MON-87427-7 × MON-89Ø34-3 × DAS-Ø15Ø7-1 × MON-87411-9 × DAS-59122-7 - Insect resistant, herbicide tolerant maize | BCH-LMO-SCBD-111954 | Living Modified Organism | Biosafety Clearing-House

Loading...
Living Modified Organism (LMO)
  |  
Decisions on the LMO Risk Assessments  
published: 30 May 2017 last updated: 31 May 2017
Living Modified Organism identity
The image below identifies the LMO through its unique identifier, trade name and a link to this page of the BCH. Click on it to download a larger image on your computer. For help on how to use it go to the LMO quick-links page.
Insect resistant, herbicide tolerant maize
EN
MON87427 x MON89034 x TC1507 x MON87411 x 59122
Yes
MON-87427-7 × MON-89Ø34-3 × DAS-Ø15Ø7-1 × MON-87411-9 × DAS-59122-7
The stacked maize line MON87427 x MON89034 x TC1507 x MON87411 x 59122 was obtained through the traditional cross breading of each of the parental organisms to produce a maize that expresses each of EPSPS, Cry1A.105, Cry2Ab2, Cry3Bb1, Cry1F, PAT, Cry34Ab1 and Cry35Ab1 genes. The expression of these genes are expected to confer resistance to Lepidoptera and Coleoptera, and tolerant to glufosinate herbicide and glyphosate herbicide. The line also contains a suppression cassette that expresses an inverted repeat sequence that results in the formation of a double-stranded RNA (dsRNA) transcript containing a 240 bp fragment of the WCR Snf7 gene (DvSnf7) and is designed to match the sequence of western corn rootworm (WCR).
EN
The term “Recipient organism” refers to an organism (either already modified or non-modified) that was subjected to genetic modification, whereas “Parental organisms” refers to those that were involved in cross breeding or cell fusion.
  • BCH-ORGA-SCBD-246-6 Organism Zea mays (Maize, Corn, MAIZE)
    Crops
  • BCH-LMO-SCBD-104758-3 Living Modified Organism MON-87427-7 - Maize modified for tissue selective glyphosate tolerance
    Monsanto | Resistance to herbicides (Glyphosate)
  • BCH-LMO-SCBD-43773-18 Living Modified Organism MON-89Ø34-3 - YieldGard™ VT Pro™
    Monsanto Company | Resistance to diseases and pests (Insects, Lepidoptera (butterflies and moths))
  • BCH-LMO-SCBD-14841-13 Living Modified Organism DAS-Ø15Ø7-1 - Herculex™ I maize
    Dow AgroSciences, Pioneer Hi-Bred International Inc. | Resistance to diseases and pests (Insects, Lepidoptera (butterflies and moths)), Resistance to herbicides (Glufosinate)
  • BCH-LMO-SCBD-15165-13 Living Modified Organism DAS-59122-7 - Herculex™ RW Rootworm Protection maize
    Pioneer Hi-Bred International Inc. | Resistance to diseases and pests (Insects, Coleoptera (beetles)), Resistance to herbicides (Glufosinate)
  • BCH-LMO-SCBD-108881-1 Living Modified Organism MON-87411-9 - Maize modified for herbicide tolerance and insect resistance
    Monsanto | Resistance to diseases and pests (Insects, Coleoptera (beetles), Western corn rootworm (Diabrotica virgifera), Northern corn rootworm (Diabrotica barberi)), Resistance to herbicides (Glyphosate)
EN
Characteristics of the modification process
PV-ZMAP1043, PV-ZMIR245, PV-ZMIR10871, PHI8999A and PHP17662
EN
  • Cross breeding
 
0.620 kb
 
 
0.800 kb
 
 
0.240 kb
 
 
0.240 kb
 
 
0.630 kb
 
 
1.980 kb
 
 
1.820 kb
 
 
0.720 kb
 
Some of these genetic elements may be present as fragments or truncated forms. Please see notes below, where applicable.
  • BCH-GENE-SCBD-100366-6 CaMV Enhanced 35S promoter | Cauliflower mosaic virus (CaMV)
    Promoter
  • BCH-GENE-SCBD-100287-7 CaMV 35S promoter | Cauliflower mosaic virus (CaMV)
    Promoter
  • BCH-GENE-SCBD-15002-4 Phosphinothricin N-acetyltransferase gene | Streptomyces viridochromogenes (STRVR)
    Protein coding sequence | Resistance to herbicides (Glufosinate)
  • BCH-GENE-SCBD-100290-6 CaMV 35S terminator | Cauliflower mosaic virus (CaMV)
    Terminator
  • BCH-GENE-SCBD-100362-7 Ubiquitin gene promoter | Zea mays (Maize, Corn, MAIZE)
    Promoter
  • BCH-GENE-SCBD-14987-8 Cry1F | Bacillus thuringiensis (Bt, Bacillus, BACTU)
    Protein coding sequence | Resistance to diseases and pests (Insects, Lepidoptera (butterflies and moths))
  • BCH-GENE-SCBD-100363-5 ORF25 PolyA Terminator sequence | Agrobacterium tumefaciens (Agrobacterium)
    Terminator
  • BCH-GENE-SCBD-14994-9 Cry34Ab1 | Bacillus thuringiensis (Bt, Bacillus, BACTU)
    Protein coding sequence | Resistance to diseases and pests (Insects, Coleoptera (beetles))
  • BCH-GENE-SCBD-100367-4 Proteinase inhibitor II gene terminator | Solanum tuberosum (Potato, SOLTU)
    Terminator
  • BCH-GENE-SCBD-100368-6 Peroxidase gene promoter | Triticum aestivum (Wheat)
    Promoter
  • BCH-GENE-SCBD-14995-8 Cry35Ab1 | Bacillus thuringiensis (Bt, Bacillus, BACTU)
    Protein coding sequence | Resistance to diseases and pests (Insects, Coleoptera (beetles))
  • BCH-GENE-SCBD-100359-7 Hsp70 intron | Zea mays (Maize, Corn, MAIZE)
    Intron
  • BCH-GENE-SCBD-100365-6 Chloroplast transit peptide 2 | Arabidopsis thaliana (Thale cress, Mouse-ear cress, Arabidopsis, ARATH)
    Transit signal
  • BCH-GENE-SCBD-14979-7 5-enolpyruvylshikimate-3-phosphate synthase gene | Agrobacterium tumefaciens (Agrobacterium)
    Protein coding sequence | Resistance to herbicides (Glyphosate)
  • BCH-GENE-SCBD-100269-8 Nopaline Synthase Gene Terminator | Agrobacterium tumefaciens (Agrobacterium)
    Terminator
  • BCH-GENE-SCBD-100354-6 5' untranslated leader from chlorophyll a/b-binding protein | Triticum aestivum (Wheat)
    Leader sequence
  • BCH-GENE-SCBD-100355-6 Rice actin 1, intron | Oryza sativa (Rice, ORYSA)
    Intron
  • BCH-GENE-SCBD-43771-9 Cry1A.105 | Bacillus thuringiensis (Bt, Bacillus, BACTU)
    Protein coding sequence | Resistance to diseases and pests (Insects, Lepidoptera (butterflies and moths))
  • BCH-GENE-SCBD-100356-6 Heat shock protein 17.3 terminator | Triticum aestivum (Wheat)
    Terminator
  • BCH-GENE-SCBD-101507-5 FMV 34S promoter | Figwort mosaic virus (Figwort mottle virus, FMV, CMoVb)
    Promoter
  • BCH-GENE-SCBD-100360-4 Transit peptide and first intron of Rubisco SSU | Zea mays (Maize, Corn, MAIZE)
    Transit signal
  • BCH-GENE-SCBD-14988-7 Cry2Ab2 | Bacillus thuringiensis (Bt, Bacillus, BACTU)
    Protein coding sequence | Resistance to diseases and pests (Insects, Lepidoptera (butterflies and moths))
  • BCH-GENE-SCBD-108877-1 Alpha Tubulin Gene promoter | Oryza sativa (Rice, ORYSA)
    Promoter
  • BCH-GENE-SCBD-108880-1 Alpha Tubulin Gene terminator | Oryza sativa (Rice, ORYSA)
    Terminator
  • BCH-GENE-SCBD-108876-1 pIIG gene promoter | Zea mays (Maize, Corn, MAIZE)
    Promoter
  • BCH-GENE-SCBD-14993-5 Cry3Bb1 | Bacillus thuringiensis (Bt, Bacillus, BACTU)
    Protein coding sequence | Resistance to diseases and pests (Insects, Coleoptera (beetles))
  • BCH-GENE-SCBD-108875-2 Snf7 coding sequence | Diabrotica virgifera virgifera (Western corn rootworm, DIAVI)
    Protein coding sequence | Resistance to diseases and pests (Insects, Coleoptera (beetles), Western corn rootworm (Diabrotica virgifera))
  • BCH-GENE-SCBD-101877-5 rbcS-E9 gene terminator | Pisum sativum (Garden pea, PEA)
    Terminator
DNA insert from TC1507 vector PHI8999A
TC1507 modified with the insertion of the Cry1F gene to confer resistance to the European corn borer (Ostrinia nubilalis). A transformation cassette coding for phosphinothricin (PPT) herbicide tolerance, specifically glufosinate ammonium, was also inserted into the organism.

DNA insert from 59122 vector PHP17662
The cry34Ab1 and cry35Ab1 genes, isolated from the common soil bacterium Bacillus thuringiensis (Bt) strain PS149B1, produce the insect control proteins (delta-endotoxins) Cry34Ab1 and Cry35Ab1. The pat gene was isolated from the soil bacterium Streptomyces viridochromogenes and confers tolerance to herbicides containing glufosinate ammonium.

DNA insert from MON89034 vector PV-ZMIR245
Maize line MON89034 expresses two Bt-toxins encoded by the genes cry1A.105 and cry2Ab2 from Bacillus thuringiensis that confer resistance against certain lepidopteran pests.

DNA insert from MON87427, vector PV-ZMAP1043
MON87427 was modifies to express the CP4 EPSPS protein which confers tolerance to the herbicide glyphosate. The e35S-hsp70 promoter and intron combination is used to drive the tissue selective expression of the cp4 epsps gene resulting in CP4 EPSPS protein production in vegetative and female reproductive tissue, providing tolerance to glyphosate within these tissues.

DNA insert from MON87411 vector PV-ZMIR10871
MON87411 was modified to contain a suppression cassette that expresses an inverted repeat sequence designed to match the sequence of western corn rootworm (WCR) and also expresses the cry3Bb1 gene encoding a Coleopteran-specific insecticidal protein to control infestation with corn root worm, and the cp4 epsps gene.

For additional information on this LMO, please refer to the records of the parental LMOs.
EN
LMO characteristics
EN
  • Food
  • Feed
Detection method(s)
EN
Additional Information
EN
Records referencing this document Show in search
Record type Field Record(s)
Country's Decision or any other Communication Living modified organism(s) 4
Risk Assessment generated by a regulatory process Living modified organism(s) 4