In order to identify whether or not the LMO possesses characteristics that may cause potential adverse effects (see section 5.1), it is first necessary to have information about the non-modified recipient organism (or parental organisms).
For many LMOs, the biology of the recipient organism will strongly influence the potential interactions of the LMO in the receiving environment. Information on the recipient organism is therefore essential as it will help the risk assessor identify the exposure, its scenarios and, ultimately, if any risk is posed by an LMO.
The information that is needed for the characterization of the recipient organism will vary depending on each case. It normally includes the biological and reproductive characteristics of the recipient organism that can be important for determining the potential exposure of other organisms, such as predators, prey, competitors or pathogens, to the LMO in question in the likely potential receiving environment.
For many species of commercialized LMOs, information on the recipient organism can be found in biology documents, such as those published by the Organization for Economic Co-operation and Development (OECD) and the Canadian Food Inspection Agency (CFIA) .
The LMO will, in most cases, share most of its genetic characteristics with its actual recipient organism (i.e. the one used in the modification) rather than with other genotypes of the same species. Thus, it is also important to consider, whenever possible, comparative data from the actual non-modified recipient organism (see the section on “Establishing the appropriate comparator(s)”) .
Information about recipient organism to be considered may include:
- Taxonomic status – This information is useful for identifying the recipient organism and ensuring that information provided and cited during the assessment pertains to the organism for which the assessment is being carried out. Typically, the taxonomic status includes the scientific name (i.e. genus and species, for example, Zea mays) and information about the taxonomic family (e.g. Poaceae). This may also include other information used to further classify (e.g. sub-species, variety, strain) or differentiate the recipient or parental organism(s) (e.g. ploidy level or chromosome number).
- Common name – The familiar or colloquial names for the recipient organism that may be commonly used in the country of introduction and in international trade may be useful for finding information relevant to the biology of the organism. Caution is recommended when using information about recipient organism when only common names (versus the scientific name) are used because the same common name can be applied to more than one species.
- Biological characteristics – Information on the biological characteristics of the recipient organism, such as the production of endogenous toxins and allergens, its reproductive biology, seed dispersal and growth habits, are also important points for consideration.
- Origin – The origin of the recipient organism refers to its place of collection and may be important because populations within a species (e.g., variety, strain, isoline, etc.) may have significantly different characteristics. For domesticated species, this may be supplemented with a pedigree map where available.
- Centres of origin and centres of genetic diversity – Knowledge of the centre(s) of origin and genetic diversity can provide information on the presence of sexually compatible species and the likelihood of ecological interactions in the receiving environment. In the absence of more specific information, the centre of origin can also offer insight into the biology of the species (e.g. habitats to which the species is adapted).
- Habitat where the recipient or parental organism(s) may persist or proliferate – Information about the ecosystems and habitats (e.g. temperature, humidity, altitude, etc) where the recipient organism is known to be native and where it may have been introduced and is now established provides useful baseline information. This allows the risk assessors to understand the range of habitats in which the species exists, the range of behaviours exhibited in those habitats, and how characteristics of the species determine the range of habitats where it can persist or proliferate. This information can be very valuable in determining the likely potential receiving environment and, consequently, the level of exposure to the LMO. Likewise, the ecological characteristics of the recipient organism will help determine which organisms in the likely potential receiving environment are likely to come into contact, either directly or indirectly, with the LMO and will help determine the exposure pathways. For more details on the type of information that may be useful, see section 4.2 on the “Likely potential receiving environment”.
The history of use can be very valuable as well. If an organism persists in heavily managed environments (e.g. agriculture, silviculture or recreationally managed land) then this will provide information about the conditions necessary for its survival. It may also provide direct indications of how the LMO will behave in other managed environments.