MON-87427-7 × MON-89Ø34-3 × DAS-Ø15Ø7-1 × MON-87411-9 - Herbicide-tolerant, insect-resistant maize | BCH-LMO-SCBD-116298 | Living Modified Organism | Biosafety Clearing-House

Loading...
  |  

Living Modified Organism (LMO)

Decisions on the LMO Risk Assessments  
last updated: 04 Oct 2021
Living Modified Organism identity
The image below identifies the LMO through its unique identifier, trade name and a link to this page of the BCH. Click on it to download a larger image on your computer. For help on how to use it go to the LMO quick-links page.
Herbicide-tolerant, insect-resistant maize
EN
MON87427 × MON89034 × TC1507 × MON87411
MON-87427-7 × MON-89Ø34-3 × DAS-Ø15Ø7-1 × MON-87411-9
The maize (Zea mays) was produced through cross breeding of modified parental maize lines for herbicide tolerance and insect resistance. For herbicide tolerance, the maize expresses Agrobacterium tumefaciens 5-enolpyruvylshikimate-3-phosphate synthase (glyphosate tolerance - enzyme variant) and Streptomyces viridochromogenes phosphinothricin N-acetyltransferase (glufosinate tolerance - enzymatic inactivation). For Lepidoptera tolerance, the maize expresses Bacillus thuringiensis Cry1A.105, Cry1F and Cry2Ab2. For Coleoptera resistance, the maize expresses B. thuringiensis Cry3Bb1. The maize contains an RNA interference cassette targeting Diabrotica virgifera virgifera Snf7 for specific resistance against D. virgifera virgifera.
EN
The term “Recipient organism” refers to an organism (either already modified or non-modified) that was subjected to genetic modification, whereas “Parental organisms” refers to those that were involved in cross breeding or cell fusion.
  • BCH-ORGA-SCBD-246-6 Organism Zea mays (Maize, Corn, MAIZE)
    Crops
  • BCH-LMO-SCBD-104758-3 Living Modified Organism MON-87427-7 - Maize modified for tissue selective glyphosate tolerance
    Resistance to herbicides - Glyphosate
  • BCH-LMO-SCBD-43773-18 Living Modified Organism MON-89Ø34-3 - YieldGard™ VT Pro™
    Resistance to diseases and pests - Insects - Lepidoptera (butterflies and moths)
  • BCH-LMO-SCBD-14841-13 Living Modified Organism DAS-Ø15Ø7-1 - Herculex™ I maize
    Resistance to diseases and pests (Insects, Lepidoptera (butterflies and moths)), Resistance to herbicides (Glufosinate)
  • BCH-LMO-SCBD-108881-1 Living Modified Organism MON-87411-9 - Maize modified for herbicide tolerance and insect resistance
    Monsanto | Resistance to diseases and pests (Insects, Coleoptera (beetles), Western corn rootworm (Diabrotica virgifera), Northern corn rootworm (Diabrotica barberi)), Resistance to herbicides (Glyphosate)
EN
Characteristics of the modification process
PV-ZMAP1043; PV-ZMIR245; PHI8999A; PV-ZMIR10871
EN
  • Cross breeding
 
0.980 kb
 
 
1.000 kb
 
 
1.820 kb
 
 
0.720 kb
 
 
0.620 kb
 
 
0.800 kb
 
 
0.240 kb
 
 
0.240 kb
 
 
0.630 kb
 
Some of these genetic elements may be present as fragments or truncated forms. Please see notes below, where applicable.
DNA insert from MON87427 PV-ZMAP1043
Transcription of 5-enolpyruvylshikimate-3-phosphate synthase (cp4-epsps) from Agrobacterium tumefaciens commences from the Cauliflower mosaic virus (CaMV) enhanced 35S promoter and ends at the A. tumefaciens nopaline synthase (nos) gene terminator. The transcript contains a Zea mays heat shock protein 70 (hsp70) intron, Arabidopsis thaliana N-terminal chloroplast transit peptide sequence, and cp4-epsps.  The CaMV enhanced 35S promoter-hsp70 combination promotes gene expression in female and vegetative tissues, but not in male reproductive tissues (pollen microspores and tapetum).

Note:
- Southern blot analyses indicate that a single copy of the T-DNA was inserted at a single site in the parental maize genome and no plasmid vector backbone sequences were detected to have been integrated. DNA sequencing analyses further indicated that the expected T-DNA sequences were integrated.
- The cp4-epsps coding sequence is the codon optimized coding sequence of the aroA gene from Agrobacterium sp. strain CP4 encoding CP4 EPSPS.
- The cp4-epsps cassette from MON87411 genome overcomes the tissue-specific expression from the MON87427 parental genome.

DNA insert from MON89034 vector PV-ZMIR245
Two insecticidal protein expression cassettes were inserted into the genome. Bacillus thuringiensis cry1A.105 expression is under the control of the CaMV 35S enhanced promoter, which first transcribes wheat (Triticum aestivum) 5' untranslated region of the chlorophyll a/b-binding protein (cab) and a rice actin 1 intron before transcribing cry1A.105. Transcription terminates at the wheat heat shock protein 17.3 terminator. Expression of the B. thuringiensis cry2Ab2 starts at the Figwort mosaic virus 34S promoter, which transcribes the Zea mays heat shock protein 70 (hsp70), then the Z. mays transit peptide and the cry2Ab2 coding sequence, before terminating at the nos terminator.

Note:
- The Cry2Ab2 coding sequence was modified for optimal expression in plants.
- South blot analysis confirmed that single insertions of both cry2Ab2 and cry1A.105, as well as no vector backbone were present and in the parent.
- A deletion removed the duplicated enhancer elements compared to the original CaMV 35S enhanced promoter in PV-ZMIR245.
- The selectable marker, nptII, cassette was bred out of the parental line and became not associated with this transformation event.

DNA insert from TC1507 vector PHI8999A
DNA fragment PHI8999A contains two adjacent plant gene expression cassettes for Bacillus thuringiensis cry1F and Streptomyces viridochromogenes pat.

Transcription of cry1F is directed by the promoter and first exon and intron of the maize (Zea mays) ubiquitin gene and terminates at the Agrobacterium tumefaciens ORF25 terminator.

Transcription of the pat gene commences from the Cauliflower mosaic virus (CaMV) 35S promoter and ends at the CaMV 35S terminator.

Note:
- The coding sequence of both genes has been optimized to achieve a high level of expression in maize.
- The sequences of the complete cry1F and pat are identical to those in the original plasmid.
- The CRY1F protein includes the F604K (phenylalanine to lysine at position 604) amino acid substitution, which was introduced to create a specific restriction site for cloning purposes.

DNA insert from MON87411 vector PV-ZMIR10871
The MON87411 genome contains three cassettes: an RNA interference (RNAi) cassette targeting Diabrotica virgifera virgifera, Bacillus thuringiensis cry3Bb1 and Agrobacterium tumefaciens 5-enolpyruvylshikimate-3-phosphate synthase (cp4-epsps).

Transcription of the RNAi cassette commences from the Cauliflower mosaic virus 35S enhanced promoter and terminates at the Pisum sativum ribulose bisphosphate carboxylase small chain 2 terminator. The transcript initially contains a Zea mays heat shock protein 70 intron, which contributes to enhanced expression in vegetative tissues of the plant, and two partial coding sequences of the D. virgifera virgifera Snf7p gene, which encodes the SNF7 subunit of the ESCRT-III complex. The two Snf7p sequences are in an inverted orientation, separated by a 150-nucleotide intervening sequence, which allows base pairing between the inverted sequences and hairpin RNA formation post-transcription, which then triggers an RNAi response. Due to RNAi processing, small interfering RNA molecules (roughly 21-23 nucleotides in length) will be produced and thus no translation into protein will occur from this cassette.

Transcription of the cry3Bb1 is under control of the Z. mays physical impedance induced protein promoter and Triticum aestivum (wheat) heat shock protein 17.3 terminator. The transcript also contains a wheat 5' untranslated leader from chlorophyll a/b-binding protein and Oryza sativa actin 1 intron for enhanced expression of the transgene. Expression of cp4-epsps is under control of an O. sativa alpha tubulin promoter and terminator. The transcript additionally contains Arabidopsis thaliana chloroplast targeting peptide 2 to sequester the protein to the chloroplast.

Note:
- Sequencing, PCR and bioinformatic analyses indicate that a single, intact insertions of the three gene cassettes occurred in the parental line.
- No plasmid backbone was detected.


For more information, kindly refer to the parental LMO records.
EN
LMO characteristics
EN
  • Food
  • Feed
Detection method(s)