MON-87427-7 × MON-8746Ø-4 × DAS-Ø15Ø7-1 × MON-87411-9 × DAS-59122-7 - Drought-tolerant, herbicide-tolerant, insect-resistant maize | BCH-LMO-SCBD-116289 | Living Modified Organism | Biosafety Clearing-House

Loading...
Living Modified Organism (LMO)
  |  
Decisions on the LMO Risk Assessments  
last updated: 01 Oct 2021
Living Modified Organism identity
The image below identifies the LMO through its unique identifier, trade name and a link to this page of the BCH. Click on it to download a larger image on your computer. For help on how to use it go to the LMO quick-links page.
Drought-tolerant, herbicide-tolerant, insect-resistant maize
EN
MON87427 × MON87460 × TC1507 × MON87411 × 59122
Yes
MON-87427-7 × MON-8746Ø-4 × DAS-Ø15Ø7-1 × MON-87411-9 × DAS-59122-7
The maize (Zea mays) was produced through cross breeding of modified parental maize lines for drought tolerance, herbicide tolerance and insect resistance. For abiotic tolerance, the maize expresses Bacillus subtillus cold shock protein to enhance natural abiotic (drought) stress responses. For herbicide tolerance, the maize expresses Agrobacterium tumefaciens 5-enolpyruvylshikimate-3-phosphate synthase (glyphosate tolerance - enzyme variant) and Streptomyces viridochromogenes phosphinothricin N-acetyltransferase (glufosinate tolerance - enzymatic inactivation). For Lepidoptera tolerance, the maize expresses Bacillus thuringiensis Cry1F. For Coleoptera  resistance, the maize expresses B. thuringiensis Cry3Bb1, Cry34Ab1 and Cry35Ab1. The maize contains an RNA interference cassette targeting Diabrotica virgifera virgifera Snf7 for specific resistance against D. virgifera virgifera. Additionally, the maize contains an Escherichia coli neomycin phosphotransferase II cassette for kanamycin selection, which was used during transformation of a parental line.
EN
The term “Recipient organism” refers to an organism (either already modified or non-modified) that was subjected to genetic modification, whereas “Parental organisms” refers to those that were involved in cross breeding or cell fusion.
  • BCH-ORGA-SCBD-246-6 Organism Zea mays (Maize, Corn, MAIZE)
    Crops
  • BCH-LMO-SCBD-104758-3 Living Modified Organism MON-87427-7 - Maize modified for tissue selective glyphosate tolerance
    Monsanto | Resistance to herbicides (Glyphosate)
  • BCH-LMO-SCBD-103066-6 Living Modified Organism MON-8746Ø-4 - Droughtgard™ Maize
    Resistance to antibiotics (Kanamycin, Neomycin), Tolerance to abiotic stress (Cold / Heat, Drought)
  • BCH-LMO-SCBD-14841-13 Living Modified Organism DAS-Ø15Ø7-1 - Herculex™ I maize
    Dow AgroSciences, Pioneer Hi-Bred International Inc. | Resistance to diseases and pests (Insects, Lepidoptera (butterflies and moths)), Resistance to herbicides (Glufosinate)
  • BCH-LMO-SCBD-108881-1 Living Modified Organism MON-87411-9 - Maize modified for herbicide tolerance and insect resistance
    Monsanto | Resistance to diseases and pests (Insects, Coleoptera (beetles), Western corn rootworm (Diabrotica virgifera), Northern corn rootworm (Diabrotica barberi)), Resistance to herbicides (Glyphosate)
  • BCH-LMO-SCBD-15165-13 Living Modified Organism DAS-59122-7 - Herculex™ RW Rootworm Protection maize
    Pioneer Hi-Bred International Inc. | Resistance to diseases and pests (Insects, Coleoptera (beetles)), Resistance to herbicides (Glufosinate)
EN
Characteristics of the modification process
PV-ZMAP1043; PV-ZMAP595; PHI8999A; PV-ZMIR10871; PHP17662
EN
  • Cross breeding
 
0.980 kb
 
 
1.000 kb
 
 
1.820 kb
 
 
0.720 kb
 
 
0.620 kb
 
 
0.800 kb
 
 
0.240 kb
 
 
0.240 kb
 
 
0.630 kb
 
Some of these genetic elements may be present as fragments or truncated forms. Please see notes below, where applicable.
  • BCH-GENE-SCBD-100366-6 CaMV Enhanced 35S promoter | Cauliflower mosaic virus (CaMV)
    Promoter
  • BCH-GENE-SCBD-100359-7 Hsp70 intron | Zea mays (Maize, Corn, MAIZE)
    Intron
  • BCH-GENE-SCBD-100365-6 Chloroplast transit peptide 2 | Arabidopsis thaliana (Thale cress, Mouse-ear cress, Arabidopsis, ARATH)
    Transit signal
  • BCH-GENE-SCBD-14979-7 5-enolpyruvylshikimate-3-phosphate synthase gene | Agrobacterium tumefaciens (Agrobacterium)
    Protein coding sequence | Resistance to herbicides (Glyphosate)
  • BCH-GENE-SCBD-100269-8 Nopaline Synthase Gene Terminator | Agrobacterium tumefaciens (Agrobacterium)
    Terminator
  • BCH-GENE-SCBD-101415-9 Ti plasmid left border repeat | Agrobacterium tumefaciens (Agrobacterium)
    Plasmid vector
  • BCH-GENE-SCBD-100364-5 Rice actin 1 gene promoter | Oryza sativa (Rice, ORYSA)
    Promoter
  • BCH-GENE-SCBD-100355-6 Rice actin 1, intron | Oryza sativa (Rice, ORYSA)
    Intron
  • BCH-GENE-SCBD-103065-7 Cold shock protein gene | Bacillus subtilis (Bacillus, BACIU)
    Protein coding sequence | Tolerance to abiotic stress (Cold / Heat, Drought)
  • BCH-GENE-SCBD-103067-9 Transcript 7 gene 3' untranslated region | Agrobacterium tumefaciens (Agrobacterium)
    Terminator
  • BCH-GENE-SCBD-103069-3 loxP recombination site | Bacteriophage P1 (Phage P1)
    recombination site
  • BCH-GENE-SCBD-100287-7 CaMV 35S promoter | Cauliflower mosaic virus (CaMV)
    Promoter
  • BCH-GENE-SCBD-15001-5 Neomycin Phosphotransferase II | Escherichia coli (ECOLX)
    Protein coding sequence | Resistance to antibiotics (Kanamycin)
  • BCH-GENE-SCBD-101416-6 Ti plasmid right border repeat | Agrobacterium tumefaciens (Agrobacterium)
    Plasmid vector
  • BCH-GENE-SCBD-100362-7 Ubiquitin gene promoter | Zea mays (Maize, Corn, MAIZE)
    Promoter
  • BCH-GENE-SCBD-103627-5 Ubiquitin Intron 1 | Zea mays (Maize, Corn, MAIZE)
    Intron
  • BCH-GENE-SCBD-14987-8 Cry1F | Bacillus thuringiensis (Bt, Bacillus, BACTU)
    Protein coding sequence | Resistance to diseases and pests (Insects, Lepidoptera (butterflies and moths))
  • BCH-GENE-SCBD-100363-5 ORF25 PolyA Terminator sequence | Agrobacterium tumefaciens (Agrobacterium)
    Terminator
  • BCH-GENE-SCBD-15002-4 Phosphinothricin N-acetyltransferase gene | Streptomyces viridochromogenes (STRVR)
    Protein coding sequence | Resistance to herbicides (Glufosinate)
  • BCH-GENE-SCBD-100290-6 CaMV 35S terminator | Cauliflower mosaic virus (CaMV)
    Terminator
  • BCH-GENE-SCBD-108875-2 Snf7 coding sequence | Diabrotica virgifera virgifera (Western corn rootworm, DIAVI)
    Protein coding sequence | Resistance to diseases and pests (Insects, Coleoptera (beetles), Western corn rootworm (Diabrotica virgifera))
  • BCH-GENE-SCBD-101877-5 rbcS-E9 gene terminator | Pisum sativum (Garden pea, PEA)
    Terminator
  • BCH-GENE-SCBD-108876-1 pIIG gene promoter | Zea mays (Maize, Corn, MAIZE)
    Promoter
  • BCH-GENE-SCBD-100354-6 5' untranslated leader from chlorophyll a/b-binding protein | Triticum aestivum (Wheat)
    Leader sequence
  • BCH-GENE-SCBD-14993-5 Cry3Bb1 | Bacillus thuringiensis (Bt, Bacillus, BACTU)
    Protein coding sequence | Resistance to diseases and pests (Insects, Coleoptera (beetles))
  • BCH-GENE-SCBD-100356-6 Heat shock protein 17.3 terminator | Triticum aestivum (Wheat)
    Terminator
  • BCH-GENE-SCBD-108877-1 Alpha Tubulin Gene promoter | Oryza sativa (Rice, ORYSA)
    Promoter
  • BCH-GENE-SCBD-108880-1 Alpha Tubulin Gene terminator | Oryza sativa (Rice, ORYSA)
    Terminator
  • BCH-GENE-SCBD-14994-9 Cry34Ab1 | Bacillus thuringiensis (Bt, Bacillus, BACTU)
    Protein coding sequence | Resistance to diseases and pests (Insects, Coleoptera (beetles))
  • BCH-GENE-SCBD-100367-4 Proteinase inhibitor II gene terminator | Solanum tuberosum (Potato, SOLTU)
    Terminator
  • BCH-GENE-SCBD-100368-6 Peroxidase gene promoter | Triticum aestivum (Wheat)
    Promoter
  • BCH-GENE-SCBD-14995-8 Cry35Ab1 | Bacillus thuringiensis (Bt, Bacillus, BACTU)
    Protein coding sequence | Resistance to diseases and pests (Insects, Coleoptera (beetles))
DNA insert from MON87427 PV-ZMAP1043
Transcription of 5-enolpyruvylshikimate-3-phosphate synthase (cp4-epsps) from Agrobacterium tumefaciens commences from the Cauliflower mosaic virus (CaMV) enhanced 35S promoter and ends at the A. tumefaciens nopaline synthase (nos) gene terminator. The transcript contains a Zea mays heat shock protein 70 (hsp70) intron, Arabidopsis thaliana N-terminal chloroplast transit peptide sequence, and cp4-epsps.  The CaMV enhanced 35S promoter-hsp70 combination promotes gene expression in female and vegetative tissues, but not in male reproductive tissues (pollen microspores and tapetum).

Note:
- Southern blot analyses indicate that a single copy of the T-DNA was inserted at a single site in the parental maize genome and no plasmid vector backbone sequences were detected to have been integrated. DNA sequencing analyses further indicated that the expected T-DNA sequences were integrated.
-The cp4-epsps coding sequence is the codon optimized coding sequence of the aroA gene from Agrobacterium sp. strain CP4 encoding CP4 EPSPS.
- The CaMV promoter - hsp70 intron combination promotes female and vegetative tissue specific expression of EPSPS. However, the additional cp4-epsps cassette from the MON87411 is expected to result in ubiquitous expression in all plant tissues.

DNA insert from MON87460 vector PV-ZMAP595
The T-DNA insert contains the following gene cassettes: Bacillius subtillus cold shock protein (cspB) and Escherichia coli neomycin phosphotransferase II (nptII). 

Transcription of cspB is under control of the Oryza sativa actin 1 promoter and Agrobacterium tumefaciens transcript 7 gene 3' untranslated region. The transcript initially contains an O. sativa actin 1 intron for enhanced gene expression of cspB. The sequence is removed (spliced) prior to protein translation. Constitutive expression of cspB is expected due to the actin promoter.

Transcription of nptII is under control of the Cauliflower mosaic virus (CaMV) 35S promoter and A. tumefaciens nopaline synthase terminator. High levels of transcription are expected due to the CaMV promoter.

Note:
- The coding sequence of cspB has been codon optimized for optimal expression within plant cells.
- Southern blot analysis indicated that no vector backbone sequences were inserted into the parental genome
- Southern blot analysis indicated that the parental genome contains a single insertion
- Sequencing analyses confirm the Southern blot analyses.
- A 22 base pair deletion of genomic DNA at the insert-to-plant DNA junction occurred.
- loxP sites can be found in the parental genome and could potentially allow for the excision of the nptII cassette by CRE recombinase.

DNA insert from TC1507 vector PHI8999A
DNA fragment PHI8999A contains two adjacent plant gene expression cassettes for Bacillus thuringiensis cry1F and Streptomyces viridochromogenes pat.

Transcription of cry1F is directed by the promoter and first exon and intron of the maize (Zea mays) ubiquitin gene and terminates at the Agrobacterium tumefaciens ORF25 terminator.

Transcription of the pat gene commences from the Cauliflower mosaic virus (CaMV) 35S promoter and ends at the CaMV 35S terminator.

Note:
- The coding sequence of both genes has been optimized to achieve a high level of expression in maize.
- The sequences of the complete cry1F and pat are identical to those in the original plasmid.
- The CRY1F protein includes the F604K (phenylalanine to lysine at position 604) amino acid substitution, which was introduced to create a specific restriction site for cloning purposes.

DNA insert from MON87411 vector PV-ZMIR10871
The MON87411 genome contains three cassettes: an RNA interference (RNAi) cassette targeting Diabrotica virgifera virgifera, Bacillus thuringiensis cry3Bb1 and Agrobacterium tumefaciens 5-enolpyruvylshikimate-3-phosphate synthase (cp4-epsps).

Transcription of the RNAi cassette commences from the Cauliflower mosaic virus 35S enhanced promoter and terminates at the Pisum sativum ribulose bisphosphate carboxylase small chain 2 terminator. The transcript initially contains a Zea mays heat shock protein 70 intron, which contributes to enhanced expression in vegetative tissues of the plant, and two partial coding sequences of the D. virgifera virgifera Snf7p gene, which encodes the SNF7 subunit of the ESCRT-III complex. The two Snf7p sequences are in an inverted orientation, separated by a 150-nucleotide intervening sequence, which allows base pairing between the inverted sequences and hairpin RNA formation post-transcription, which then triggers an RNAi response. Due to RNAi processing, small interfering RNA molecules (roughly 21-23 nucleotides in length) will be produced and thus no translation into protein will occur from this cassette.

Transcription of the cry3Bb1 is under control of the Z. mays physical impedance induced protein promoter and Triticum aestivum (wheat) heat shock protein 17.3 terminator. The transcript also contains a wheat 5' untranslated leader from chlorophyll a/b-binding protein and Oryza sativa actin 1 intron for enhanced expression of the transgene. Expression of cp4-epsps is under control of an O. sativa alpha tubulin promoter and terminator. The transcript additionally contains Arabidopsis thaliana chloroplast targeting peptide 2 to sequester the protein to the chloroplast.

Note:
- Sequencing, PCR and bioinformatic analyses indicate that a single, intact insertions of the three gene cassettes occurred in the parental line.
- No plasmid backbone was detected.

DNA insert from 59122 vector PHP17662:
Transcription of Bacillus thuringiensis cry34Ab1 starts at Zea mays ubiquitin gene promoter and terminates at the Solanum tuberosum proteinase inhibitor II gene terminator. Transcription of B. thuringiensis cry35Ab1 commences from the (Triticum aestivum (wheat) peroxidase gene promoter and stops at another S. tuberosum proteinase inhibitor II gene terminator.

Note:
- The coding sequence of cry34Ab1 and cry35Ab1  has been adapted to the codon usage in maize as to achieve optimal expression in planta.
- The cry34Ab1 and cry35Ab1 were cloned from B. thuringiensis strain PS149B1.
- Sequence analysis of 59122 done by the European Food Safety Authority indicated that this LMO contains one complete copy of the T-DNA of PHP17662 without internal rearrangements. All three gene cassettes, cry34Ab1, cry35Ab1 and pat, are intact within the transgenic event. The DNA sequences of the genes in 59122 are identical to those in the original plasmid except for two nucleotide differences in the wheat peroxidise promoter. At the 5' T-DNA end a deletion of 22 bp is observed and at the 3' T-DNA end a deletion of 25 bp is observed. The absence of vector backbone in maize 59122 was also demonstrated.

For more information, kindly refer to the parental LMO records.
EN
LMO characteristics
EN
  • Food
  • Feed
Detection method(s)
EN
Additional Information
EN
Records referencing this document Show in search
Record type Field Record(s)
Country's Decision or any other Communication Living modified organism(s) 1
Risk Assessment generated by a regulatory process Living modified organism(s) 1