
[0110] The data accumulated from the molecular analysis and from the field trials with inbred and hybrid plants assessing (1) trait efficacy for commercial rates of glufosinate, dicamba, quizalofop, and 2,4-D tolerance, (2) agronomic performance, (3) Roundup Hybridization System (RHS) efficacy and glyphosate tolerance, and (4) herbicide pressure testing for tolerance to higher application rates of quizalofop, 2,4-D, glufosinate, and dicamba herbicides was analyzed for all the events tested for constructs HT4-14, HT4-32, and HT4-34. Analysis of the cumulative data demonstrated the overall superior performance of maize event MON87429 compared to the other events and resulted in selection of this event for commercial purposes.

Example 5: Molecular Characterization of Maize Event MON87429

[0111] Maize event MON87429 was subjected to extensive molecular characterization upon selection as a commercial event. The transgenic insert of maize event MON87429 contains the elements and sequences described in Table 1.
[0112] DNA sequence analysis of maize event MON87429 was conducted. Southern blot analysis was conducted to confirm that plants containing maize event MON87429 contained a single, intact copy of the entire transgenic insert without any transformation vector backbone. Flanking DNA was sequenced on both the 5^{\prime} and 3^{\prime} ends of the insert, and the respective junctions were determined using sequence capture, enrichment, sequencing, inverse PCR, and genome walking techniques. The sequences of the flanking DNA for maize event MON87429 were mapped to the known maize genome physical assembly. The insertion site sequence information was used for bioinformatics analysis of the chromosomal location of the event. Insertion site integrity was determined by PCR across the wild-type allele using primers specific to the flanking regions of maize event MON87429. The wild-type insertion site was used to map the unique site of transgene integration for maize event MON87429 to the maize reference genome. To ensure that no alterations or mutations were introduced to any region of the transgene during transformation, the entire transgenic insert of maize event MON87429 was isolated from the plant and sequenced. Sequence information for the 5^{\prime} junction, 3^{\prime} junction, and transgenic insert are provided herein as SEQ ID NOs:1-10.
[0113] RNA analysis of plants comprising the construct of maize event MON87429 was conducted. Northern analysis was conducted on total RNA isolated from grain of plants containing maize event MON87429. This confirmed the transcript size and number for the pat, dmo, ft_t, and cp4-epsps mRNA products. RNA expression levels for CP4EPSPS were also measured by real-time PCR using samples from plant tissues containing maize event MON87429. Rapid amplification of cDNA ends (RACE) was used to identify CP4-EPSPS cleavage products to confirm that
cleavage of the CP4-EPSPS transcript occurs only in tassels of plants comprising maize event MON87429 and that this is triggered by maize endogenous male-specific small interference RNAs (siRNAs) in a sequence-specific manner. Low molecular weight Northern analysis was performed to demonstrate that there are no CP4-EPSPS siRNAs that could compromise glyphosate tolerance in non-tassel tissues.
[0114] Protein analysis of plants comprising the construct of maize event MON87429 was conducted. N-terminal protein sequencing of the expressed PAT, DMO, FT_T, and CP4-EPSPS proteins was performed using immunopurified protein extracts from grain to confirm the authentic N-terminal amino acid sequence. Western blot analysis was conducted on protein extracts from grain containing maize event MON87429 to confirm that a single expected-sized protein was being produced for PAT, DMO, FT_T, and CP4-EPSPS, respectively. ELISAs was used to determine protein levels in the leaf, seed, roots, and pollen of plants for the PAT, DMO, FT_T, and CP4-EPSPS proteins.

Example 6: Detection of Maize Event MON87429

[0115] Detection of maize event MON87429 in a sample can be done using DNA, RNA, or protein detection techniques. Exemplary detection methods and materials are provided below. Detection may determine the presence or absence of maize event MON87429 in a sample. Detection may indicate the number of genomic copies of maize event MON87429 (that is, hemizygous, homozygous, or heterozygous) in a sample of genomic DNA.
[0116] An event specific endpoint Applied Biosystems ${ }^{\text {TM }}$ TAQMAN(®) thermal amplification method (Thermo Fisher Scientific) was developed to identify maize event MON87429 in a sample. The DNA primers and probe used in the endpoint assay are primers SQ51062 (SEQ ID NO:11), SQ51053 (SEQ ID NO:12), and 6-FAM ${ }^{\text {TM }}$ labeled probe PB50370 (SEQ ID NO:13). 6-FAM is a fluorescent dye product of Applied Biosystems (Foster City, Calif.) attached to the DNA probe. For TAQMAN MGB ${ }^{\text {TM }}$ probes, the 5^{\prime} exonuclease activity of Taq DNA polymerase cleaves the probe from the 5 -end, between the fluorophore and quencher. When hybridized to the target DNA strand, quencher and fluorophore are separated enough to produce a fluorescent signal, thus releasing fluorescence. SQ51062 and SQ51053 when used with these reaction methods and PB50370 produce a DNA amplicon that is diagnostic for maize event MON87429. The controls for this analysis should include a positive control containing maize event MON87429, a negative control from non-transgenic maize, and a negative control that contains no template DNA. Additionally, a control for the PCR reaction should optimally include Internal Control Primers and an Internal Control Probe, specific to a single copy gene in the maize genome. These assays are optimized for use with the Applied Biosystems GeneAmp ${ }^{\text {® }}$ PCR System 9700 (Thermo Fisher Scientific) run at maximum speed, but other equipment may be used.
[0117] An example of conditions useful with TAQMAN methods for detection of maize event MON87429 is as follows. Step 1: 18 megohm water adjusted for final volume of 5μ. Step 2: $2.28 \mu 1$ of $2 \times$ Universal Master Mix (dNTPs, enzyme, buffer) to a $1 \times$ final concentration. Step 3: $0.05 \mu 1$ Event Primer-1 (SQ51062) and Event Primer-2 (SQ51053) (resuspended in 18 megohm water to a concentration of 100 uM for each primer) to $0.9 \mu \mathrm{M}$ final concentration. Step 4:
$0.01 \mu 1$ Event 6-FAM MGB Probe PB50370 (resuspended in 18 megohm water to a concentration of $100 \mu \mathrm{M}$) to $0.2 \mu \mathrm{M}$ final concentration. Step 5: $0.05 \mu 1$ Internal Control Primer-1 and Internal Control Primer-2 Mix (resuspended in 18 megohm water to a concentration of $100 \mu \mathrm{M}$ for each primer) to $0.9 \mu \mathrm{M}$ final concentration. Step 6: $0.01 \mu \mathrm{l}$ Internal Control VIC ${ }^{\text {TM }}$ Probe (resuspended in 18 megohm water to a concentration of $100 \mu \mathrm{M})$ to $0.2 \mu \mathrm{M}$ final concentration. Step 7: $2.5 \mu 1$ Extracted DNA (template) for each sample with one each of the following comprising: (a) Leaf Samples to be analyzed; (b) Negative control (nontransgenic DNA); (c) Negative water control (no template); and (d) Positive control maize containing maize event MON87429 DNA. Step 8: Thermocycler Conditions as follows: one cycle at $95^{\circ} \mathrm{C}$. for 20 seconds; forty cycles of $95^{\circ} \mathrm{C}$. for 3 seconds then $60^{\circ} \mathrm{C}$. for 20 seconds; and final cycle of $10^{\circ} \mathrm{C}$.
[0118] A zygosity assay is developed to determine whether a plant comprising maize event MON87429 is heterozygous or homozygous for the event or the wild-type allele. An amplification reaction assay can be designed using the sequence information provided herein. For example, such a PCR assay would include design of at least three primers: primer-1, primer- 2 , and primer- 3 , where primer- 1 is specific to maize genomic DNA on the 3^{\prime} flank of maize event MON87429; primer-2 is specific to maize event MON87429 transgenic insert; and primer-3 is specific to the wild-type allele. When used as a primer pair in an amplification reaction, primer-1 with primer-2 will produce a PCR amplicon specific for maize event MON87429. When used as a primer pair in an amplification reaction, primer-1 with primer-3 will produce a PCR amplicon specific for wild-type allele. In a PCR reaction performed on maize genomic DNA, the respective PCR amplicons generated from primer$1+$ primer- 2 and that generated from primer- $1+$ primer- 3 will differ in sequence and size of the amplicon. When the three primers are included in a PCR reaction with DNA extracted from a plant homozygous for maize event MON87429, only the primer- $1+$ primer- 2 amplicon (specific for the maize MON87429 insertion) will be generated. When the three primers are included in a PCR reaction with DNA extracted from a plant heterozygous for maize event MON87429, both the primer- $1+$ primer- 2 amplicon (specific for the maize MON87429 insertion) and the primer-1+primer-3 amplicon (specific for wild-type allele or absence of the maize MON87429 insertion) will be generated. When the three primers are mixed together in a PCR reaction with DNA extracted from a plant that is null for maize event MON87429 (that is wild-type), only the primer-1+primer-3 amplicon (specific for wild-type allele) will be generated. The amplicons produced using the PCR reaction may be identified or distinguished using any method known in the art.
[0119] Another zygosity assay for maize event MON87429 is a TAQMAN thermal amplification reaction. For this type of assay, in addition to primers as described above, the assay would include two fluorescently labeled probes. Probe-1 would be specific for maize event MON87429, and probe-2 would be specific for a maize plant that is null for maize event MON87429 (wild-type), and where the two probes contain different fluorescent labels, for example the 6-FAM-label or VICTM-label. When used in a TAQMAN reaction, primer- $1+$ primer- 2 +probe- 1 will produce a first fluorescent signal specific for maize event

MON87429 and primer-1+primer-3+probe-2 will produce a second fluorescent signal specific for wild-type maize. When the three primers and two probes are included in a TAQMAN reaction with DNA extracted from a plant homozygous for maize event MON87429, only the first fluorescent signal (specific to primer-1+primer-2+probe-1) will be generated. When the three primers are included in a TAQMAN reaction with DNA extracted from a plant heterozygous for maize event MON87429, both the first fluorescent signal (specific to primer-1+primer-2+probe-1) and the second fluorescent signal (specific to primer-1+primer$3+$ probe-2) will be generated. When the three primers are mixed together in a TAQMAN reaction with DNA extracted from a plant which is null for maize event MON87429 (wild-type), only the second fluorescent signal (specific to primer-1+primer-3+probe-2) will be generated.
[0120] Another method to detect the presence of maize event MON87429 in a plant sample would be Southern analysis. One of skill in art would understand how to design Southern hybridization probe(s) specific for maize event MON87429 and a second southern hybridization probe specific for a maize plant which is null for maize event MON87429 (wild-type). With Southern analysis, a signal detected only from the first Southern hybridization probe will be indicative of a plant homozygous for maize event MON87429; a signal detected from both the first Southern hybridization probe and the second Southern hybridization probe will be indicative of a plant heterozygous for maize event MON87429; and a signal detected only from the second Southern hybridization probe will be indicative that the DNA was extracted from a plant that is null for maize event MON87429 (wild-type).
[0121] Another example of a detection kit comprises at least one antibody specific for at least one protein encoded by maize event MON87429. For example, such a kit may
utilize a lateral flow strip comprising reagents activated when the tip of the strip is contacted with an aqueous solution. Exemplary proteins sufficient for use in antibody production are ones encoded by the sequence provided as SEQ ID NO:10, or any fragment thereof.
[0122] A protein detection method is developed to determine whether a sample is from a plant, seed, cell, or plant part comprising maize event MON87429. At least one antibody specific for at least one protein encoded by maize event MON87429 is used to detect a protein encoded by maize event MON87429 in a sample. A detection kit comprising one or more antibodies specific for one or more proteins encoded by maize event MON87429 may utilize a lateral flow strip containing reagents activated when the tip of the strip is contacted with an aqueous solution. Samples of maize tissue may be ground up and protein extracted for analysis using water or an aqueous buffer (e.g., phosphate buffered saline containing detergent and bovine serum albumin). Following centrifugation, the aqueous supernatant is analyzed using the ELISA method in a sandwich format on a lateral flow strip containing an absorbent pad. Detection is activated by dipping the tip of the strip into the aqueous solution containing the sample to be tested. The aqueous solution is carried up the strip by capillary action and solubilizes gold labeled antibodies on the strip. The gold labeled antibodies are specific for at least one protein encoded by maize event MON87429 and will bind to an epitope on the protein in the sample to form an antibodyantigen complex. The gold labeled antibody-antigen complex is then carried up the strip to a nitrocellulose membrane. The membrane comprises a test line of immobilized antibodies that bind to a second, separate epitope on the protein encoded by maize event MON87429, causing a visible line to appear across the test strip if the protein encoded by maize event MON87429 is present in the sample.

```
<160> NUMBER OF SEQ ID NOS: 13
<210> SEQ ID NO 1
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
\ll 2 2 3 > ~ O T H E R ~ I N F O R M A T I O N : ~ C h i m e r i c ~ D N A ~ m o l e c u l e ~ o f ~ m a i z e ~ g e n o m i c ~ D N A ~ a n d ~
        transgene DNA
<400> SEQUENCE: 1
ccactcttgt ttggtttcat gtccgggaaa 30
<210> SEQ ID NO 2
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chimeric DNA molecule of maize genomic DNA and
        transgene DNA
<400> SEQUENCE: 2
cggtgcacaa actatagcaa gtgtggtcta
\begin{tabular}{rl}
\(<212>\) & TYPE: DNA \\
\(<213>\) & ORGANISM: Artificial Sequence \\
\(<220>\) & FEATURE: \\
\(<223>\) & OTHER INFORMATION: Chimeric DNA molecule of maize genomic DNA and \\
& transgene DNA \\
\(<400>\) & SEQUENCE: 3 \\
acttgcaaaa atagaccact cttgtttggt ttcatgtccg ggaaatctac atggatcagc 60
\end{tabular}
\begin{tabular}{rl}
\(<210>\) & SEQ ID NO 4 \\
\(<211>\) & LENGTH: 60 \\
\(<212>\) & TYPE: DNA \\
\(<213>\) & ORGANISM: Artificial Sequence \\
\(<220>\) & FEATURE: \\
\(<223>\) & OTHER INFORMATION: Chimeric DNA molecule of maize genomic DNA and \\
& transgene DNA \\
\(<400>\) & SEQUENCE: 4
\end{tabular}
gcacaacaaa cgcaccggtg cacaaactat agcaagtgtg gtctattttt atatagcaag 60
\begin{tabular}{rl}
\(<210>\) & SEQ ID NO 5 \\
\(<211>\) LENGTH: 100 \\
\(<212>\) TYPE: DNA \\
\(<213>\) ORGANISM: Artificial Sequence \\
\(<220>\) FEATURE: \\
\(<223>\) OTHER INFORMATION: Chimeric DNA molecule of maize genomic DNA and \\
& transgene DNA \\
\(<400>\) & SEQUENCE: 5
\end{tabular}
agatactctt gtttggttac acttgcaaaa atagaccact cttgttggt ttcatgtccg 60
ggaaatctac atggatcagc aatgagtatg atggtcaata 100
\begin{tabular}{rl}
\(<210>\) & SEQ ID NO 6 \\
\(<211>\) & LENGTH: 100 \\
\(<212>\) & TYPE \(:\) DNA \\
\(<213>\) & ORGANISM: Artificial Sequence \\
\(<220>\) & FEATURE: \\
\(<223>\) & OTHER INFORMATION: Chimeric DNA molecule of maize genomic DNA and \\
& transgene DNA \\
\(<400>\) & SEQUENCE: 6
\end{tabular}
atgacgtcce gcgatcgcce gcacaacaaa cgcaccggtg cacaaactat agcaagtgtg 60
gtctattttt atatagcaag tgaggtcaga taaaataata 100


\begin{tabular}{rl}
\(<210\) & \(>\) SEQ ID NO 8 \\
\(<211\) & \(>\) LENGTH: 1069 \\
\(<212>\) & TYPE: DNA \\
\(<213>\) & ORGANISM: Artificial Sequence \\
\(<220>\) & FEATURE: \\
\(<223>\) & OTHER INFORMATION: Chimeric DNA molecule of maize genomic DNA and \\
& transgene DNA \\
\(<400>\) & SEQUENCE: 8
\end{tabular}

```

aacaccccag gtgttactta gggtttcccc cttagtacct ccatttgtga cctattatca
catgtggttt ggtttaagaa aaaggcacca aacttgaggg gccaagccc 1069

```
\(<210>\) SEQ ID NO 9
\(<211>\) LENGTH: 14008
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: Artificial sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Transgene insert
\(<400>\) SEQUENCE: 9
ttcatgtcog ggaaatctac atggatcagc aatgagtatg atggtcaata tggagaaaaa \(\quad 6\)
gaaagagtaa ttaccaattt ttttcaatt caaaaatgta gatgtccgca gcgttattat 120
aaaatgaaag tacattttga taaaacgaca aattacgatc cgtcgtattt ataggcgaaa 180
gcaataaaca aattattcta attcggaaat ctttatttcg acgtgtctac attcacgtcc 240
aatggggge ttagatgaga aacttcacga tttggcgcga ctaactaagc actagcgtac 300
gggacccaga tatcgaattc aagctgaccg ccaccggcaa acaaccacga atttgtaatg 360
gtactaggca aattctccgt ttggcggtgt gtgccggcca attacacgtt tttgcggtgt 420
cctccgacaa aatttgcctt ttaaaacaa ttttataaga gaagctccgg agataaaagg 480
cogtcaatgt tacaagagtg aagtcgtcta ctccctccat cccaaaaat gtaattctaa 540
gtatgagttg tattattatt tttggacaaa aggagtatac cacaagaatg atatcatcgt 600
catgcttaga tcetttttag taaagcttga gettctctaa aagtagagaa attagaaaaa 660
aatcacgttt ttgtggtctt gatttctagc ctccacaaaa tctttggttt tacatttttt 720
gtttgatttt ggtttcagaa gtcettattt atatgtgcta gtttggcagc acttaaaatc 780
gttagagaga gcctaaacaa aagccttttc aaaacgacct tgagccagat tggttgatgg 840
ccaaaatttg attgtcaaaa cttaggcaag ccaagatttt agcagctatt tggtttggta 900
ccaaaatttg ccaatgatct gttcttttgc cttttcaacc ggtttatcag cogtacttca 960
gettattctc tctcacagaa cactattgaa tcagccgaaa agccaccgca gaacaggacc 1020
agtatctcac aaatggcatg ccaaatatac tcaccgtcag tgagcccgtt taacggcgtc 1080
gacaagtcta acggccacca accagcgaac caccagcgtc aagctagcca agcgaagcag 1140
acggccgaga cgttgacacc ttggcgeggg catctctctg gccccctctc gagagttccg 1200
ctccacctcc actggtggcg gtttccaagt cogttccgcc tcctgctcct cctcacacgg 1260
cacgaaaccg tcacggcacc ggcagcacgg gggattcctt tcccaccgct ccttccettt 1320
ccettcctcg cccgccgttt taatagcea gccccatccc cagcttctct ccccaacctc 1380
agcttctctc gttgttcgga gcgcacacac aacccgatcc ccaatcccct cgtctctcct 1440
cgcgagcctc gtcgatccce gcttcaaggt acggcgatca tcctcccttt ctctaccttc 1500
tcttctctag actaggtcgg cgatccatgg ttagggcetg ctagttctgt tcetgttttt 1560
cogtggctgc gaggtacaat agatctgatg gcgttatgat ggttaacttg tcatactcct 1620
gcggtgtgcg gtctatagtg cttttaggac atcaatttga cctggctcgt tcgagatcgg 1680
cgatccatgg ttaggaccet aggcggtgga gtcgggttag atccgcgctg tttgtgttag 1740
tagatggatg cgacctttac ttcagacacg ttctgattgt taacttgtca gcacctggga 1800
gtcctgggat ggttctagct ggttcgcaga tgagatcgat ttcatgatct gctgtatctt 1860














\begin{tabular}{rl}
\(<210>\) & SEQ ID NO 11 \\
\(<211>\) LENGTH: 29 \\
\(<212>\) TYPE : DNA \\
\(<213>\) ORGANISM: Artificial Sequence \\
\(<220>\) FEATURE: \\
\(<223>\) & OTHER INFORMATION: Chemically Synthesized Oligonucleotide \\
& PCR Primer \\
\(<400>\) & SEQUENCE: 11
\end{tabular}
ttgctatata aaaatagacc acacttgct
\begin{tabular}{rl}
\(<210>\) & SEQ ID NO 12 \\
\(<211>\) & LENGTH: 17 \\
\(<212>\) & TYPE: DNA \\
\(<213>\) & ORGANISM: Artificial Sequence \\
\(<220>\) & FEATURE: \\
\(<223>\) & OTHER INFORMATION: Chemically Synthesized Oligonucleotide PCR \\
& Primer
\end{tabular}
<400> SEQUENCE: 12
catgacgtcc cgegatc
```

<210> SEQ ID NO 13
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Chemically Synthesized Oligonucleotide PCR
Probe

```
1. A recombinant DNA molecule comprising a sequence selected from the group consisting of SEQ ID NO:10, SEQ ID NO:9, SEQ ID NO:8, SEQ ID NO:7, SEQ ID NO:6, SEQ ID NO:5, SEQ ID NO:4, SEQ ID NO:3, SEQ ID NO:2, and SEQ ID NO:1.
2. The recombinant DNA molecule of claim 1, wherein
a) the recombinant DNA molecule is derived from a plant, seed, or cell comprising maize event MON87429, a representative sample of seed comprising the event having been deposited as ATCC Accession No. PTA124635; or
b) the recombinant DNA molecule is in a plant, cell, seed, or plant part comprising maize event MON87429, a representative sample of seed comprising the event having been deposited as ATCC PTA-124635.
3. (canceled)
4. The recombinant DNA molecule of claim 1, wherein the recombinant DNA molecule is an amplicon diagnostic for the presence of maize event MON87429.
5. A DNA construct comprising four expression cassettes, wherein
a) the first expression cassette comprises in operable linkage (I) a ubiquitin promoter, leader, and intron from Erianthus ravennae, (II) a phosphinothricin N-acetyltransferase coding sequence, and (III) a fructose-bisphosphate aldolase 3' UTR from Setaria italica;
b) the second expression cassette comprises in operable linkage (I) a ubiquitin promoter, leader, and intron from Coix lacryma-jobi, (II) an albino and pale green 6 chloroplast transit peptide coding sequence from Arabidopsis thaliana, (III) a dicamba monooxygenase coding sequence, and (IV) a metallothionein-like protein \(3^{\prime}\) UTR from Oryza sativa;
c) the third expression cassette comprises in operable linkage (I) a ubiquitin promoter, leader, and intron from Arundo donax, (II) a malate dehydrogenase chloroplast transit peptide coding sequence from Arabidopsis thaliana, (III) a FT_T protein coding sequence, and (IV) a no apical meristem protein 3' UTR from Oryza sativa; and
d) the fourth expression cassette comprises in operable linkage (I) a CaMV 35 S promoter and leader, (II) a chlorophyll a/b-binding protein leader from Triticum aestivum, (III) an actin 1 intron from Oryza sativa, (IV) a ShkG chloroplast transit peptide coding sequence from Arabidopsis thaliana, (V) a glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase coding sequence from Agrobacterium sp strain CP4, (VI) a male tissue specific siRNA target from Zea mays, and (VII) a glycine-rich RNA binding protein 3'UTR from Oryza sativa.
6. A DNA molecule having a sufficient length of contiguous nucleotides of the recombinant DNA molecule of claim 1 to function as a DNA probe specific for SEQ ID NO:10 in a sample of DNA derived from a maize plant, maize seed, or maize cell.
7. The DNA molecule of claim 6, wherein the DNA probe comprises SEQ ID NO:13.
8. A pair of DNA molecules comprising a first DNA molecule and a second DNA molecule, wherein the first and second DNA molecules each comprise a fragment of SEQ ID NO:10 and function as DNA primers when used together in an amplification reaction with DNA containing maize event MON87429 to produce the amplicon of claim 4.
9. The pair of DNA molecules of claim 8, wherein
a) at least one DNA primer comprises a fragment of a sequence selected from the group consisting of SEQ ID NO:7 and SEQ ID NO:8; or
b) the first DNA molecule comprises SEQ ID NO:11 and the second DNA molecule comprises SEQ ID NO:12.
10. (canceled)
11. A method of detecting the presence of maize event MON87429 in a sample of DNA derived from a maize plant, maize seed, or maize cell, the method comprising:
a) contacting the sample with the DNA probe of claim 6;
b) subjecting the sample and the DNA probe to stringent hybridization conditions; and
c) detecting hybridization of the DNA probe to a DNA molecule in the sample,
wherein the hybridization of the DNA probe to the DNA molecule indicates the presence of maize event MON87429 in the sample of DNA.
12. A method of detecting the presence of maize event MON87429 in a sample of DNA derived from a maize plant, maize seed, or maize cell, the method comprising:
a) contacting the sample with the pair of DNA molecules of claim 8 ;
b) performing an amplification reaction sufficient to produce a DNA amplicon comprising a sequence selected from the group consisting of SEQ ID NO:10, SEQ ID NO:9, SEQ ID NO:8, SEQ ID NO:7, SEQ ID NO:6, SEQ ID NO:5, SEQ ID NO:4, SEQ ID NO:3, SEQ ID NO:2, and SEQ ID NO:1; and
c) detecting the presence of the DNA amplicon,
wherein the presence of the DNA amplicon indicates the presence of maize event MON87429 in the sample.
13. A method of detecting the presence of maize event MON87429 in a sample derived from a maize plant, maize seed, or maize cell, the method comprising:
a) contacting the sample with at least one antibody specific for at least one protein encoded by maize event MON87429; and
b) detecting binding of the antibody to the protein in the sample,
wherein the binding of the antibody to the protein indicates the presence of maize event MON87429 in the sample.
14. The method of claim 13, further comprising at least a second antibody specific for a second protein encoded by maize event MON87429.
15. A kit for detecting the presence of maize event MON87429 comprising a DNA probe specific for SEQ ID NO:10, a pair of DNA primers that produces the amplicon
of claim 4, or at least one antibody specific for at least one protein encoded by maize event MON87429.
16. A plant, seed, cell, plant part, or commodity product comprising the DNA molecule of claim 1.
17. The plant, seed, cell, or plant part of claim 16, wherein the plant, seed, cell, or plant part comprises tolerance to at least one herbicide selected from the group consisting of inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group, synthetic auxins, inhibitors of glutamine synthetase, and inhibitors of 5 -enolpyruvylshikimate-3-phosphate synthase (EPSPS), or any combination thereof.
18. The plant, seed, cell, or plant part of claim 17, wherein the plant, seed, cell, or plant part is tolerant to quizalofop, haloxyfop, dicamba, 2,4-D, glufosinate, and glyphosate.
19. A method for controlling weeds in a crop-growing area comprising:
a) planting the plant of claim 16 in the crop-growing area; and
b) applying to the crop-growing area, or any portion thereof, an effective amount of at least one herbicide selected from the group consisting of inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group, synthetic auxins, inhibitors of glutamine synthetase, and inhibitors of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), or any combination thereof, to control the weeds in the area without injuring the maize.
20. The method of claim 19, wherein applying the effective amount of at least one herbicide comprises applying at least two or more herbicides selected from the group consisting of inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group, synthetic auxins, inhibitors of glutamine synthetase, and inhibitors of 5 -enolpyruvylshikimate-3-phosphate synthase (EPSPS) over a growing season.
21. The method of claim 19, wherein applying the effective amount of at least one herbicide comprises applying an herbicide selected from the group consisting of quizalofop, haloxyfop, dicamba, 2,4-D, glufosinate, and glyphosate, or any combination thereof.
22. The method of claim 21, wherein the effective amount of dicamba is about 0.5 lb ae/acre to about 2 lb ae/acre of dicamba over a growing season, wherein the effective amount of glufosinate is about 0.4 lb ai/acre to about 1.59 lb ai/acre over a growing season, wherein the effective amount of \(2,4-\mathrm{D}\) is about 0.75 lb ae/acre to 1.0 lb ae/acre over a growing season, wherein the effective amount of quizalofop is about \(0.034 \mathrm{lb} \mathrm{ai} /\) acre to about 0.083 lb ai/acre over a growing season, and wherein the effective amount of haloxyfop is about 0.018 ai/acre to about 0.07 lb ai/acre over a growing season.

23-26. (canceled)
27. A method for controlling a volunteer maize plant comprising the recombinant DNA molecule of claim 1 in an area comprising applying an herbicidally effective amount of at least one cyclohexanedione (DIM) herbicide, where the herbicide application prevents growth of said maize plant.
28. The method of claim 27, wherein applying the herbicidally effective amount of at least one cyclohexanedione (DIM) herbicide comprises applying a cyclohexanedione (DIM) herbicide selected from the group consisting of clethodim, sethoxydim, and tralkoxydim.
29. A method of producing a plant that comprises tolerance to at least one herbicide selected from the group consisting of inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group, synthetic auxins, inhibitors of glutamine synthetase, and inhibitors of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), or any combination thereof, the method comprising:
a) breeding a plant comprising maize event MON87429 with itself or a second plant to produce seed; and
b) identifying progeny seed that comprise maize event MON87429.
30. The method of claim 29 , wherein identifying progeny seed that comprise maize event MON87429 comprises:
a) growing the progeny seed to produce progeny plants;
b) treating the progeny plants with an effective amount of at least one herbicide selected from the group consisting of quizalofop, haloxyfop, dicamba, 2,4-D, glufosinate, and glyphosate, or any combination thereof; and
c) selecting a progeny plant that is tolerant to at least one herbicide selected from the group consisting of inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group, synthetic auxins, inhibitors of glutamine synthetase, and inhibitors of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), or any combination thereof.
31. The method of claim 29, wherein identifying progeny seed that comprise maize event MON87429 comprises detecting the presence of maize event MON87429 in a sample derived from the progeny seed or wherein identifying progeny seed that comprise maize event MON87429 comprises detecting the presence of at least one protein encoded by maize event MON87429 in a sample derived from the progeny seed.
32. (canceled)
33. A method of producing hybrid seed comprising:
a) growing the plant of claim \(\mathbf{1 6}\);
b) applying an effective amount of glyphosate prior to or during the development of the male reproductive tissue of the plant thereby inducing male-sterility in the plant;
c) fertilizing the plant with pollen from a second plant; and
d) harvesting hybrid seed from the plant.
34. The method of claim 33, wherein applying the effective amount of glyphosate comprises application of glyphosate prior to or during the development at an effective amount of about 0.5 lb ae/acre to about 2.5 lb ae/acre.
35. The method of claim 33, wherein applying the effective amount of glyphosate comprises applying the glyphosate at a developmental stage selected from the group consisting of the V4, V5, V6, V7, V8, V9, V10, V11, V12, V13, and V14 stage of maize plant development.
36. A hybrid seed produced by the method of claim 33, wherein the hybrid seed comprises SEQ ID NO:10.
37. A method of determining zygosity of a plant comprising the recombinant DNA molecule of claim 1 comprising:
a) contacting a sample comprising DNA derived from the plant with a primer set capable of producing a first amplicon diagnostic for the presence of said recombinant DNA molecule and a second amplicon diagnostic for the wild-type maize genomic DNA not comprising said recombinant DNA molecule;
b) performing a nucleic acid amplification reaction; and
c) detecting the first amplicon and the second amplicon, wherein the presence of both amplicons indicates the sample is heterozygous for said recombinant DNA molecule and the presence of only the first amplicon indicates the sample is homozygous for said recombinant DNA molecule.
38. The method of claim 37, wherein the primer set comprises SEQ ID NO:11 and SEQ ID NO:12.
39. A method of improving tolerance in a maize plant comprising tolerance to at least one herbicide selected from the group consisting of inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group, synthetic auxins, inhibitors of glutamine synthetase, and inhibitors of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), or any combination thereof, comprising:
a) obtaining the DNA construct of claim \(\mathbf{5}\);
b) inserting the DNA construct into the genome of a maize cell;
c) regenerating the maize cell into a maize plant; and d) selecting a maize plant comprising the DNA construct.
40. The method of claim 39 , wherein the selecting comprises treating the maize plant with an effective amount of at least one herbicide selected from the group consisting of quizalofop, haloxyfop, dicamba, 2,4-D, glufosinate, and glyphosate.
41. A maize plant, maize seed, or maize cell comprising tolerance to at least one herbicide selected from the group consisting of inhibitors of acetyl CoA carboxylase (ACCase) in the aryloxyphenoxy propionate (FOP) group, synthetic auxins, inhibitors of glutamine synthetase, and inhibitors of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), or any combination thereof, and obtainable by the method of claim 39, wherein the maize plant, maize seed, or maize cell comprises the DNA construct.```

