MON-8746Ø-4 × MON-87411-9 - Drought-tolerant, herbicide-tolerant, insect-resistant maize | BCH-LMO-SCBD-116323 | Living Modified Organism | Biosafety Clearing-House

Loading...
Living Modified Organism (LMO)
  |  
Decisions on the LMO Risk Assessments  
last updated: 07 Oct 2021
Living Modified Organism identity
The image below identifies the LMO through its unique identifier, trade name and a link to this page of the BCH. Click on it to download a larger image on your computer. For help on how to use it go to the LMO quick-links page.
Drought-tolerant, herbicide-tolerant, insect-resistant maize
EN
MON87460 × MON87411
Yes
MON-8746Ø-4 × MON-87411-9
The maize (Zea mays) was produced through cross breeding of modified parental maize lines for drought tolerance, herbicide tolerance and insect resistance. For abiotic tolerance, the maize expresses Bacillus subtillus cold shock protein to enhance natural abiotic (drought) stress responses. For herbicide tolerance, the maize expresses Streptomyces viridochromogenes phosphinothricin N-acetyltransferase, which inactivates glufosinate through acetylation. For Coleoptera  resistance, the maize expresses B. thuringiensis Cry3Bb1. The maize contains an RNA interference cassette targeting Diabrotica virgifera virgifera Snf7 for specific resistance against D. virgifera virgifera. Additionally, the maize contains an Escherichia coli neomycin phosphotransferase II cassette for kanamycin selection, which was used during transformation of a parental line.
EN
The term “Recipient organism” refers to an organism (either already modified or non-modified) that was subjected to genetic modification, whereas “Parental organisms” refers to those that were involved in cross breeding or cell fusion.
  • BCH-ORGA-SCBD-246-6 Organism Zea mays (Maize, Corn, MAIZE)
    Crops
  • BCH-LMO-SCBD-103066-6 Living Modified Organism MON-8746Ø-4 - Droughtgard™ Maize
    Resistance to antibiotics (Kanamycin, Neomycin), Tolerance to abiotic stress (Cold / Heat, Drought)
  • BCH-LMO-SCBD-108881-1 Living Modified Organism MON-87411-9 - Maize modified for herbicide tolerance and insect resistance
    Monsanto | Resistance to diseases and pests (Insects, Coleoptera (beetles), Western corn rootworm (Diabrotica virgifera), Northern corn rootworm (Diabrotica barberi)), Resistance to herbicides (Glyphosate)
EN
Characteristics of the modification process
PV-ZMAP595; PV-ZMIR10871
EN
  • Cross breeding
Some of these genetic elements may be present as fragments or truncated forms. Please see notes below, where applicable.
DNA insert from MON87460 vector PV-ZMAP595
The T-DNA insert contains the following gene cassettes: Bacillus subtillus cold shock protein (cspB) and Escherichia coli neomycin phosphotransferase II (nptII). 

Transcription of cspB is under control of the Oryza sativa actin 1 promoter and Agrobacterium tumefaciens transcript 7 gene 3' untranslated region. The transcript initially contains an O. sativa actin 1 intron for enhanced gene expression of cspB. The sequence is removed (spliced) prior to protein translation. Constitutive expression of cspB is expected due to the actin promoter.

Transcription of nptII is under control of the Cauliflower mosaic virus (CaMV) 35S promoter and A. tumefaciens nopaline synthase terminator. High levels of transcription are expected due to the CaMV promoter.

Note:
- The coding sequence of cspB has been codon optimized for optimal expression within plant cells.
- Southern blot analysis indicated that no vector backbone sequences were inserted into the parental genome
- Southern blot analysis indicated that the parental genome contains a single insertion
- Sequencing analyses confirm the Southern blot analyses.
- A 22 base pair deletion of genomic DNA at the insert-to-plant DNA junction occurred.
- loxP sites can be found in the parental genome and could potentially allow for the excision of the nptII cassette by CRE recombinase.

DNA insert from MON87411 vector PV-ZMIR10871
The MON87411 genome contains three cassettes: an RNA interference (RNAi) cassette targeting Diabrotica virgifera virgifera, Bacillus thuringiensis cry3Bb1 and Agrobacterium tumefaciens 5-enolpyruvylshikimate-3-phosphate synthase (cp4-epsps).

Transcription of the RNAi cassette commences from the Cauliflower mosaic virus 35S enhanced promoter and terminates at the Pisum sativum ribulose bisphosphate carboxylase small chain 2 terminator. The transcript initially contains a Zea mays heat shock protein 70 intron, which contributes to enhanced expression in vegetative tissues of the plant, and two partial coding sequences of the D. virgifera virgifera Snf7p gene, which encodes the SNF7 subunit of the ESCRT-III complex. The two Snf7p sequences are in an inverted orientation, separated by a 150-nucleotide intervening sequence, which allows base pairing between the inverted sequences and hairpin RNA formation post-transcription, which then triggers an RNAi response. Due to RNAi processing, small interfering RNA molecules (roughly 21-23 nucleotides in length) will be produced and thus no translation into protein will occur from this cassette.

Transcription of the cry3Bb1 is under control of the Z. mays physical impedance induced protein promoter and Triticum aestivum (wheat) heat shock protein 17.3 terminator. The transcript also contains a wheat 5' untranslated leader from chlorophyll a/b-binding protein and Oryza sativa actin 1 intron for enhanced expression of the transgene. Expression of cp4-epsps is under control of an O. sativa alpha tubulin promoter and terminator. The transcript additionally contains Arabidopsis thaliana chloroplast targeting peptide 2 to sequester the protein to the chloroplast.

Note:
- Sequencing, PCR and bioinformatic analyses indicate that a single, intact insertions of the three gene cassettes occurred in the parental line.
- No plasmid backbone was detected.

For more information, kindly refer to the parental LMO records.
EN
LMO characteristics
EN
  • Food
  • Feed
Additional Information
EN
Records referencing this document Show in search
Record type Field Record(s)
Laboratory for detection and identification of LMOs LMO(s) detectable by the laboratory 1
Country's Decision or any other Communication Living modified organism(s) 1
Risk Assessment generated by a regulatory process Living modified organism(s) 1