MON-87427-7 × MON-8746Ø-4 × DAS-Ø15Ø7-1 - Drought-tolerant, herbicide-tolerant, insect-resistant maize | BCH-LMO-SCBD-116307 | Living Modified Organism | Biosafety Clearing-House

Loading...
Living Modified Organism (LMO)
  |  
Decisions on the LMO Risk Assessments  
last updated: 05 Oct 2021
Living Modified Organism identity
The image below identifies the LMO through its unique identifier, trade name and a link to this page of the BCH. Click on it to download a larger image on your computer. For help on how to use it go to the LMO quick-links page.
Drought-tolerant, herbicide-tolerant, insect-resistant maize
EN
MON87427 × MON87460 × TC1507
Yes
MON-87427-7 × MON-8746Ø-4 × DAS-Ø15Ø7-1
The maize (Zea mays) was produced through cross breeding of modified parental maize lines for drought tolerance, herbicide tolerance and insect resistance. For abiotic tolerance, the maize expresses Bacillus subtillus cold shock protein to enhance natural abiotic (drought) stress responses. For herbicide tolerance, the maize expresses Agrobacterium tumefaciens 5-enolpyruvylshikimate-3-phosphate synthase (glyphosate tolerance - enzyme variant) and Streptomyces viridochromogenes phosphinothricin N-acetyltransferase (glufosinate tolerance - enzymatic inactivation). The expression of cp4-epsps is expected to be restricted to female and vegetable tissues. For Lepidoptera tolerance, the maize expresses Bacillus thuringiensis Cry1F. Additionally, the maize contains an Escherichia coli neomycin phosphotransferase II cassette for kanamycin selection, which was used during transformation of a parental line.
EN
The term “Recipient organism” refers to an organism (either already modified or non-modified) that was subjected to genetic modification, whereas “Parental organisms” refers to those that were involved in cross breeding or cell fusion.
  • BCH-ORGA-SCBD-246-6 Organism Zea mays (Maize, Corn, MAIZE)
    Crops
  • BCH-LMO-SCBD-104758-3 Living Modified Organism MON-87427-7 - Maize modified for tissue selective glyphosate tolerance
    Monsanto | Resistance to herbicides (Glyphosate)
  • BCH-LMO-SCBD-103066-6 Living Modified Organism MON-8746Ø-4 - Droughtgard™ Maize
    Resistance to antibiotics (Kanamycin, Neomycin), Tolerance to abiotic stress (Cold / Heat, Drought)
  • BCH-LMO-SCBD-14841-13 Living Modified Organism DAS-Ø15Ø7-1 - Herculex™ I maize
    Dow AgroSciences, Pioneer Hi-Bred International Inc. | Resistance to diseases and pests (Insects, Lepidoptera (butterflies and moths)), Resistance to herbicides (Glufosinate)
EN
Characteristics of the modification process
PV-ZMAP1043; PV-ZMAP595; PHI8999A
EN
  • Cross breeding
Some of these genetic elements may be present as fragments or truncated forms. Please see notes below, where applicable.
DNA insert from MON87427 PV-ZMAP1043
Transcription of 5-enolpyruvylshikimate-3-phosphate synthase (cp4-epsps) from Agrobacterium tumefaciens commences from the Cauliflower mosaic virus (CaMV) enhanced 35S promoter and ends at the A. tumefaciens nopaline synthase (nos) gene terminator. The transcript contains a Zea mays heat shock protein 70 (hsp70) intron, Arabidopsis thaliana N-terminal chloroplast transit peptide sequence, and cp4-epsps.  The CaMV enhanced 35S promoter-hsp70 combination promotes gene expression in female and vegetative tissues, but not in male reproductive tissues (pollen microspores and tapetum).

Note:
- Southern blot analyses indicate that a single copy of the T-DNA was inserted at a single site in the parental maize genome and no plasmid vector backbone sequences were detected to have been integrated. DNA sequencing analyses further indicated that the expected T-DNA sequences were integrated.
- The cp4-epsps coding sequence is the codon optimized coding sequence of the aroA gene from Agrobacterium sp. strain CP4 encoding CP4 EPSPS.

DNA insert from MON87460 vector PV-ZMAP595
The T-DNA insert contains the following gene cassettes: Bacillus subtillus cold shock protein (cspB) and Escherichia coli neomycin phosphotransferase II (nptII). 

Transcription of cspB is under control of the Oryza sativa actin 1 promoter and Agrobacterium tumefaciens transcript 7 gene 3' untranslated region. The transcript initially contains an O. sativa actin 1 intron for enhanced gene expression of cspB. The sequence is removed (spliced) prior to protein translation. Constitutive expression of cspB is expected due to the actin promoter.

Transcription of nptII is under control of the Cauliflower mosaic virus (CaMV) 35S promoter and A. tumefaciens nopaline synthase terminator. High levels of transcription are expected due to the CaMV promoter.

Note:
- The coding sequence of cspB has been codon optimized for optimal expression within plant cells.
- Southern blot analysis indicated that no vector backbone sequences were inserted into the parental genome
- Southern blot analysis indicated that the parental genome contains a single insertion
- Sequencing analyses confirm the Southern blot analyses.
- A 22 base pair deletion of genomic DNA at the insert-to-plant DNA junction occurred.
- loxP sites can be found in the parental genome and could potentially allow for the excision of the nptII cassette by CRE recombinase.

DNA insert from TC1507 vector PHI8999A
DNA fragment PHI8999A contains two adjacent plant gene expression cassettes for Bacillus thuringiensis cry1F and Streptomyces viridochromogenes pat.

Transcription of cry1F is directed by the promoter and first exon and intron of the maize (Zea mays) ubiquitin gene and terminates at the Agrobacterium tumefaciens ORF25 terminator.

Transcription of the pat gene commences from the Cauliflower mosaic virus (CaMV) 35S promoter and ends at the CaMV 35S terminator.

Note:
- The coding sequence of both genes has been optimized to achieve a high level of expression in maize.
- The sequences of the complete cry1F and pat are identical to those in the original plasmid.
- The CRY1F protein includes the F604K (phenylalanine to lysine at position 604) amino acid substitution, which was introduced to create a specific restriction site for cloning purposes.

For more information, kindly refer to the parental LMO records.
EN
LMO characteristics
EN
  • Food
  • Feed
Additional Information
EN
Records referencing this document Show in search
Record type Field Record(s)
Country's Decision or any other Communication Living modified organism(s) 1
Risk Assessment generated by a regulatory process Living modified organism(s) 1