FLO-4Ø689-6 - Moonaqua™ carnation | BCH-LMO-SCBD-48219 | Living Modified Organism | Biosafety Clearing-House

Loading...
Living Modified Organism (LMO)
  |  
Decisions on the LMO Risk Assessments  
published: 05 Feb 2009 last updated: 27 Aug 2014
Living Modified Organism identity
The image below identifies the LMO through its unique identifier, trade name and a link to this page of the BCH. Click on it to download a larger image on your computer. For help on how to use it go to the LMO quick-links page.
Moonaqua™ carnation
EN
123.8.12
Yes
FLO-4Ø689-6
Carnation Moonaqua 123.8.12 has a modified flower colour, a shade of light mauve, whereas the non-GM parent has cream-white flowers. The colour has been achieved by introducing into white carnation two genes of the anthocyanin biosynthesis pathway from Petunia and Viola sp. These genes, encoding dihydroflavonol 4-reductase (dfr) and flavonoid 3'5' hydroxylase (f3’5’h), together with other genes of the anthocyanin biosynthesis pathway already present in the non GM carnation, give rise to the anthocyanins delphinidin and cyanidin
EN
The term “Recipient organism” refers to an organism (either already modified or non-modified) that was subjected to genetic modification, whereas “Parental organisms” refers to those that were involved in cross breeding or cell fusion.
Carnation line: FE123
EN
  • FLO-11363-2 - Moonshadow™ carnation
    | SUntory Holdings Ltd. | Changes in quality and/or metabolite content (Pigmentation / Coloration), Resistance to herbicides (Sulfonylurea)
  • FLO-11226-9 - Moonshade™ carnation
    | SUntory Holdings Ltd. | Changes in quality and/or metabolite content (Pigmentation / Coloration), Resistance to herbicides (Sulfonylurea)
  • FLO-4Ø685-2 - Moonvista™ carnation
    | SUntory Holdings Ltd. | Changes in quality and/or metabolite content (Pigmentation / Coloration), Resistance to herbicides (Sulfonylurea)
  • FLO-11351-8 - Moonshade™ carnation
    | SUntory Holdings Ltd. | Changes in quality and/or metabolite content (Pigmentation / Coloration), Resistance to herbicides (Sulfonylurea)
  • FLO-114ØØ-3 - Moonshade™ carnation
    | SUntory Holdings Ltd. | Changes in quality and/or metabolite content (Pigmentation / Coloration), Resistance to herbicides (Sulfonylurea)
  • FLO-11959-4 - Moonshade™ carnation
    | SUntory Holdings Ltd. | Changes in quality and/or metabolite content (Pigmentation / Coloration), Resistance to herbicides (Sulfonylurea)
  • FLO-11988-6 - Moonshade™ carnation
    | SUntory Holdings Ltd. | Changes in quality and/or metabolite content (Pigmentation / Coloration), Resistance to herbicides (Sulfonylurea)
Characteristics of the modification process
pCGP1991
EN
  • Agrobacterium-mediated DNA transfer
Some of these genetic elements may be present as fragments or truncated forms. Please see notes below, where applicable.
  • BCH-GENE-SCBD-15009-4 Dihydroflavonol-4-reductase | Petunia hybrida (Petunia, PETHY)
    Protein coding sequence | Changes in quality and/or metabolite content (Pigmentation / Coloration)
  • BCH-GENE-SCBD-43793-4 Flavonoid 3', 5'-hydroxylase gene | Viola sp. (Pansy, VIOLA)
    Protein coding sequence | Changes in quality and/or metabolite content (Pigmentation / Coloration)
  • BCH-GENE-SCBD-15177-7 Acetohydroxy acid synthase gene | Nicotiana tabacum (Tobacco, TOBAC )
    Protein coding sequence | Resistance to herbicides (Chlorsulfuron, Sulfonylurea)
  • BCH-GENE-SCBD-100287-7 CaMV 35S promoter | Cauliflower mosaic virus (CaMV)
    Promoter
  • BCH-GENE-SCBD-101901-3 5' untranslated leader of chlorophyll a/b-binding protein | Petunia hybrida (Petunia, PETHY)
    Leader
  • BCH-GENE-SCBD-100390-7 Acetohydroxy acid synthase gene terminator | Nicotiana tabacum (Tobacco, TOBAC )
    Terminator
  • BCH-GENE-SCBD-105798-1 Dihydroflavonol-4-reductase promoter | Petunia hybrida (Petunia, PETHY)
    Promoter
  • BCH-GENE-SCBD-105799-1 Dihydroflavonol-4-reductase terminator | Petunia hybrida (Petunia, PETHY)
    Terminator
  • BCH-GENE-SCBD-103771-1 Chalcone synthase gene promoter | Antirrhinum majus (Common Snapdragon, Snapdragon)
    Promoter
  • BCH-GENE-SCBD-103772-2 D8 gene terminator | Petunia hybrida (Petunia, PETHY)
    Terminator
The size and structure of the inserts have been analyzed by Southern blot analysis and T-DNA between the left and right borders of pCGP1991 remains in the GMHP. Through Southern Blot analysis it has been shown that no DNA from outside the T-DNA borders is present in the GMHP and that the introduced DNA is present as three loci.
EN
LMO characteristics
EN
  • Ornamental
Detection method(s)
EN
Additional Information
Three genes have been transferred into FLO-4Ø689-6, these are:

• The petunia DFR gene, coding for dihydroflavonol 4-reductase (DFR), derived from Petunia X hybrida. The petunia DFR enzyme is only capable of using dihydroquercetin and dihydromyricetin as substrate, not dihydrokaempferol. This ensures that most or all of the anthocyanidin produced is delphinidin. A constitutive promoter drives the petunia DFR-A cDNA derived gene;

• the pansy F3’5’H gene, coding for flavonoid 3' 5' hydroxylase (F3’5’H), derived from Viola sp. F3’5’H acts by converting the dihydroflavonols dihydrokaempferol and/or dihydroquercetin into the dihydroflavonol dihydromyricetin. The cDNA for F3’5’H encodes the enzyme F3’5’H allowing transgenic plants normally lacking this enzyme to produce violet or blue delphinidin derived pigments; and

• ALS gene (SuRB), coding for a mutant acetolactate synthase protein (ALS), derived from Nicotiana tabacum. Expression of the mutation confers resistance to sulfonylurea herbicides.
EN
Records referencing this document Show in search
Record type Field Record(s)
Risk Assessment generated by a regulatory process Living modified organism(s) 7
Country's Decision or any other Communication Living modified organism(s) 6
Living Modified Organism Related LMO(s) 8