MON-8746Ø-4 × DAS-Ø15Ø7-1 × MON-87411-9 × DAS-59122-7 - Drought-tolerant, herbicide-tolerant, insect-resistant maize | BCH-LMO-SCBD-116304 | Living Modified Organism | Biosafety Clearing-House

Loading...
  |  

Living Modified Organism (LMO)

Decisions on the LMO Risk Assessments  
last updated: 05 Oct 2021
Living Modified Organism identity
The image below identifies the LMO through its unique identifier, trade name and a link to this page of the BCH. Click on it to download a larger image on your computer. For help on how to use it go to the LMO quick-links page.
Drought-tolerant, herbicide-tolerant, insect-resistant maize
EN
MON87460 × TC1507 × MON87411 × 59122
MON-8746Ø-4 × DAS-Ø15Ø7-1 × MON-87411-9 × DAS-59122-7
The maize (Zea mays) was produced through cross breeding of modified parental maize lines for drought tolerance, herbicide tolerance and insect resistance. For abiotic tolerance, the maize expresses Bacillus subtillus cold shock protein to enhance natural abiotic (drought) stress responses. For herbicide tolerance, the maize expresses Agrobacterium tumefaciens 5-enolpyruvylshikimate-3-phosphate synthase (glyphosate tolerance - enzyme variant) and Streptomyces viridochromogenes phosphinothricin N-acetyltransferase (glufosinate tolerance - enzymatic inactivation). For Lepidoptera tolerance, the maize expresses Bacillus thuringiensis Cry1F. For Coleoptera  resistance, the maize expresses B. thuringiensis Cry3Bb1, Cry34Ab1 and Cry35Ab1. The maize contains an RNA interference cassette targeting Diabrotica virgifera virgifera Snf7 for specific resistance against D. virgifera virgifera. Additionally, the maize contains an Escherichia coli neomycin phosphotransferase II cassette for kanamycin selection, which was used during transformation of a parental line.
EN
The term “Recipient organism” refers to an organism (either already modified or non-modified) that was subjected to genetic modification, whereas “Parental organisms” refers to those that were involved in cross breeding or cell fusion.
  • BCH-ORGA-SCBD-246-6 Organism Zea mays (Maize, Corn, MAIZE)
    Crops
  • BCH-LMO-SCBD-103066-6 Living Modified Organism MON-8746Ø-4 - Droughtgard™ Maize
    Resistance to antibiotics - Kanamycin Tolerance to abiotic stress - Cold / Heat, Drought
  • BCH-LMO-SCBD-14841-13 Living Modified Organism DAS-Ø15Ø7-1 - Herculex™ I maize
    Resistance to diseases and pests (Insects, Lepidoptera (butterflies and moths)), Resistance to herbicides (Glufosinate)
  • BCH-LMO-SCBD-108881-1 Living Modified Organism MON-87411-9 - Maize modified for herbicide tolerance and insect resistance
    Monsanto | Resistance to diseases and pests (Insects, Coleoptera (beetles), Western corn rootworm (Diabrotica virgifera), Northern corn rootworm (Diabrotica barberi)), Resistance to herbicides (Glyphosate)
  • BCH-LMO-SCBD-15165-13 Living Modified Organism DAS-59122-7 - Herculex™ RW Rootworm Protection maize
    Pioneer Hi-Bred International Inc. | Resistance to diseases and pests (Insects, Coleoptera (beetles)), Resistance to herbicides (Glufosinate)
EN
Characteristics of the modification process
PV-ZMAP595; PHI8999A; PV-ZMIR10871; PHP17662
EN
  • Cross breeding
 
0.980 kb
 
 
1.000 kb
 
 
1.820 kb
 
 
0.720 kb
 
 
0.620 kb
 
 
0.800 kb
 
 
0.240 kb
 
 
0.250 kb
 
 
0.630 kb
 
Some of these genetic elements may be present as fragments or truncated forms. Please see notes below, where applicable.
DNA insert from MON87460 vector PV-ZMAP595
The T-DNA insert contains the following gene cassettes: Bacillus subtillus cold shock protein (cspB) and Escherichia coli neomycin phosphotransferase II (nptII). 

Transcription of cspB is under control of the Oryza sativa actin 1 promoter and Agrobacterium tumefaciens transcript 7 gene 3' untranslated region. The transcript initially contains an O. sativa actin 1 intron for enhanced gene expression of cspB. The sequence is removed (spliced) prior to protein translation. Constitutive expression of cspB is expected due to the actin promoter.

Transcription of nptII is under control of the Cauliflower mosaic virus (CaMV) 35S promoter and A. tumefaciens nopaline synthase terminator. High levels of transcription are expected due to the CaMV promoter.

Note:
- The coding sequence of cspB has been codon optimized for optimal expression within plant cells.
- Southern blot analysis indicated that no vector backbone sequences were inserted into the parental genome
- Southern blot analysis indicated that the parental genome contains a single insertion
- Sequencing analyses confirm the Southern blot analyses.
- A 22 base pair deletion of genomic DNA